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Abstract. We present a compiler that translates a problem specification
into a propositional satisfiability test (SAT). Problems are specified in a
logic-based language, called NP-SPEC, which allows the definition of com-
plex problems in a highly declarative way, and whose expressive power is
such to capture exactly all problems which belong to the complexity class
NP. The target SAT instance is solved using any of the various state-
of-the-art solvers available from the community. The system obtained is
an executable specification language for all NP problems which shows
interesting computational properties. The performances of the system
have been tested on a few classical problems, namely graph coloring,
Hamiltonian cycle, and job-shop scheduling.

1 Introduction

We present a system for writing and executing specifications for search problems,
which makes use of NP-SPEC, a highly declarative specification language. NP-
SPEC has a DATALOG-like, i.e., PROLOG with no function symbols, syntax; its
semantics is based on the notion of model minimality, an extension of the well-
known least-fixed-point semantics of the Horn fragment of first-order logic [26].
NP-SPEC allows the user to express every problem belonging to the complexity
class NP [12], which notoriously includes many problems interesting for real-
world applications. Restriction of expressiveness to NP guarantees termination
and helps to obtain efficient executions.

The core of our system is the compiler, called SPEC2SAT, that translates
problem specifications written in NP-SPEC into instances of the propositional
satisfiability problem (SAT). An instance 7 of the original problem is translated
into a formula T of propositional logic in conjunctive normal form, in such a way
that T is satisfiable if and only if 7 has a solution. Moreover, from the variable
assignments that satisfy T' the system reconstructs the solution of .

A specification S of 7 is a set of metarules defining the search space, plus
a set of rules defining the admissibility function. Both metarules and rules are
transformed into a set of clauses of T encoding their semantics. The translation
of rules is based on their ground instantiation over the Herbrand universe. Our
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algorithm for instantiation uses complex auxiliary data structures so as to try
as much as possible to avoid the generation of useless clauses.

The approach of translation into SAT is motivated by the huge amount of re-
search devoted to such a problem in last years (see, e.g., [15]), and the number of
fast solvers available from the research community. Such solvers, both complete
and incomplete ones, are able to solve in a few seconds instances of hundreds
of thousands of clauses; and this result was unconceivable only a few years ago.
In addition, the community working on SAT is still very active, and even better
SAT solvers can be expected to come up in the future.

SAT is the prototypical NP-complete problem, and every instance 7 of a
problem in NP can be translated into an instance of SAT of polynomial size
in the size of 7. In practice, this idea has been exploited since several years
for various problems such as planning [I7JT6], scheduling [7], theorem proving
in finite algebra [I1], generation of test patterns for combinatorial circuits [1§],
and cryptography [2I]. Those papers showed that translating a problem into
SAT can give good performance of the resulting system, when compared with
state-of-the-art dedicated solvers.

The shortcoming of those previous works is that the translation had to be
done completely by hand for each problem. Conversely, we aim at a system
that automatically translates any NP problem into SAT using the simple and
declarative language NP-SPEC.

In terms of performances NP-SPEC cannot compete with state-of-the-art solv-
ers of well-studied problems, anyway we believe that it is a valuable tool for
developing fast prototypes for new problems, or variations of known ones, for
which no specific solver is available. Nevertheless, experimental results show that
our system is able to solve in reasonable time medium-size instances of various
classical problems. In addition, it works much faster that the original engine of
NP-SPEC [5l3] which is based on a translation of the input specification in the
logic programming language PROLOG.

2 Preliminaries

2.1 Overview of the NpP-sSPEC Language

An NP-SPEC program consists of a DATABASE section and a SPECIFICATION sec-
tion. The former section includes the definition of extensional relations, and of
integer intervals and constants. The latter section consists of two parts: a search
space declaration, and a stratified DATALOG program [2], which can include the
six predefined relational operators and negative literals.

As a first example, we show an NP-SPEC program for the Hamiltonian path
NP-complete problem, i.e., the problem where the input is a graph and the
question is whether there is a traversal that touches each node exactly once.

DATABASE
NODES = 6;
EDGE = {(1,2),(3,1),(2,3),(6,2),(5,6),(4,5),(3,5),(1,4),(4,1)};
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SPECIFICATION
Permutation({1..NODES},path). // H1
fail <-- path(X,P), path(Y,P+1), NOT edge(X,Y). // H2

The following comments are in order:

— The input graph is defined in the DATABASE section.

— In the search space declaration (metarule H1) the user declares the predicate
symbol path to be a “guessed” one of arity 2. All other predicate symbols are,
by default, not guessed. Being guessed means that we admit all extensions
for the predicate, subject to the other constraints.

— path is declared to be a permutation of the finite domain {1..NODES}. This
means that its extension must represent a permutation of order 6. As an
example, {(1,5),(2,3),(3,6), (4,2),(5,1),(6,4)} is a valid extension.

— Comments can be inserted using the symbol “//”.

— Rule H2 is the constraint permutations must obey in order to be Hamilto-
nian paths: a permutation fails, i.e., it is not valid, if two nodes X and Y
which are adjacent in the permutation are not connected by an edge. X and
Y are adjacent because they occupy places P and P+1 of the permutation,
respectively.

Running this program on the NP-SPEC compiler produces the following out-
put:

path: (1, 1) (2, 5) (3, 6) (4, 2) (5, 3) (6, 4)

which means “1 is the first node in the path, 4 is the second node in the path,
..., 3 is the sixth node in the path”, and is indeed an Hamiltonian path.

As another example, in the graph coloring NP-complete problem the input
are a graph G and a positive integer k representing the number of available
colors, and the question is whether it is possible to give each node of G a color
in such a way that adjacent nodes are never colored the same way. The intuitive
structure of the search space in this case is a partition of the nodes of G into
k distinct subsets, since an assignment of nodes to colors must be guessed. The
NP-SPEC program for checking colorability is:

DATABASE
K = 3;
N = 6;
EDGE = {(1,2),(3,1),(2,3),(6,2),(5,6),(4,5),(3,5)};
SPECIFICATION
Partition({1..N},coloring,K). // GC1
fail <-- edge(X,Y), coloring(X,C), coloring(Y,C). // GC2

Another typical structure of the search space is the integer function, i.e., the
assignment of a value in a specified domain to a set of variables. As an example,
in the quadratic Diophantine equations NP-complete problem the input are three
positive integers a, b, ¢, and the question is whether there is an integer solution
to the equation ax?+by = c. In NP-SPEC the program is the following (we declare
that we are considering assignments to z and y in the range 10..100):



390 M. Cadoli and A. Schaerf

DATABASE
a=>5; b=3; c=1874;
SPECIFICATION
IntFunc({x,y},assign,10..100).
fail <-- assign(x,Xval), assign(y,Yval), c != a*Xval™2 + bxYval.

Finally, we present the specification for the SAT problem (cf. Subsection [2:4)).
In this case, we just want to guess a subset of the variables, and assign them the
value true; other variables are assigned the value false.

DATABASE
N = 100; // number of propositional variables
IN_CLAUSE = { // IN_CLAUSE(X,Y) <--> literal X is in clause Y
(12,1),(25,1),(71,2),(-23,2), ... };
SPECIFICATION

Subset ({1..N},true).

good_clause(Y) <-- in_clause(X,Y), X > 0, true(X).
good_clause(Y) <-- in_clause(X,Y), X < 0, NOT true(-X).
fail <-- NOT good_clause(Y).

We note that predicate good_clause is defined, i.e., is in the head of auxiliary
rules. A guessed assignment fails if it produces a clause which is not good; a
clause is good if it contains at least a literal which is assigned a truth value that
makes it true.

We remark that the declarative style of programming in NP-SPEC is very
similar to that of DATALOG, and it is therefore easy to extend programs for in-
corporating further constraints. As an example, the program for the Hamiltonian
path can be extended to the Hamiltonian cycle problem by adding the following
rule

fail <-- path(X,NODES), path(Y,1), NOT edge(X,Y). // H3

Moreover, undirected graphs can be handled by including a further literal NOT
edge (Y,X) in the body of both rules H2 and H3.

2.2 Formal Properties of NP-SPEC

The formal properties of NP-SPEC are explained in detail in [3]. Concerning
syntax, we remark that NP-SPEC offers also useful aggregates, such as SUM, COUNT,
MIN, and MAX.

The semantics of NP-SPEC is based on a generalization of the minimal mo-
del semantics of [26], called (P,Q)-minimal model semantics [20]. The formal
definition can be found in [4], here we just recall some elementary notions. The
Herbrand universe U of an NP-SPEC program S is the set of all constant symbols
occurring in S. The Herbrand base of S is the set {p(e1,...,e,) | pis a predicate
symbol of arity n of S and ej,...,e, € U}. A model of S is a subset of its
Herbrand base which satisfies its rules and assigns false to fail.
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As for its computational properties, the data complexity of NP-SPEC, i.e.,
the complexity of query answering measured in the size of the input extensional
database only, is NP-complete. The expressiveness of NP-SPEC is such that the
language captures NP. This has been proven showing that, for each problem A
in NP, there is a fized database-free NP-SPEC program SP such that for each
instance db of A encoded as an input database DB, it holds that SPUD B returns
a solution iff db is a “yes” instance of A. This means that NP-SPEC is capable
of specifying exactly all problems belonging to NP. We remind that, conversely,
DATALOG is capable of expressing only a strict subset of the polynomial-time
problems. As an example, it cannot express the “even” query, which input is a
domain C' of objects, and which question is: “Is the cardinality of C' even?”.

2.3 Prolog-Based Compilation

The first implementation of NP-SPEC has been in EC'L! PS¢ [I], a PROLOG engine
integrated with several extensions.

The compiler takes two files, one containing the specification section, and
another containing the database section of a NP-SPEC program, and merges them
with a program-independent header to form an ECL'PS® target program file.

The ECL!PS® runtime system evaluates the target program file and produ-
ces the results. The prototype implements a simple guess-and-check evaluation
strategy. This is obtained by defining the search space using EC' L PS¢ constraint
declaration mechanisms, and then instantiating all domain variables before pro-
ceeding with constraint checking.

This approach allowed us to obtain a fast implementation, because it relies
on the mechanisms of unification typical of PROLOG. As for the efficiency, we
were able to solve just toy-size instances of NP-complete problems.

2.4 SAT Technology

A propositional formula in conjunctive normal form (CNF) is a set of clauses,
and a clause is a set of literals. A literal is either a propositional variable or the
negation of a propositional variable. Sometimes a formula in CNF is referred
to as a conjunction of clauses, and a clause as a disjunction of literals. The
vocabulary V(T) of T is the set of propositional variables occurring in 7. An
interpretation of T is an assignment of a Boolean value, i.e., either true or false,
to each variable in V(T'). A model of T is an interpretation that assigns true to T,
using the usual semantical rules for the interpretation of negation, disjunction,
and conjunction. The SAT problem has as input a formula 7" in CNF and the
question is whether T is satisfiable, i.e., if it has a model, or not.

Algorithms for the SAT problem are either complete, i.e., if there is a model,
they are guaranteed to find one, or incomplete, i.e., they may fail to find a model
if there is one.

The main complete algorithms for SAT are based on the famous DPLL pro-
cedure [98], and may differ quite a lot on the heuristics for the variable selection.
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Fig. 1. Architecture of the NP-SPEC compilation and execution environment

We have performed preliminary tests with various solvers. The relatively simple
mechanism of constraint propagation of DPLL can be implemented in a quite
efficient way, and gives surprisingly good results. Complete algorithms are able
to solve SAT instances of several hundreds of variables and several thousands of
clauses in the worst conditions, i.e., at the so-called crossover point [25]. Such
point refers to a particular random generation of CNFs, and is determined ex-
perimentally as the point in which the probability of a formula to be satisfiable
equals the probability of being unsatisfiable. As for instances of SAT which are
not randomly generated, the size of formulae that can be dealt with is quite lar-
ger. Generally, incomplete algorithms are much faster than complete ones. Most
popular algorithms such as GSAT and WALKSAT [24] are based on randomized
local search.

Many solvers are publicly available on the WWW, cf. e.g., [23], and use the
DIMACS [15] input format, i.e., a text file containing one clause per line, where
each line contains an integer for each literal, and is terminated by 0.

In the experiments presented in Section [ we used the DPLL-based complete
system SATZ, described in [1Y].

3 Compilation into SAT

Our system is written in C++, and its general architecture is shown in Figure[Il

The module PARSER receives a text file containing the specification S in NP-
SPEC, parses it, and builds its internal representation. The module SPEC2SAT
compiles S into a CNF formula T in DIMACS format, and builds an object
representing a dictionary which makes a 1-1 correspondence between ground
atoms of the Herbrand base of S and variables of the vocabulary V(T'). The
file in DIMACS format is given as an input to the SAT solver, which delivers
either a text file containing a model of T, if satisfiable, or the indication that
it is unsatisfiable. At this point, the MODEL2SPEC module performs, using the
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dictionary, a backward translation of the model (if found) in the original language
of the specification.

In the current version we do not allow aggregates, recursion and negative
occurrences of defined predicates in NP-SPEC. It is important to note that such
syntactic restrictions do not limit the expressive power of NP-sPEC [4].

3.1 Basic Algorithm of SPEC2SAT

From this point on we focus on the SPEC2SAT module, the most important
of the system. Formally, the module receives as input an NP-SPEC specification
S = (DB, SP), and outputs a propositional formula T in CNF such that T is
satisfiable if and only if the answer to S is “yes”; moreover, if T is satisfiable,
then each model of T corresponds to a solution of S.

As an example, Figure 2] shows an instance of graph 3-coloring (a), the cor-
responding dictionary (b) and the DIMACS file generated (c).

————e e e e +
G 0 | | -4-50 | | |
| | -4 -60 | | |
(a) Problem Instance | | -5 -6 0 | 16 -1 -4 -7 0 | |
[ | 4560 | 16 -2 -4 -10 0 | [
| | -7 -8 0 | 16 -3 -7 -13 0 | |
[NP-sPEC atom|[variable[kind]| : ; 8 : _; _g 8 : 1: _; _2 _?100 : -6 0 :
edge(1,2) L 13017890 | 16-3 -8 -14 0 | |
edge(1,3) 2 | | | 10 11 0 | 16 -1 -6 -9 0 | |
edg.e(2’4) 5 | | -10 -12 0 | 16 -2 -6 -12 0 | |
coloring(1,0) || 4 I | =11 -12 0 | 16 -3 -9 -15 0 | |
coloring(1,1) 5 | | 10 11 12 0 | | |
coloring(1,2) 6 | | =13 =14 0 | | |
coloring(2,0) 7 | | -13 =15 0 | | |
coloring(2,1) 8 | | -14 -15 0 | | |
coloring(2,2) 9 B | | 13 14 15 0 | | |
coloring(3,0) 10 N e e o +
coloring(3,1) 11
coloring(3,2) 12 1 9 3 4
coloring(4,0) 13
coloring(4,1) 14 (c) CNF formula: clauses of kinds 1..4
coloring(4,2) 15
fail 16 5y

(b) Dictionary

Fig. 2. Example of the results of the SPEC2SAT module
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In order to understand how the given dictionary and file are obtained, we
first notice that only a subset of the Herbrand base of S is really meaningful
for the compilation process. For example, ground instantiations of a predicate
in DB which are not facts in the database can be neglected when building the
vocabulary V(T'). More precisely, V(T') is made of variables of three kinds:

a. one variable for every fact in DB;

(. one variable for every ground instantiation of a guessed predicate on elements
of the relevant domain;

~. one variable for every ground instantiation of other predicates.

Figure[2(b) shows the three kinds of variables for the graph coloring problem.
In particular, for the coloring predicate we have N - K atoms of the kind S.
The set of clauses of T' is made of clauses of four kinds:

1. A clause {c} for each variable ¢ of the kind «.

2. Clauses using variables of the kind 8 encoding the meaning of the correspon-
ding metarule.

3. Clauses using variables of the kind «, 3, and v encoding the meaning of the
rules of SP. Each ground instantiation of a rule can in principle originate
several clauses.

4. The clause {—fail}.

Figure [2(c) shows the four sets of clauses for the current example. In parti-
cular, metarule GC1 originates the clauses of kind 2 and rule GC2 originates the
clauses of kind 3. Clauses of kind 2 are of the following two subkinds:

—coloring(r, c1) V —coloring(r,ce)  Vr € {l.n} Vei,co € {0..k — 1} (1)
coloring(r,0) V - - -V coloring(r,k — 1) Vr e {l.n} (2)

Set of clauses () states that each node has at most one color in 0..k — 1 and
set (Z) that each node has at least one color. Similar sets of clauses exist for the
other kinds of metapredicates, i.e., for Permutation, IntFunc, and Subset.

3.2 Optimization of SPEC2SAT

Several simplifications of T' are possible, some simple and some more complex.
The simple ones consist in eliminating the unary clauses, i.e., those of kind 1
and 4. This implies that clauses in which such literals occur will be —according
to the sign— either shortened or eliminated.

More complex optimizations —which do not apply for very simple specificati-
ons such as the one for graph coloring— involve clauses of kind 3, and are based
on the elimination of useless variables of the kind . Let us consider for example
the following rule:

p(ny:Z) <-= q(X,Y), S(Y,Z,W), r(Z,W). (3)
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In principle, a clause of T is generated for each of the |U|* ground instan-
tiations of the rule (one for each possible value assignment to the four variables
occurring in it). This can be obviously unpractical when the Herbrand universe
U is sufficiently large, e.g., |U| > 100.

Our goal is to avoid most of those instantiations, by using information on the
plausible extensions of the predicates. In order to do that, first of all we build
the precedence graph G of SP. The nodes of G are the predicates of SP, and
there is an edge from ¢ to p iff there is a rule with p in the head and ¢ in the
body in SP. Predicates of SP are naturally partitioned in two subsets:

— “primitive”, i.e., sources in G; they are either predicates of DB, or guessed
predicates;
— “defined”, i.e., they occur in the head of some rule.

Note that the special predicate fail is defined, and it is actually the only sink
of G. Note also that G is a DAG, since recursion is not allowed.

Basically, predicates are processed in the order given by the topological sort
of G, i.e., no node is visited before all of its predecessors are visited, and each
predicate contributes to T with a set of clauses. In particular, primitive predi-
cates are quite straightforward to deal with, and they are taken into account by
the clauses of kinds 1 and 2.

As for a defined predicate p, using the assumption that it is considered only
after all predicates occurring in the body of rules with p in the head have been
considered, in some important cases we can discard several instantiations of such
rules. As an example, in rule (@) if q is a DB predicate we have to consider only
value assignments to X and Y which correspond to facts in DB, instead of all
|U|? assignments.

Generalizing this idea, we introduce the notion of “alive” for ground instan-
tiations of predicates. In particular, the set alive(p) (a subset of the Herbrand
base) of ground instances of p is defined in the following way:

— if p is a primitive predicate, alive(p) is the set of the ground instantiations
corresponding to variables of the kinds a and ;

— if p is a defined predicate, alive(p) is recursively defined as the set of atoms
occurring in the head of ground instances of rules with p in the head, such
that all positive literals in the body are alive.

Our algorithm traverses G following its topological sort. When a predicate p
is under analysis, the set alive(p) is built, and clauses (kind 3) corresponding
to instantiations of rules with p in the head are generated. Referring to the
above example, in rule (@) we must consider only value assignments to the four
variables according to alive(q), alive(s), and alive(r).

Another key point of the algorithm concerns the way assignments to the
variables are generated. As we already mentioned the number n of variables in a
rule is a crucial parameter, because in the worst case |U|™ variable assignments
must be taken into account. In very simple specifications, n can be as large as
10 (cf. Section EEJ), and |U| as large as 100, therefore it is very important to
avoid a simple-minded enumeration of all variable assignments.
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To this aim we use a backtracking-based algorithm that for each rule explores
a tree of depth n (one level for each variable) and uses sets alive for pruning
the search. The algorithm considers partial assignments, i.e., assignments to a
subset of m variables, with m < n. As an example, referring to rule (3), if Z and
W have already been assigned to, e.g., 2 and 7, and r(2,7) & alive(r), then it is
useless to consider assignments to the other variables X and Y.

4 Considerations on Performance

In this section we discuss the effectiveness of the system for the solution of NP-
complete problems. It is quite obvious that, in terms of performances, our system
cannot compete with state-of-the-art solvers of the original problems. In fact, our
system is meant mainly for developing executable specifications, rather than for
effective program development. The main emphasis of our work is on obtaining
simple and readable specifications, an activity that in NP-SPEC typically takes
hours or even minutes; on the other hand implementing a very efficient solver for
a new problem in NP may take weeks or even months. Nevertheless, we want to
show that the system is able to solve medium-size instances of various classical
hard problems.

Conversely, the enumerative algorithm of the original PROLOG engine of NP-
SPEC is able to solve only small instances. We believe that the ability to solve
non-toy cases helps the user to get a better understanding of her/his application
and to capture aspects of the problem that might fail to appear in very small
instances.

In the following subsections, we analyze the performances of our system on
three problems: graph coloring, Hamiltonian cycle, and job shop scheduling.
Experiments use the solver SATZ and run on a Pentium II PC at 300 MHz.
Times are expressed in seconds of CPU use, and the symbol “~” means that
SATZ did not terminate within half an hour.

The total time for finding a solution is the sum of the compilation time ¢; and
the time t5 needed by SATZ. We remark that, asymptotically, ¢; is polynomial in
the size of the input, while t; can be exponential in the worst case. Nevertheless,
in some cases t1 > t3, as an example when the generated CNF is quite large and
has many models.

4.1 Graph Coloring

The specification of the graph coloring problem has been provided in Section 211

Given a graph G with n nodes, e edges, and k colors, the compilation of
the metarule GC1 generates a formula with n - k variables, one for each pair
({node), {color)). The formula contains O(n - k?) clauses which state that each
node has exactly one color. The rule GC2 adds e - k clauses that forbid two
adjacent nodes to have the same color (cf. Figure 2(c)).

For the experimentation of the system, we use a set of instances taken from
the DIMACS benchmark repository. In particular, we select the family DSJC of
randomly-generated graphs proposed in [I4]. Table [l reports our results.
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Table 1. Performances on the graph coloring problem

graph(nodes| edges |[colors (min)|colorable|compile time|SAT time|variables| clauses
125.1] 125 | 736 4 NO 3.19 0.33 500 3,819

125.1| 125 | 736 5 (5) YES 3.27 0.20 625 5,055

125.5| 125 | 7,782 21 (16) YES 26.62 54.10 2,625 (108,086
250.1| 250 | 3,218 9(9) YES 30.53 4.12 2,250 | 38,212
250.5| 250 |31,336| 40 (27) YES 234.1 215.6 10,000 (821,970
500.1| 500 |12,456| 16 (14) YES 243.52 63.91 8,000 259,828

The table shows that the system has been able to solve some large instances.
In one case, i.e., the instance DSJC.125.1, it has been able also to prove the
minimality of k. Such a result has been obtained by proving the unsatisfiability
of the formula generated with k& — 1 colors. Conversely, for some instances it
found a solution only for a less constrained instance with a number of colors
larger than the minimum (provided in parenthesis).

4.2 Hamiltonian Cycle

The specification of the Hamiltonian cycle problem has also been provided in
Section 1.

Given a graph G with n nodes and e edges, the resulting SAT formula has
n? variables and O(n?) clauses. In fact, the compilation generates a variable for
each fact of the form path(i, j), with i and j ranging from 1 to n. The number
of clauses generated by the metapredicate Permutation is O(n?). The number of
clauses generated by the rules H2 and H3 depends on e. In the two extreme cases
of complete and empty graph, no clauses and exactly n3 clauses, respectively,
are generated.

We experiment our system on random instances. It is known [0] that the
hardest random instances are obtained for a number of edges e equal to p =
nlogn/2, i.e., pisthe crossover point. We consider graphs such that e = p, taking
into account both solvable and unsolvable instances. In addition, we consider
graphs far from that point: solvable instances with e = 3p/2, and unsolvable
ones with e = p/2.

Table ] shows our average results of 5 instances for n = 15, 17, and 20
(p = 60, 70, and 86, respectively). We note that compilation is quite fast, while
the SAT solver is very slow. In fact, the solver is able to handle easily only
satisfiable instances with n = 15 and 17. Unsatisfiable instances are solved very
slowly by SATZ, even for “easy” instances for the original problem. For larger
instances, the solver is quite inefficient for the satisfiable cases, and ineffective
for unsatisfiable ones.

Experiments with other SAT solvers provide similar results, whereas cur-
rent solvers of the Hamiltonian cycle problem are able to solve instances with
thousands of nodes quite easily.
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Table 2. Performances on the Hamiltonian cycle problem

nodes|edges|cycle|compile time|avg. SAT time|variables|clauses
15 | 30 | NO 1.00 478.47 225 6,570
15 | 60 | NO 1.00 1,577.00 225 6,090
15 | 60 |YES 1.00 0.53 225 6,090
15 | 90 |YES 1.00 0.39 225 5,190
17 | 35 | NO 1.33 1,342.87 289 8,976
17 | 70 | NO 1.33 - 289 8,364
17 | 70 |YES 1.33 4.03 289 8,364
17 | 105 |YES 1.33 1.09 289 7,752
20 | 43 |NO 2.73 - 400 14,780
20 | 8 |NO 2.73 - 400 [13,900
20 | 8 |YES 2.73 704.61 400 13,900
20 | 130 |YES 2.73 324.41 400 13,020

4.3 Job Shop Scheduling

Job shop scheduling [12, Prob. SS18, p. 242] is a very popular NP-complete
scheduling problem. In job shop scheduling, there are n jobs, m tasks, and p
processors. Jobs are ordered collections of tasks and each task has a length
and the processor that performs it. Each processor can perform a task at the
time, and the tasks belonging to the same job must be performed in their order.
Finally, there is a global deadline D that has to be met by all jobs. In NP-SPEC

the problem is specified as follows.

DATABASE

TASKS = 36;
// task(T,J,Po,Pr,L): the task T belongs to job J in position Po,

D = b55;

// it runs on processor Pr with length L

task = {(1,1,1,2,1),

SPECIFICATION

(2,1,2,6,3),

(3,1,3,1,6), ...,

// start_time(T,S): task T starts at time S
IntFunc({1..TASKS},start_time,0..D-1).
// tasks T1 and T2 of job J are ordered correctly
fail <-- start_time(T1, S1),
start_time(T2, S2),

52 < 81 + L1.
overlap of tasks in the same processor
start_time(T1, S1),

// no
fail <--

start_time(T2, S2),

T1 1= T2,
start_time(T1, S1),

fail <--

S1 <= S2,

start_time(T2, S2),

T1 != T2,

S2 <= S1,

// meet the deadline
fail <-- start_time(T1, S1),
I1 + S1 > D.

task(T1, J, Po, _, L1),

task(T2, J, Po + 1,

task(T1, _, _,
task(T2, _, _,
S2 < 81 + L1.
task(T1, _, _,
task(T2, _, _,
S1 < 82 + L2.

task(T1, _, _,

Pr,
Pr,

L),
L2) s

Pr,
Pr,

L1,
L2) s

- Ll)’

(36,6,6,2,1)};

- —)7
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The compilation of this NP-SPEC file generates a SAT instance with m - D
variables. Regarding the number of clauses, for each quadruple (1, t2, ¢, j) formed
by two tasks t1 and ¢ and two time points ¢ and j, there is a clause if and only if
one of the rules prohibits ¢; to start at ¢ and ¢5 to start at j jointly. This number
of clauses is O(m? - D?), and its actual value depends on the relative length of
the tasks which belong to either the same job or the same processor.

Many benchmark instances are available for this problem, whose sizes range
from 36 to 1,000 tasks. We consider two relatively small instances, known as
FTO06 (36 tasks, 6 jobs, 6 processors, solvable with deadline 55), and LA02 (50
tasks, 10 jobs, 5 processors, solvable with deadline 655).

As shown in Table [ the first instance is solved easily, and the proof of the
optimality of the deadline (i.e., no solution with deadline 54) is quite fast as well.
Unfortunately, for the second instance, the SAT instance generated has more
than a billion clauses, and it is too big to be solved by the current solvers. In order
to find at least an approximate solution, we create a new instance called LA02r in
which all lengths are divided by 20 and rounded up. This corresponds to reducing
the granularity of the problem, and allowing only starting times divisible by
20. The smallest deadline found for LA02r is D = 46, which corresponds to
920(= 46 - 20) in LA02. If we give a looser deadline of 1,000, the problem is
solved much faster. We remark that the minimum value of the deadline for this
instance is 655, and all state-of-the art solvers find solutions below 700.

Table 3. Performances on the job shop scheduling problem

instance|tasks|deadline|solvable|compile time|SAT time|variables|clauses
FT06 | 36 54 NO 215.07 53.07 1,944 355,871
FT06 | 36 55 YES 220.17 20.140 1,980 (365,333
LAO2 | 50 920 YES 335.830 364.74 2,300 (392,816
LAO2 | 50 | 1,000 | YES 426.71 19.390 2,500 [440,628

Summing up, these results show that for job shop scheduling, the critical
factors are the compilation times and the size of the SAT formula obtained.
Conversely, the solution of such formula is relatively fast compared with its size.

We remark that, without the optimizations described in Section [3.2, none of
the instances of Table[3 was compiled by SPEC2SAT in less than one day.

5 Conclusions, Related, and Future Work

We have presented a novel approach for the execution of specifications of pro-
blems in NP, based on the translation into SAT. The performance of the re-
sulting system is very good, compared to the previous, PROLOG-based, engine
underlying NP-SPEC. As an example, we were able to solve benchmarks of graph
coloring problems with 500 nodes, while the previous approach was able to deal
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with graph of just 14 nodes. As another example, we were able to increase the
size of the chessboard in the n-queens problem —in which the goal is to place
n non-attacking queens on a n X n chessboard— from 12 to 60. The reason for
such an increase in performance is that we exploit the best SAT solvers, deve-
loped by third parties. Further improvements of SAT solvers will reflect in an
improvement of our system.

Moreover, our system can be used as a tool for the generation of new bench-
mark instances of SAT. In fact, SAT solvers are currently tested on encodings
of a variety of problems, such as graph coloring, planning, Latin square, blocks
world, Towers of Hanoi, circuit fault analysis, and others [23]. For example, the
encoding used for graph coloring is the same as the one generated by SPEC2SAT
with our specification of Section [2

As for related research, we have listed in the introduction several approaches
to the solution of problems, ranging from planning to cryptography, based on
translation into SAT.

Other researchers [L0J22] propose DATALOG-like languages for problem speci-
fication. The main difference between NP-SPEC and the other languages relies in
its semantics, which is based on the notion of model minimality. Alloy Analyzer,
a system for reasoning in an extension of first-order logic based on a translation
to SAT, has been proposed in [I3]. The main difference wrt NP-SPEC is that in
Alloy Analyzer in general decidability is not guaranteed, and consequently the
user must supply a bound on the number of atoms in the universe.

In the future, first we plan to include aspects of NP-SPEC that have been
neglected in this version, such as aggregates and recursion. Furthermore, we plan
to introduce some form of program transformation for improving compilation in
terms of both the size and the hardness of the generated formula. Finally, we
want to equip the system with a learning mechanism for automatic selection
of the best SAT solver for the instance at hand. In particular, fast incomplete
algorithms could be used for instances that are known to be satisfiable.

Acknowledgements. The authors are grateful to Giovambattista Ianni, Lu-
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