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Abstract. Development graphs are a tool for dealing with structured
specifications in a formal program development in order to ease the man-
agement of change and reusing proofs. In this work, we extend develop-
ment graphs with hiding (e.g. hidden operations). Hiding is a particularly
difficult to realize operation, since it does not admit such a good decom-
position of the involved specifications as other structuring operations
do. We develop both a semantics and proof rules for development graphs
with hiding. The rules are proven to be sound, and also complete relative
to an oracle for conservative extensions. We also show that an absolute
complete set of rules cannot exist. The whole framework is developed
in a way independent of the underlying logical system (and thus also
does not prescribe the nature of the parts of a specification that may be
hidden).

1 Introduction

It has long been recognized that specifications in the large are only manage-
able if they are built in a structured way. Specification languages, like CASL
[CASL9S], provide various mechanisms to combine basic specifications to struc-
tured specifications. Analogously, verification tools have to provide appropriate
mechanisms to structure the corresponding logical axiomatizations. In practice,
a formal program development is an evolutionary process [VSE96]. Specification
and verification are mutually intertwined. Failed proofs give rise to changes of
the specification which in turn will render previously found proofs invalid. For
practical purposes it is indispensable to restrict the effects of such changes to a
minimum in order to preserve as much proof effort as possible after a change of
the specification.

Various structuring operations have been proposed (e.g. [DGS91,ST88,5T92])
in order to modularize specifications and proof systems have been described to
deal with them (e.g. [CM97,HWB97]). Traditionally, the main motivations for
modularization have been the sharing of sub-specifications within one specifi-
cation, the reuse of specifications, and the structuring of proof obligations as
well as applicable lemmas. However, the structure of specifications can also be
exploited when the effects of changes are analyzed.
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In [AHMSO00], development graphs have been introduced as a tool for deal-
ing with structured specifications in a way easing management of change and
reusing proofs. Also, a translation of structured specifications in CASL, an inter-
national standard for algebraic specification languages, to development graphs
has been set up. However, this translation does not cover the case of hiding yet.
In this work, we extend development graphs in a way that allows also to deal
with hiding. Compared with other structuring operations like union, renaming
and parameterization, hiding is a particularly difficult to realize operation. This
is because hiding does not admit such a good decomposition of the involved
specifications as other structuring operations do.

2 Motivation

As a running example consider the following example of specifying and refining
a sorting function sorter.

Given some specification of total orders and lists, an abstract specification
of this sorting function may be denoted in CASL syntax as follows:

spec SORTING
[TOTALORDER]

LisT [sort Elem)]
then
preds is_ordered  : List|Elem];
permutation : List[Elem] x List|Elem];

forall z,y . FElem;
L,L1,L2 : List[Elem]
o is_ordered([])
o is_ordered([z])
o is_ordered(z :: (y 2 L)) & x <y A is.ordered(y:: L)
o permutation(L1,L2) & (NVz:Elem o v € L1 & x € L2)
then
op sorter : List[Elem| — List|Elem];
forall L : List[Elem]
o is_ordered(sorter(L))
o permutation(L, sorter(L))
}
hide is_ordered, permutation
end
is_ordered and permutation are auxiliary predicates to specify sorter, and
are hidden to the outside. A model of this specification is just an interpretation
of the sorter function (together with a model of the imported specifications of
total orders and lists) that can be extended to a model of the whole specification
(including is_ordered and permutation).
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During a development, we may refine SORTING into a design specification
describing a particular sorting algorithm. For simplicity, we choose a sorting
algorithm which recursively inserts the head element in the sorted tail list. In
CAsL we obtain the following specification:

spec INSERTSORT
[TOTALORDER]

L1ST [sort Elem]
then
ops insert : Elem x List[Elem] — List[Elem];
sorter : List[Elem] — List[Elem];

forall z,y : Elem;
L . List[Elem]
o insert(z,[]) = []
o insert(z,y:: L) =
x i insert(y, L) when x < y else y :: insert(x, L)

o sorter([]) = ||

e sorter(z :: L) = insert(z, sorter(L))
}
hide insert
end

Now the interesting question arises whether INSERTSORT is actually a refine-

ment of SORTING; i.e. whether each INSERTSORT-model is also a SORTING-model.

3 Preliminaries

When studying development graphs with hiding, we want to focus on the struc-
turing and want to abstract from the details of the underlying logical system.
Therefore, we recall the abstract notion of logic from Meseguer [Mes89]. Logics
consist of model theory and proof theory. Model theory is captured by the no-
tion of institution, providing an abstract framework for talking about signatures,
models, sentences and satisfaction. Proof theory is captured by the notion of en-
tailment system, providing an abstract framework for talking about signatures,
sentences and entailment.
Let CAT be the category of categories and functors.

Definition 1. An institution [GB92] T = (Sign, Sen, Mod, |=) consists of

— a category Sign of signatures,

— a functor Sen: Sign — Set giving the set of sentences Sen(X) over each sig-
nature X, and for each signature morphism o: X — X, the sentence trans-
lation map Sen(o): Sen(X) — Sen(X'), where often Sen(o)(p) is written
as o (p),

! Strictly speaking, CAT is not a category but only a so-called quasicategory, which
is a category that lives in a higher set-theoretic universe.
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— a functor Mod: Sign®® — CAT giving the category of models over a given
signature, and for each signature morphism o: X — 3, the reduct functor
Mod(c): Mod(Y') — Mod(X), where often Mod(c)(M') is written as
M|,

— a satisfaction relation x5, C [Mod(X)| x Sen(X) for each X € Sign,

such that for each o: X — X' in Sign M’ =5/ o(p) & M|, =5 ¢ holds for
each M’ € Mod(X') and ¢ € Sen(X) (satisfaction condition).

Definition 2. An entailment system & = (Sign, Sen, ) consists of a category
Sign of signatures, a functor Sen:Sign — Set giving the set of sentences
over a giwen signature, and for each X € |Sign|, an entailment relation FxC
|Sen(X)| x Sen(X) such that the following properties are satisfied:

reflexivity: for any ¢ € Sen(X), {¢} Fx ¢,

monotonicity: if I'Fx ¢ and I" D I then I'' b5 o,

transitivity: if I' bx @;, fori € I, and I'U{p;|i € I} Fx 4, then I'Fx 1,
F-translation: if I' b5 ¢, then for any o: ¥ — X' in Sign, o[ Fxr o(p).

T fo o~

We write I'™* for {¢| " Fx ¢}
Definition 3. A logic is a 5-tuple LOG = (Sign, Sen, Mod, F, |&) such that:

1. (Sign, Sen, ) is an entailment system (denoted by ent(LOG)),

2. (Sign, Sen,Mod, =) is an institution (denoted by inst(LOG)), and

3. the following soundness condition is satisfied: for any X € |Sign|, I' C
Sen(X) and p € Sen(X), I' bx ¢ implies I' Ex ¢

A logic is complete if, in addition, I" |=x ¢ implies I' bx .

Throughout the rest of the paper, we will work with an arbitrary but fixed
logic LOG = (Sign, Sen, Mod, I, =) such that Sign has finite colimits, and
LOG admits weak amalgamation, i.e. Mod maps finite colimits to weak limits.

Given a diagram D: I — Sign, let us call a family (m;);e|7 consistent with
I, if for each i € |I|, m; € Mod(D(i)), and for each l:i—j € I, mj|pqy = m;.

The weak amalgamation property can now be reformulated as follows: LOG
admits weak amalgamation iff for each diagram D:I — Sign and each family
(mq)ier) consistent with I, there exists a model m € Colim D with m|,, =m;,
where p;: D(i) — Colim D are the colimit injections.

There are plenty of logics satisfying the above requirements, e.g. many-sorted
equational logic, many-sorted first-order logic, various temporal and object-
oriented logics etc. The logic underlying CASL, subsorted partial first-order logic
with sort generation constraints, does not admit weak amalgamation. However,
the CASL logic can be embedded into a logic with a richer signature category
and a model functor admitting (weak) amalgamation [SMHKTO1]. Hence, the
results of this paper also are applicable for CASL, if colimits are taken in the
richer signature category.
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4 Development Graphs with Hiding

A development graph, as introduced in [AHMS00], represents the actual state of
a formal program development. It is used to encode the structured specifications
in various phases of the development. Roughly speaking, each node of the graph
represents a theory like for instance LIST, SORTING or INSERTSORT in CASL.
The links of the graph define how theories can make use of other theories.

Leaves in the graph correspond to basic specifications, which do not make
use of other theories (e.g. TOTAL_ORDER). Inner nodes correspond to structured
specifications which define theories using other theories (e.g. SORTING using
TOTAL_ORDER). The corresponding links in the graph are called definition links.
Arising proof obligations are attached as so-called theorem links to this graph.
We here add a new type of definition links corresponding to hiding.

Definition 4. A development graph is an acyclic, directed graph S = (N, L).
N is a set of nodes. Each node N € N is a tuple (XN, ®N) such that XV is
a signature and ®~ C Sen(X") is the set of local axioms of N.
L is a set of directed links, so-called definition links, between elements of
N. Each definition link from a node M to a node N is either

global (denoted M—2» N ), annotated with a signature morphism o : XM —

2N or

— local (denoted M—2=N ), again annotated with a signature morphism o :
rM _ N or

— hiding (denoted M—» N ), annotated with a signature morphism o : N

XM going against the direction of the link.

To simplify matters, we write M—2» N € S instead of M—» N € L when L are
the links of S.

In Fig. 1 we present the develop-
ment graph for the running example:
The left part of the graph represents c
the structured specification SORTING,
and the the right part the structured
specification INSERTSORT.

The next definition captures the

LisT+ORDER

PERM+ORDERDEF INSERTSORTDEF

i SORTERPROPS h
existence of a path of local and global
definition links between two nodes. h
Notice that such a path must not con- SORTING= — <% INSERTSORT

tain any hiding links.

Definition 5. Let S be a development Fig. 1. Development graph for the sort-
graph. A node M is globally reach- ing example

able from a node N wvia a mapping o,

Ne-2p-M € S for short, iff either N = M and 0 = \, or N2 K € S, and
K2 M € S, with o = 0" o 0o’.
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A node M islocally reachable from a node N via a mapping o, N>—2m M €
S for short, iff N2 M € S or there is a node K with N2~ K € S, K»< M €
S, such that c = " o o’.

Obviously global reachability implies local reachability since the theory of a
node is defined with the help of local axioms.

Definition 6. Let S = (N, L) be a development graph. A node N € N is flat-
able iff for all nodes M € N with incoming hiding definition links, it holds that
N is not reachable from M.

The models of flatable nodes does not depend on existing hiding links. Thus
we use the original approach of defining the theory of a node:

Definition 7. Let S = (N, L) be a development graph. For N € N, the theory
Ths(N) of N wrt. a development graph S is defined by

FoN
Ths(N) = |o"u |J o(Ths(K)Uu ] o(@)
K—ZmNcS K—Z>Nes

For flatable nodes N, Ths(N) captures N completely. However, this is not
the case for nodes that are not flatable. Therefore, we cannot define a proof-
theoretic semantics of development graphs as in [AHMSO00]. Rather, we have to
use a model-theoretic semantics. In Sect. 5 we will show how this model-theoretic
semantics relates to the proof theoretic semantics given in [AHMSO00].

Definition 8. Given a node N € N, its associated class Modg(N) of models
(or N-models for short) consists of those XN -models n for which

— n satisfies the local azioms PV,

— for each K=2» N € S, n|, is a K-model,

— for each K—2>N € S, n|, satisfies the local axioms &X, and

— for each K—»N € S, n has a o-expansion k (i.e. k|, = n) that is a K-
model.

Complementary to definition links, which define the theories of related nodes,
we introduce the notion of a theorem link with the help of which we are able to
postulate relations between different theories. Theorem links are the central data
structure to represent proof obligations arising in formal developments. Again
we distinguish between local and global theorem links (denoted by N-Z» M and
N—= M respectively). We also need theorem links N-Z»-0M (where for some
X, 0: X — YN and 0: ¥ — XM) involving hiding. The semantics of theorem
links is given by the next definition.

Definition 9. Let S be a development graph and N, M nodes in S.

S implies a global theorem link N-Zw M (denoted S |= N-Z» M ) iff for all
m € Modgs(M), m|, € Modg(N).

S implies a local theorem link N—°= M (denoted S = N—°=M ) iff for all
m € Modg (M), m|, = ¢ for all p € &V

S implies a hiding theorem link N-Z»0M (denoted S |= N-Z»-0M ) iff for
all m € Modg(M), m|, has a 0-expansion to some N-model.
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E.g. consider the development graph of the running example (cf. Fig. 1): The
theorem link from SORTING to INSERTSORT expresses the postulation that the
latter is a refinement of the former. Furthermore, common proof obligations in a
formal development can be encoded into properties that specific global theorem
links are implied by the actual development graph.

A global definition link M—2» N in a development graph is a conservative
extension, if every M-model can be expanded along o to an N-model. We will
allow to annotate a global definition link as M—2» N, which shall express that
it is a conservative extension. These annotations can be seen as another kind of
proof obligations.

5 Rules for Development Graphs with Hiding

The rules for theorem proving in development graphs given in [AHMS00] allow
to decompose a global theorem link into local theorem links. Unfortunately, it is
not possible to decompose global theorem links starting from nodes with hiding
definition links going (directly or indirectly) into them. This is because hiding is
some kind of existential quantification, and in general it is not possible to decom-
pose an existential quantification of a conjunction into existential quantifications
of the conjuncts.

We therefore have to extend the set of rules from [AHMS00] to deal with
hiding. We have two kinds of rules:

1. Rules for hiding and conservative extension. These rules are suited to push
theorem links along the hidings inside the development graph, such that they
eventually can be decomposed into local theorem links.

2. Decomposition rules from [AHMSO00]. They allow to split global theorem
links into local and hiding theorem links.

5.1 Rules for Hiding and Conservative Extension

We now come to the rules for hiding and conservative extension. We introduce
two rules to shift theorem links over hiding, one dealing with hiding links on the
left hand side of a theorem link, and the other one with hiding links on the right
hand side of a theorem link.

Since the first rule is quite powerful, we need some preliminary notions.
Given a node N in a development graph & = (N, L), the idea is that we unfold
the subgraph below N into a tree and form a diagram with this tree. More
formally, define the diagram D:1 — Sign associated with N together with a
map G: |I|— N inductively as follows:

— (N) is an object in I, with D((N)) = N¥. Let G({N)) be just N.
—ifi=(M b N ) is an object in I with [, ..., [, non-local links
in £, and | = K—» M is a (global or local) definition link in £, then

. l In
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is an object in I with D(j) = Y%, and [ is a morphism from j to i in I with
D(l) =0. Weset G(j) = K.
I !

—ifi=(M—>--—> N )isanobject in I with [y, ..., non-local links
in £, and | = K—» M is a hiding link in £, then
. l In

is an object in I with D(j) = ¥, and [ is a morphism from i to j in I with
D(l) = 0. We set G(j) = K.

This means that the graph is just unfolded to the diagram. The unfolding is
necessary to achieve that in the diagram there is a distinction between instances
of the same node that are imported via different paths into another node.

Theorem-Hide-Shift. This rule (cf. Fig. 2) is used if
a hiding link occurs on the right-hand side of a the-
orem link. For this rule D: I — Sign is the diagram
associated with N, p;: D(i) — Colim D are the col-
imit injections (i € |I|), C' is a new isolated node with 1y 00
signature C'olim D, and with ingoing global definition M=-==C
links G(i)-=»C for i € |I|. Here, an isolated node is
one with no local axioms and no ingoing definition links
other than those shown in the rule

We now illustrate why the unfolding of the sub- <N)Ogh¢9
graph under N in the rule Theorem-Hide-Shift is MLDN
needed. Consider the development graph

Fig. 2. Rule Theorem-

GRrourINV FIELD Hide-Shift
L g1 |02
h
GROUP

defining groups with the help of groups with inverse (by hiding the inverse) and
then defining fields using groups twice: both for the additive and the multiplica-
tive group. If we would take the colimit of this graph, we would identify the
additive with the multiplicative group in F'ield. This is not what we want. The
unfolding of the rule Theorem-Hide-Shift now doubles the signature of groups
and groups with inverse, leading to a signature C'olim D containing the additive
and the multiplicative group, and an additive and a multiplicative inverse. The
graph for the premise of the rule is then

L1

_—
GROUPINV L2 C

L
h 01|02

GROUP o5 > FIELD
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In the node C, one can reason about both inverses in parallel, while the theory
of groups with inverse is not doubled (as it would be the case with approaches
that flatten specifications).

Hide-Theorem-Shift. This rule (cf. Fig. 3) o XN,
replaces hiding theorem links by normal -7 o’
theorem links. This is only possible if on the M’ N
right-hand side of the hiding theorem link, N’
a conservative definition link 9/?:
occurs, and furthermore o’ 06 = ¢ o 5. M'-<%+»N

Cons-Shift. The previous rule to replace Fig.3. Rule Hide-Theorem-Shift
hiding theorem links requires conservative

definition links. In order to be able to derive new conservative definition links
from existing ones, we introduce a rule which allows their derivation. For this
rule (cf. Fig. 4) we must require that

oM 2 5 ¢N M N

le ief 1

oM . N Wi
is a pushout, and moreover, that N’ is isolated. M—=—>»N
clg c|or

In addition to the above rules, one would use logic-
specific rules for syntactically determining conserva- M —Z N’

tive extensions (e.g. extensions by definitions).
Fig. 4. Rule Cons-shift
Proposition 1. The above rules are sound.

Proof. Theorem-Hide-Shift: Assume that S |
MESC. Let n be an N-model. We have to show 1|, to be an M-model in
order to establish the holding of M-%Z» N. We inductively define a family
(m)ig|1) of models m; € Mod(G(i)) by putting

- m<N> =n,
-m , N . :=m|,, where | = K= M and
(K —> M —"= - —">N)
m=m N . , and
MLy
-m . N . is a o-expansion of m to a K-model, where
(K —> M —"= - —">N)

l=K—»M and m =m . L

Mty

It is easy to show that this family is consistent with D. By weak amalgama-
tion, there is a X = Colim D-model ¢ with c|,, = m;. The latter implies
that ¢ is a C-model. By the assumption, ¢,y 00 = Mnyle = 1[s is an
M-model.

Hide-Theorem-shift: Assume that S = M'-Zs N’ and N-%» N' is conservative.
We have to show that S = M’ 260N Let n be an N-model. Since N—%» N’
is conservative, n can be expanded to an N’-model n’ with n'|g: = n. By
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the assumption, n'|, is an M’-model. Thus, n/|,09 = n'|gr0e = 1|, has a
f-expansion to an M’-model.

Cons-shift: Assume that M—ow M’ is conservative. We have to prove that
N-% N’ is conservative as well. Let n be an N-model. Since M=% M’ is
conservative, n|, has a #-expansion m’ being an M’-model. By weak amal-
gamation, there is some X -model n’ with n|;s = m’ and 7’| = n. Since
N’ is isolated, n’ is an N’-model.

5.2 Rules for Decomposition

The rules for decomposition are taken from [AHMSO00]. The rule
Glob-Decomposition has to be changed. It now
decomposes a global theorem link from N to M into local theorem links into
M from those nodes from which N is reachable and into hiding theorem links
into M from those nodes which are the source of a hiding link going into some
node from which NV is reachable.
Moreover, we have added a subsumption rule, stating that global reachability
suffices to establish a global theorem link.

Glob-Decomposition:

UK>—"'>N{K£OZI’M} U UL—Z»K and K»L'»N{LEO"’eM}
N-% M

Subsumption:
No-Zp- M
N-% M
Since the other rules have not changed, we just recall them here for sake of
completeness.

Loc-Decomposition I:

K;UfL if LeZeM and " (D(K)) = o' (o(D(K)))

— =

Loc-Decomposition I1:

o No-2p- M and o(B(N)) = o' (B(N))

Basic Inference:
Ths(M) F o(¢) for each ¢ € &N
N--M
Given a development graph containing some theorem links that have to be
proved, the intention is that the above rules will be applied in a backwards man-
ner as long as possible. The rules for hiding allow to shift the (global) theorem
links to nodes without hiding involved, while the rules for decomposition allow
to decompose the global theorem links into local ones. With Basic Inference,
local theorem links can be proved using the entailment relation of the base logic

LOG.
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INSERTSORTDEF

LisT+ORDER

¢

PERM+ORDER+DEF

INSERTSORTDEF

=
SORTERPROPS h SORTERPROPS v h
h b _ -
SORTING= === === === === —» [NSERTSORT SORTING INSERTSORT
LIST+ORDE\ LisT+ORDER
PERM+ORDER+DEF INSERTSORTDEF PERM+ORDER+DEF INSERTSORTDEF
®) (c)
= =
y ¢
SORTERPROPS N’ h SORTERPROPS N S
~ b4
N .
h h S~ -~
vy _--~
SORTING INSERTSORT SORTING INSERTSORT
LISHORDF\
PERM+ORDER+DEF INSERTSORTDEF
(d)
=
SORTERPROPS— — N’ ———=N h
SORTING INSERTSORT
Fig. 5. Reduction of theorem links to flatable nodes in the running example.
6 Example

We now demonstrate the (backward manner) use of the rules with the exam-
ple development graph from Sect. 4. The goal is to reduce the theorem link
between SORTING and INSERTSORT to theorem links between flatable nodes.
The derivation is shown in Fig. 5. In the first step (a) the Theorem-Hide-Shift
rule is applied, which introduces the new node N and the new global definition
links. In the second step (b), we infer conservative relationships by applying
the rule Cons-Shift. This introduces the new node N’ and the respective global
definition links. Now the theorem link can be reduced to a hiding theorem link
from SORTERPROPS to N by Glob-Decomposition (step (c)). Finally, this hiding
theorem link can be reduced to the theorem link between SORTERPROPS and
N’ using the rule Hide-Theorem-Shift. Since both SORTERPROPS and N’ are
flatable, one now can use reasoning in the logic to prove the remaining theorem
link (via Basic Inference).
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7 Results about Completeness

The soundness of our rules is established by proposition 1 for the hiding rules,
while showing soundness of the other rules is easy. Another question is the com-
pleteness of our rules. We have the following counterexample:

Proposition 2. Let FOL be the usual first-order logic with a recursively axiom-
atized complete entailment system. Solving the question whether a global theorem
link holds in a development graph with hiding over FOL is not recursively enu-
merable. Thus, any recursively axiomatized calculus for development graphs with
hiding is incomplete.

Proof. This can be seen as follows. Let X' be the F'OL-signature with a sort nat
and operations for zero and successor, addition and multiplication and take the
usual second-order Peano axioms characterizing the natural numbers uniquely
up to isomorphism, plus the defining axioms for addition and multiplication.
Without loss of generality, we can assume that these axioms are combined into
a single axiom of the form

VP: pred(nat) . ¢

where ¢ is a first-order formula. Let ¢ be any sentence over X. Let 6: X — 3’
add a predicate P : pred(nat) to X. Consider the development graph

h
PE/IXNO<—0PEANODEF

*i d

X

where Y’ and PEANO are nodes with signature X' and no local axioms, whereas
PEANODEF is a node with signature X’ and local axiom ¢ = ).

Now we have that PEANO-“%- ¥ holds iff each ¥ — model has a PEANODEF-
expansion. It is easy to see that this holds iff the second-order formula 3P :
pred(nat).o = 1 is valid. By the quantifier rules for prenex normal form, this
is equivalent to VP : pred(nat).¢ = 1, i.e. equivalent to the fact that ¥ holds in
the second-order axiomatization of Peano arithmetic. By Godels incompleteness
theorem, this question is not recursively enumerable. a

In spite of this negative result, there is still the question of a relative complete-
ness w.r.t. a given oracle deciding conservative extensions. Such a completeness
result has been proved by Borzyszkowski [Bor01] in a similar setting. We are
going to prove a similar result here. We first need a preparatory lemma:

Lemma 1. If C is a flatable node or if C is constructed as in the rule Theorem-
Hide-Shift, then any X¢-model satisfying Ths(C) is already a C-model.

Proof. If C' is flatable, the result follows by an easy induction over the defi-
nition links indirectly or directly going into C. Now let C be constructed as
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in the rule Theorem-Hide-Shift. We use the notation introduced in connection
with the construction of C. For i € |I|, let len(i) be the length of the path
i, and let p be the maximum of all len(i), ¢ € |I|. We prove by induction
over p — len(i) that for all i € |I|, ¢|,, is a G(i)-model. Since C' contains no

local axioms, the result then follows. Let i = (ML> LN N) € |I].

By induction hypothesis, for each ingoing link K—4 M c|u; is a K-model for

= (K —= M- o N ) Now if | = K= M, ¢|u00 = c|,,, while

if | = K= M, c|,;00 = |- In the former case, c[,, reduces to a K-model,
while in the latter case, c|,, expands to a K-model. Hence in both cases, the
link [ is satisfied by c|,,,. Since c satisfies Ths(C) and N = G(i)-=»C, c|,,, also
satisfies the local axioms in M. Hence, ¢|,, is a model of M = G(i). ]

Hi

Hi

Theorem 1. Assume that the underlying logic LOG is complete. Then the rule
system for development graphs with hiding is complete relative to an oracle for
conservative exrtensions.

Proof. Assume S = M-2 N. We show that there is some faithful extension &
of S (i.e. new nodes and new definition links are added, but the latter go only
into new nodes) such that §; - M-Z»N.

Let D: I — Sign and C be as in the rule Theorem-Hide-Shift, and let ¢ be
a Y°-model satisfying Ths(C). By Lemma 1, ¢ is a C-model. Hence, ¢l is
an N-model, and by the assumption S = M- ->N €|y nyoo 18 an M- model We
now have for any K> M:

L. €|y o000 = P By the satisfaction condition for institutions, we get ¢ =
pny (o (8(95))). By completeness of the underlying logic, we get Ths(C) F
pny (0 (6(5))). By Basic Inference, S - K éﬁ

2. For L—» K, form the pushout

winyoool
EK ; EC

-

EL

and obtain a new development graph &’ from S by introducing a new node r
with signature X’ and two ingoing definition links L4 I/ and C—Z»L'. The
latter link is conservative: for any C-model ¢1, ¢1, (50000 has a T-expansion
to an L-model ¢z, and by weak amalgamation, there is some X’-model c3
with 3|, = ¢1 and ¢3], = C2, which is hence an L’-model. By the oracle
for conservativity, we get C—=p L. Now S+ LML by Subsumption. By
Hide-Theorem-Shift, we get &' I e

Let S be the union of all the &’ constructed in step 2 above (assuming that all
the added nodes are distinct). By Glob-Decomposition, we get Sy + MEZC. By
Theorem-Hide-Shift, we get S; - M=% N. a
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Corollary 1. If LOG is complete, the decomposition rules are complete for prov-
ing theorem links between flatable nodes.

Proof. By inspecting the proof of Theorem 1, one can see that for theorem links
between flatable nodes, case 2 is never entered, and thus neither the rules Cons-
Shift and Hide-Theorem-Shift nor the oracle for conservativeness are needed.
Since Lemma 1 also holds for flatable nodes, one can replace the node C' in the
proof of Theorem 1 with the node N, thus also avoiding the use of Theorem-
Hide-Shift. O

8 Conclusion and Related Work

We have extended the notion of development graph [AHMS00] to deal also with
hiding. We have developed a semantics and a proof system for development
graphs with hiding. The proof system can easily shown to be sound.

Concerning completeness, with a counterexample, we show that there can
be no complete recursively axiomatized proof system for development graphs
with hiding. However, we have shown our proof rules to be complete relative to
a given oracle for detecting conservative extensions. We thus have achieved the
same degree of completeness as Borzyszkowski [Bor01] rule system for structured
specifications. In one sense our system is more complete than Borzyszkowski’s:
since our Theorem-Hide-Shift rule simulates something like Borzyszkowski’s nor-
mal forms, we do not have to rely on the Craig interpolation property. For ex-
ample, it is possible to solve a counterexample showing incompleteness in case of
failure of interpolation in [Bor01] with our rules. Borzyszkowski refrains from do-
ing normal form inference because with his way of computing normal forms, the
structure of the specification is lost. Note that this is not the case with our rules,
since they just extend the structure of the development graph, while the axioms
are kept locally. One can even further optimize the rule Theorem-Hide-Shift by
reducing the constructed diagram to those nodes that are really necessary, which
can be achieved by taking the so-called final subcategory [AR94].

Compared with the rules in [Bor01], we have fewer but more complex rules.
Our rules involve colimit computations that may be tedious for humans using
the rules directly, but that are no problem for computer assisted proofs. Indeed,
by exploiting the graph structure, development graphs with hiding can lead to
much more efficient proofs than possible when using the usual proof rules for
structured specifications as in [Bor01].

Moreover, we expect no difficulty when extending the management of change
developed in [AHMSO00] to the case of development graphs with hiding in order
to integrate the presented approach into the development graph system of INKA
5.0 [AHMS99]. Then it will be possible to support the maintenance of changes
in developments by machine also when hiding are present.

In [AHMSO00], we have described a translation from CASL structured spec-
ifications to development graphs. It should be straightforward to extend this
translation to structured specifications with hiding.
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