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Abstract. We check statically whether it is safe for untrusted foreign machine
code to be loaded into a trusted host system. Our technique works on ordinary ma-
chine code, and mechanically synthesizes (and verifies) a safety proof. Our earlier
work along these lines was based on a C-like type system, which does not suffice
for machine code whose origin is C++ source code. In the present paper, we ad-
dress this limitation with an improved typestate system and introduce several new
techniques, including: summarizing the effects of function calls so that our anal-
ysis can stop at trusted boundaries, inferring information about the sizes and types
of stack-allocated arrays, and a symbolic range analysis for propagating informa-
tion about array bounds. These techniques make our approach to safety checking
more precise, more efficient, and able to handle a larger collection of real-life
code sequences than was previously the case.

1 Introduction

Our goal is to check statically whether it is safe for a piece of untrusted foreign machine
code to be loaded into a trusted host system. (Here “safety” means that the program
abides by a memory-access policy that is supplied on the host side.) We start with ordi-
nary machine code and mechanically synthesize (and verify) a safety proof. In an earlier
paper [24], we reported on initial results from our approach, the chief advantage of
which is that it opens up the possibility of being able to certify code produced by a gen-
eral-purpose off-the-shelf compiler from programs written in languages such as C, C++,
and Fortran. Furthermore, in our work we do not limit the safety policy to just a fixed
set of memory-access conditions that must be avoided; instead, we perform safety
checking with respect to a safety policy that is supplied on the host side.

Our earlier work was based on a C-like type system, which does not suffice for ma-
chine code whose origin is C++ source code. In the present paper, we address this lim-
itation and also introduce several other techniques that make our safety-checking anal-
ysis more precise and scalable. These techniques include:

1. An improved typestate-checking system that allows us to perform safety-checking
on untrusted machine code that implements inheritance polymorphism via physical
subtyping [15]. This work introduces a new method for coping with subtyping in
the presence of mutable pointers (Section 3).

2. A mechanism for summarizing the effects of function calls via safety pre- and post-
conditions. These summaries allow our analysis to stop at trusted boundaries. They
form a first step toward checking untrusted code in a modular fashion, which makes
the safety-checking technique more scalable (Section 4).

3. A technique to infer the sizes and types of stack-allocated arrays (local arrays). This
was left as an open problem in our previous paper [24] (Section 5).
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4. A symbolic range analysis for propagating information about array bounds. This
analysis makes the safety-checking algorithm less dependent upon expensive pro-
gram-verification techniques (Section 6).

Section 2 provides a brief review of the safety-checking technique from our earlier
work [24]. Section 7 illustrates the benefits of our techniques via a few case studies.
Section 8 compares our techniques with related work.

As a result of these improvements, we can handle a broader class of real-life code
sequences with better precision and efficiency. For example, allowing subtyping among
structures and pointers allows us to analyze code originating from object-oriented
source code. The use of symbolic range analysis eliminated 55% of the total attempts
to synthesize loop invariants in the 11 programs of our test suite that have array access-
es. In 4 of these programs, it eliminated the need to synthesize loop invariants altogeth-
er. The resulting speedup for global verification ranges from -4% to 53% (with a median
of 29%). Together with improvements that we made to our global-verification phase,
range analysis allows us to verify untrusted code that we were not able to handle previ-
ously.

2 Safety Checking of Machine Code

We briefly review the safety-checking technique from our earlier work [24]. The safety-
checking analysis enforces a default collection of safety conditions to prevent type vi-
olations, array out-of-bounds violations, address-alignment violations, uses of uninitial-
ized variables, null-pointer dereferences. In addition, the host side can specify a precise
and flexible access policy. This access policy specifies the host data that can be access-
ed by the untrusted code, and the host functions (methods) that can be called. It provides
a means for the host to specify the “least privilege” the untrusted code needs to accom-
plish its task.

Our approach is based on annotating the global data in the host. The type informa-
tion in the untrusted code is inferred. Our analysis starts with information about the ini-
tial memory state at the entry of the untrusted code. It abstractly interprets the untrusted
code to produce a safe approximation of the memory state at each program point. It then
annotates each instruction with the safety conditions each instruction must obey and
checks these conditions.

The memory states at the entry, and other program points of the untrusted code, are
described in terms of an abstract storage model. An abstract store is a total map from
abstract locations to typestates. An abstract location summarizes one or more physical
locations so that our analysis has a finite domain to work over. A typestate describes the
type, state, and access permissions of the values stored in an abstract location.

The initial memory state at the entry of the untrusted code is given by a host-
typestate specification, and an invocation specification. The host typestate specification
describes the type and the state of the host data before the invocation of the untrusted
code, as well as safety pre- and post-conditions for calling host functions (methods).
The invocation specification provides the binding information from host resources to
registers and memory locations that represent initial inputs to the untrusted code.
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The safety-checking analysis consists of five phases. The first phase, preparation,
combines the information that is provided by the host-typestate specification, the invo-
cation specification, and the access policy to produce an abstract store for the program’s
entry point. It also produces an interprocedural control-flow graph for the untrusted
code. The second phase, typestate-propagation, takes the control-flow graph and the
abstract store for the program’s entry point as inputs. It abstractly interprets [6] the un-
trusted code to produce a safe approximation of the memory contents (i.e., a typestate
for each abstract location) at each program point. The third phase, annotation, takes as
input the typestate information discovered in the typestate-propagation phase, and an-
notates each instruction with local and global safety conditions and assertions: the local
safety preconditions are conditions that can be checked using typestate information
alone; the assertions are restatements (as logical formulas) of facts that are implicit in
the typestate information. The fourth phase, local verification, checks the local safety
conditions. The fifth phase, global verification, checks for array out-of-bounds viola-
tions, null-pointer dereferences, and misaligned loads and stores.

At present, our implementation handles only non-recursive programs.
3 An Improved Typestate System

In our past work, our analysis made the assumption that a register or memory location
stored values of a single type at any given program point (although a register/memory
location could store different types of values at different program points). However, this
approach had some drawbacks for programs written in languages that support subtyping
and inheritance, and also for programs written in languages like C in which program-
mers have the ability to simulate subtyping and inheritance.

In this section, we describe how we have extended the typestate system [24] to in-
corporate a notion of subtyping among pointers. With this approach, each use of a reg-
ister or memory location at a given occurrence of an instruction is resolved to a poly-
morphic type (i.e., a super type of the acceptable values). In the rest of this section, we
describe the improved type component of our typestate system.

3.1 Type Expressions

Figure 1 shows the language of type expressions used in the typestate system. Com-
pared with our previous work, the typestate system now additionally includes (i) bit-
level representations of integer types, and (ii) top and bottom types that are parameter-
ized with a size parameter. The type int(g:s:v) represents a signed integer that has
g+s+v bits, of which the highest g bits are ignored, the middle s bits represent the sign
or are the result of a sign extension, and the lowest v bits represent the value. For exam-
ple, a 32-bit signed integer is represented as int(0:1:31), and an 8-bit signed integer
(e.g., a C/C++ char) with a 24-bit sign extension is represented as int(0:25:7). The
type uint(g:s:v) represents an unsigned integer, whose middle s bits are zeros. The
type #(n] denotes a pointer that points somewhere into the middle of an array of type ¢
of size n.

The bit-level representation of integers allows us to express the effect of instruc-
tions that load (or store) partial words. For example, the following code fragment (in
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t:: ground Ground types

| t[n] Pointer to the base of an array of type t of size n

| t(n] Pointer into the middle of an array of type t of size
n

| tptr Pointer to t

| s {my,..,m} struct

| u{my,..m} union

| i) > Function

| Tm) Top type of n bits

| L(n) Bottom type of n bits (Type “any” of n bits)

m:: ([, ¢, 1) Member labeled | of type t at offset i

ground:: int(g:s:v) | uint(gsw) | ...

Figure 1 A Simple Language of Type Expressions. t stands for type, and m stands for a struct
or union member. Although the language in which we have chosen to express the type system
looks a bit like C, we do not assume that the untrusted code was necessarily written in C or C++

SPARC machine language) copies a character pointed to by register $o1 to the location
that is pointed to by register $00:

ldub [%01], %92
stb %g2, [%00]

If %01 points to a signed character and a C-like type system is used (i.e., as in [24]),
typestate checking will lose precision when checking the above code fragment. There
is a loss of precision because the instruction “1dub [%01], $g2” loads register $g2
with a byte from memory and zero-fills the highest 24 bits, and thus the type system of
[24] treats the value in $g2 as an unsigned integer. In contrast, with the bit-level integer
types of Figure 1, we can assign the type int(24:1:7) to $g2 after the execution of the
load instruction. This preserves the fact that the lowest 8 bits of $g2 store a signed char-
acter (i.e., an int(0:1:7)).

3.2 A Subtyping Relation

We now introduce a notion of subtyping on type expressions, adopted from the physi-
cal-subtyping system of [15], which takes into account the layout of aggregate fields in
memory. Figure 2 lists the rules that define when a type ¢ is a physical subtype of ' (de-
noted by ¢ < z").1 (In Figure 2, the rules [Top], [Bottom], [Ground], [Pointer], and [Ar-
ray] are our additions to the physical-subtyping system given in [15].) An integer type
t is a subtype of type ¢’ if the range represented by 7 is a subrange of the range represent-
ed by ¢, and ¢ has at least as many sign-extension bits as ¢’. Rule [First Member] states
that a structure is a subtype of type ¢’ if the type of the first member of the structure is
a subtype of ¢’. The consequence of this rule is that it is valid for a program to pass a

1. Note that the subtype ordering is conventional. However, during typestate checking the order-
ing is flipped: t;< t, in the type lattice iff t, <: t;.
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Figure 2 [Inference Rules that Define the Subtyping Relation

structure in a place where a supertype of its first member is expected. The rules [Struc-
tures] and [Members] state that a structure s is a subtype of s’ if s’ is a prefix of s, and
each member of s’ is a supertype of the corresponding member of s. The rule [Pointer]
states if 7 is a subtype of ¢’, than # ptr is a subtype of ¢’ ptr. Rule [Array] states that a
pointer to the base of an array is a subtype of a pointer into the middle of an array.

In our system, an assignment is legal only if the type of the right-hand-side expres-
sion is a physical subtype of the type of the receiving location, and the receiving loca-
tion has enough space. The Rule [Array] is valid because t (i] describes a larger set of
states than t [i]. (The global-verification phase of the analysis will check that all array
references are within bounds.)

Allowing subtyping among integer types, structures, and pointers allows the analy-
sis to handle code that implements inheritance polymorphism via physical subtyping.
Figure 3 shows an example that involves subtyping among structures and pointers. Ac-
cording to the subtyping inference rules for structures and pointers, type Color-
Point* is a subtype of Point *. Function £ is polymorphic because it is legal to pass
an actual parameter that is of type ColorPoint* to function £.

struct Point { struct ColorPoint { void f (Point* p) {
int(0:1:31) x; int(0:1:31) x; pP->X++;
int(0:1:31) vy; int(0:1:31) y; p->y--;
}; uint(24:0:8) color; }
}i

Figure 3 Subtyping Among Pointer Types

For object-oriented languages such as C++, there is an additional complication
that arises from the use of virtual functions, where a virtual function could be imple-
mented by any of the subclasses. As long as we have full information about the class
hierarchy, we can simply assume that the callee of a call to a virtual function can be
any of the functions that implement the virtual function and check all of them.

3.3 The State and Access Component of our Typestate system

We briefly review the state and access components of the typestate system. The state
lattice contains a bottom element L that denotes an undefined value of any type. For a
scalar type ¢, its state can be « or i, which denote uninitialized and initialized values, re-
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1 ColorPoint clr; Afterdi- = = = == === --- [Ewbtz}>bul
2 Point bw;
- - After - - - [CIEPEEI{ETE] :
3: void £2(void) { or et ]
4: Point* bwPtr = &bw;
: After 6 -[Z] [clr] B
5 ColorPoint* clrPtr = &clr; e Byl
6 ColorPoint** r = &clrPtr; Ehy
7 Point** t = r; After 7: [cIx] BwPED
t

8 *t = bwPtr;
9: clrPtr->color = 1;
10: ) After 8: [c1z]

: t

Figure 4 Rule [Pointer] is unsound for flow-insensitive type checking in the absence of alias-
ing information. (Assume the same type declarations as shown in Figure 3.)

spectively. We define u <i in the state lattice. For a pointer type p, its state can be either
u or P (a non-empty set of abstract locations referenced); we define u < P. One of the
elements of P can be null. For sets P| and P,, we define Py < P, iff P, < P;. For an
aggregate type G, its state is given by the states of its fields.

An access permission is either a subset of {f, x, 0}, or a tuple of access permissions.
The access permission fis introduced for pointer-typed values to indicate whether the
pointer can be dereferenced. The access permission x applies to values that hold the ad-
dress of a function to indicate whether the function pointed to can be called by the un-
trusted code. The access permission o includes the rights to “examine”, “copy”, and per-
form other operations not covered by x and f. The meet of two access-permission sets is
their intersection. The meet of two tuples of access permissions is given by the meet of

their respective elements.

3.4 Typestate Checking with Subtyping

Readers who are familiar with the problems encountered with subtyping in the presence
of mutable pointers may be suspicious of rule [Pointer]. In fact, rule [Pointer] is un-
sound for traditional flow-insensitive type systems in the absence of alias information.
This is because a flow-insensitive analysis that does not account for aliasing is unable
to determine whether there are any indirect modifications to a shared data structure, and
some indirect modifications can have disastrous effects. Figure 4 provides a concrete
example of this. The statement at line 8 changes c1rPtr to point to an object of the
type Point indirectly via the variable t, so that c1rPtr can no longer fulfill the ob-
ligation to supply the color field at line 9.

A static technique to handle this problem has to be able to detect whether such di-
sastrous indirect modifications could happen. There are several approaches to this prob-
lem found in the literature. For example, the linear type system given in [22] avoids
aliases altogether (and hence any indirect modifications) by “consuming” a pointer as
soon as it is used once. Smith er al [18] use singleton types to track pointers, and alias
constraints to model the shape of the store. (Their goal is to tracks non-aliasing to facil-
itate memory reuse and safe deallocation of objects.)

Another approach involves introducing the notions of immutable fields and objects
[1]. The idea is that if ¢ is a subtype of type ¢, type ¢ ptr is a subtype of ¢’ ptr only if
any field of ¢ that is a subtype of the corresponding field of ¢’ is immutable. Moreover,
if a field of ¢ is a pointer, then the object pointed by it must also be immutable. This rule
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applies transitively. For this approach to work correctly, a mechanism is needed to en-
force these immutability restrictions.

Our work represents yet a fourth technique. Our system performs typestate check-
ing, which is a flow-sensitive analysis that tracks aliasing relationships among abstract
locations. (These state descriptors resemble the storage-shape graphs of Chase et al [4],
and are similar to the diagrams shown in the right-hand column of Figure 4.) By in-
specting the storage-shape graphs at program points that access heap-allocated storage,
we can (safely) detect whether an illegal field access can occur. For instance, from the
shape graph that arises after statement 8 in Figure 4, the analysis can determine that the
access to color in statement 9 represents a possible memory-access error. Programs
with such accesses are rejected by our safety checker.

4 Summarizing Function Calls

By summarizing function calls, the safety-checking analysis can stop at the boundaries
of trusted code. Instead of tracing into the body of a trusted callee, the analysis can
check that a call obeys a safety pre-condition, and then use the post-condition in the rest
of the analysis. We describe a method for summarizing trusted calls with safety pre- and
post-conditions in terms of abstract locations, typestates, and linear constraints. The
safety pre-conditions describe the obligations that the actual parameters must meet,
whereas the post-conditions provide a guarantee on the resulting state.

Currently, we produce the safety pre- and post-conditions by hand. This process is
error-prone, and it would be desirable to automate the generation of function summa-
ries. Recent work on interprocedural pointer analysis has shown that pointer analysis
can be performed in a modular fashion [5]. These techniques analyze each function as-
suming unknown initial values for parameters (and globals) at a function’s entry point
to obtain a summary function for the dataflow effect of the function. In future work, we
will investigate how to use such techniques to create safety pre- and post- conditions
automatically.

We represent the obligation that must be provided by an actual parameter as a
placeholder abstract location (placeholder) whose size, access permissions, and
typestate provide the detailed requirements that the actual parameter must satisfy. When
a formal parameter is a pointer, its state descriptor can include references to other place-
holders that represent the obligations that must be provided by the locations that may
be pointed to by the actual parameter. In our model, the state descriptor of a pointer-
typed placeholder can refer to null, to a placeholder, or to a placeholder and null. If
it refers to just null, then the actual parameter must point to null. If it refers to a
placeholder, then all locations that are pointed to by the actual parameter must satisfy
the obligation denoted by the placeholder. If the state descriptor refers to both null
and a placeholder, then the actual parameter must either point to null, or to locations
that satisfy the obligation. We represent the pre-conditions as a list of the form “place-
holder : typestate”.

The safety post-conditions provide a way for the safety-checking analysis to com-
pute the resulting state of a call to a summarized function. They are represented by a list
of post-conditions of the form [alias context, placeholder : typestate]. An alias context
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int gettimeofday (struct timeval *tp);

Safety Pre-condition:
%00: <struct timeval ptr, {null, t}, fo>
t: <struct timeval, u, wo>

Safety Post-condition:
[0, t: <struct timeval, [0:<int(0:1:31), i, 0>, 32:<int(0:1:31), i, 0>], 0>]
[0, $00 : <int(0:1:31), 1, 0>]
[0, $01-%05, $91-%g7: <1(32), L, o>]

Figure 5 Safety Pre- and Post- Conditions. The typestate of an aggregate is given by the
typestates of its components (enclosed in “[“ and “]”). Each component is labeled by its off-
set (in bits) in its closest enclosing aggregate

[5] is a set of potential aliases (I eq I”) (or potential non-aliases (I neq [’)), where [ and
I’ are placeholders. The alias contexts capture how aliasing among the actual parame-
ters can affect the resulting state.

The safety pre- and post-conditions can also include linear constraints. When they
appear in the safety pre-conditions, they represent additional safety requirements. When
they appear in the post-conditions, they provide additional information about the result-
ing memory state after the call.

To make this idea concrete, Figure 5 shows an example that summarizes the C li-
brary function get t imeofday. It specifies that for the call to be safe, $00 must either
be (i) null or (ii) be the address of a writable location of size sufficient for storing a
value of the type struct timeval.The safety post-conditions specify that after the
execution of the call, the two fields of the location will be initialized, and $00 will be
an initialized integer. (On SPARC, the actual parameters will be passed through the reg-
isters $00, %01, ..., $05, and the return value of the function will be stored in the reg-
ister $00.)

In the example in Figure 5, the alias contexts are empty because there is no ambi-
guity about aliasing. Having alias contexts allows us to summarize function calls with
better precision (as opposed to having to make fixed assumptions about aliasing). Now
consider the example in Figure 6, which shows how alias contexts can provide better
precision. Function g returns either null or the object that is pointed to by the first pa-
rameter, depending on whether *p1 and *p2 are aliases.

Checking a call to a trusted function involves a binding process and an update pro-
cess. The binding process matches the placeholders with actual abstract locations, and
checks whether they meet the obligation. The update process updates the typestates of

PointPtr Safety Pre-condition:
g(PointPtr *pl, PointPtr* p2) { %00: <PointPtr ptr, {ql}, fo>
*p2 = null; %$0l:<PointPtr ptr, {q2}, fo>
return *pl ql: <PointPtr, {rl}, fo>
} Safety Post-condition:
[(ql neq q2), $00 : <PointPtr, {rl}, ..>]
[(ql eq g2), $00 : <PointPtr, {null}, ...>]

Figure 6 An example of safety pre- and post-conditions with alias contexts.
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all actual locations that are represented by the placeholders according to the safety post-
conditions.

Our goal is to summarize library functions, which generally do not do very compli-
cated things with pointers. Thus, at present we have focused only on obligations that
can be represented as a tree of placeholders. When obligations cannot be represented in
this way, we fall back on letting the typestate-propagation phase trace into the body of
the function. Tree-shaped placeholders allow the binding process to be carried out with
a simple algorithm: The binding algorithm iterates over all formal parameters, and ob-
tains the respective actual parameters from the typestate descriptors at the call site. It
then traverses the obligation tree, checks whether the actual parameter meets the obli-
gation, and establishes a mapping between the placeholders and the set of abstract lo-
cations they may represent in the store at the callsite.

The binding process distinguishes between may information and must information.
Intuitively, a placeholder must represent a location if the binding algorithm can estab-
lish that it can only represent a unique concrete location. The algorithm for the updating
process interprets each post-condition. It distinguishes a strong update from a weak up-
date depending on whether a placeholder must represent a unique location or may rep-
resent multiple locations, and whether the alias context evaluates to true or false. A
strong update happens when the placeholder represents a unique location and the alias
context evaluates to true. A weak update happens if the placeholder may represent mul-
tiple locations or the alias context cannot be determined to be either definitely true or
definitely false; in this case, the typestate of the location receives the meet of its
typestate before the call and the typestate specified in the post-condition. When the alias
context cannot be determined to be either definitely true or definitely false, the update
specified by the post-condition may or may not take place. We make the safest assump-
tion via a weak update.

S Inferring Information about Stack-Allocated Arrays

Determining information about arrays that reside on the stack is difficult because we
need to figure out both their types and their bounds. Our previous work [24] required
manual annotations of procedures that made use of local arrays. In this section, we de-
scribe a method for inferring that a subrange of a stack frame holds an array, and illus-
trate the method with a simple example.

Figure 7 shows a C program that updates a local array; the second column shows
the SPARC machine code that is produced by compiling the program with “gcc -0”
(version 2.7.2.3). To infer that a local array is present, we examine all live pointers each
time the typestate-propagation algorithm reaches the entry of a loop. In the following
discussion, the abstract location SF denotes the stack frame that is allocated by the add
instruction at line 2; SF [n] denotes the point in SF at offset n; and SFTs,f] denotes the
subrange of SF that starts at offset s and ends at offset #-1.

By abstractly interpreting the add instructions at lines 3 and 5, we find that $g3
points to SF[96] and $g2 points to SF[176]. The first time the typestate-checking al-
gorithm visits the loop entry, $g2 and $01 both point to SF[176] (see the third column
of Figure 7). Abstractly interpreting the instructions from line 10 to line 14 reveals that
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C program SPARC Machine Language First Time Second Time
typedef struct { 1: main: 192 192
int £ 2: add %sp,-192,%sp
int g; 3: add %sp, 96, %93
}os; 4: mov 0, %00 sg2—>| - - - 176 | sq2 176
5: add %sp,176,%g2 %01 201
int main() { 6: cmp %93, %92 B
s al10]; 7: bgeu .LL3
s *p = &al0]; 8: mov %g2, %ol
int i=0; 9: LL4: 104
while (p<a+10) { |10: st %00, [%93] A n |
(p++) ->f = 1i++; [11: add %g3,8,%g3 N los_ | . ot %6
12: cmp %93, %01 ° %93 M= -
} 13: blu .LL4
14: add %00,1,%00
15: .LL3: $sp N
16: retl ©SP
17: sub %sp,-192,%sp

Figure 7 Inferring the Type and Size of a Local Array. The label . LL4 represents the entry of
the while loop.

SF[96,100] stores an integer. The second time the typestate-checking algorithm visits
the loop entry, $g3 points to either SF[96] or SF[104]. We now have a candidate for
a local array. The reasoning runs as follows: if we create two fictitious components A
and B of SF (as shown in the right-most column in Figure 7), then $g3 can point to ei-
ther A or B (where B is a component of A). However, an instruction can have only one
(polymorphic) usage at a particular program point; therefore, a pointer to A and a point-
er to B must have compatible types. The only choice (in our type system) is a pointer
into an array. Letting T denote the type of the array element, we compute a most general
type for T by the following steps:
1. Compute the size of T. We compute the greatest common divisor (GCD) of the sizes
of the slots that are delimited by the pointer under consideration. In this example,
there is only one slot: SF96, 104], whose size is 8. Therefore, the size of T is 8.

2. Compute the possible limits of the array. We assume that the array ends at the loca-
tion just before the closest live pointer into the stack (other than the pointer under
consideration).

3. Compute the type of T. Assuming that the size of T we have computed is n, we create
a fictitious location e of size n, and give it an initial type T(n). We then slide e over
the area that we have identified in the second step, n bytes at a time—e.g.,
SF[96,176], 8 bytes at a time—and perform a meet operation with whatever is cov-
ered by e. If an area covered by e (or a sub-area of it) does not have a type associated
with it, we assume that its type is T. In this example, the T that we find is

struct {
int ml;
T32)m2;
}

No more refinement is needed for this example. In general, we may need to make re-
finements to our findings in later iterations of the typestate-checking algorithm. Each
refinement will bring the element type of the array down in the type lattice. In this ex-
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ample, the address under consideration is the value of a register; in general it could be
of the form “r;+r,» or “r; +n”, where r; and r, are registers and # is an integer.

This method uses some heuristics to compute the possible limits of the array. This
does not affect the soundness of this approach for the following two reasons: (i) The
typestate-propagation algorithm will make sure that the program is type correct. This
will ensure that the element type inferred is correct. (ii) The global-verification phase
will verify later that all references to the local array are within the inferred bounds.

Note that it does not matter to the analysis whether the original program was written
in terms of an n-dimensional array or in terms of a 1-dimensional array; the analysis
treats all arrays as 1-dimensional arrays. This approach works even when the original
code was written in terms of an n-dimensional array because the layout scheme that
compilers use for an n-dimensional array involves a linear indexing scheme, which is
reflected in linear relationships that the analysis infers for the values of registers.

6 Range Analysis

The technique we have used for array bounds checking in our earlier work [24], and
techniques such as those described by Cousot and Halbwachs [7,19] are precise, but
have a high cost. We describe a simple range analysis that determines safe estimates of
the range of values each register can take on at each program point [21].This informa-
tion can be used for determining whether accesses on arrays are within bounds. We take
advantage of the synergy of an efficient range analysis and an expensive but powerful
technique that can be applied on demand. We apply the program-verification technique
only for the conditions that cannot be proven by the range analysis.

The range-analysis algorithm that we use is a standard worklist-based forward data-
flow algorithm. It finds a symbolic range for each register at each program point. In our
analysis, a range is denoted by [/, u], where [ and u are lower and upper bounds of the
form ax+by+c (a, b, and c are integer constants, and x and y are symbolic names that
serve as placeholders for either the base address or the length of an array). The reason
that we restrict the bounds to the form of ax+by+c is because that array-bounds checks
usually involves checking either that the range of an array index is a subrange of [0,
length-1], or that the range of a pointer that points into an array is a subrange of [base,
base+length-1], where base and length are the base address and length of the array, re-
spectively. In the analysis, symbolic names such as x and y stand for (unknown) values
of quantities like base and length. Symbolic information about bases and lengths of the
arrays are initially given in the host-typestate specification, and are then propagated to
the various program points during range analysis.

Ranges form a meet semi-lattice with respect to the following meet operation: for
ranges r=[1l, u], r’=[I’, u’], the meet of r and r’ is defined as [min(l, [’), max(u, u’)]; the
top element is the empty range; the bottom element is the largest range [—oo, oo]. The
function min(l, I’) returns the smaller of / and /’. If / and I’ are not comparable (i.e., we
cannot determine the relative order of / and I’ because, for instance, I=ax+by+c,
I'=a’x’+b’y’+c’, x#x’, and y#y’), min returns —oo. The function max is defined simi-
larly except that it returns the greater of its two parameters, and o< if its two parameters
are not comparable.
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£x°
Operation x=x’, y=y’ x=x’, y2y’ x#x’, y=y’ i )
y£y
+ if (a+a’)=0, by+b’y’+c+c’ |if (b+b’)=0, ax+a’x’+c+c’ |oo
+ otherwise, oo otherwise, oo
(a+a’)x+(b+b’)y+c+c’ |- .
+ if (a+a’)=0, by+b’y’+c+c’ |if (b+b")=0, ax+a’x’+c+c’ |-
- otherwise, -eo otherwise, -eo
_ if (a—a’)=0, by-b’y’+c—c’ |if (b=b")=0, ax—a’x’+c—c’ |oo
+ otherwise, co otherwise, oo
(a—a’)x+(b=b’)y+c—c’ |- -
B if (a—a’)=0, by—b’y’+c—c’ |if (b—b’)=0, ax—a’x’+c—c’ |-
- otherwise, -eo otherwise, -eo

Figure 8 Binary Operations over Symbolic Expressions

We give a dataflow transfer function for each machine instruction, and define data-
flow transfer functions to be strict with respect to the top element. We introduce four
basic abstract operations, +, —, X, and 5 for describing the dataflow transfer functions.
The abstract operations are summarized below, where 7 is an integer:

[Lul+[0,w]=[ +_ I',u +, u’]

[Lul=[w]l=01— u,u — ']

[Lulxn=[Ilxn,uxn)]

[Lul+n=[l+n,u+n]
The arithmetic operations +,, +_ —, —_ over bounds ax+by+c and a’x” + b’y’+c’ are
given in Figure 8, where a, b, a’, and b’ are non-zero integers. These arithmetic opera-
tions ensure that the bounds are always of the form ax+by+c.

Comparison instructions are a major source of bounds information. Because our
analysis works on machine code, we need only consider tests of two forms: w < v and
w =v (where w and v are program variables). Figure 9 summarizes the dataflow transfer
functions for these two forms. We assume that the ranges of w and v are [/,,, u,,] and [/,,
u,] before the tests. The function min (, I’) and max;(l, I’) are defined as follows:

min(l, I’) if comparable(/,l’) max(l, I) if comparable(l,{’)

minq(, )= { and maxy(l, )= { |

[ otherwise otherwise

If a upper bound of a range is smaller than its lower bound, the range is equivalent to
the empty range. For the dataflow functions for variables w and v along the false branch
of the test w=v, we could improve precision slightly by returning the empty range when
L u,, I, and u, are all equal.

To ensure the convergence of the range-analysis algorithm in the presence of loops,
we perform a widening operation [7] at a node in the loop that dominates the source of
the loop backedge. Let r=[/, u] be the range of an arbitrary variable x at the previous

Test 67 v
_|True Branch  |[max(l,,, L,), min(u,, u,)] [max,(l,, L, ), min|(u,, u,,)]

"=" IFalsc Branch [y U] [Ly, uy]

<y True Branch |[l,, min|(u,, u,)] [maxy (1, 1), u,]

False Branch

[max,(Ly, [,+1), uy] [Ly, ming(uy, uy-1)]

Figure 9 Dataflow Functions for Tests
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iteration and r’=[/’, u’] be the dataflow value of x at the current iteration. The resulting
range will be r’’=r V 1’ where V is the widening operator defined as follows:
LV [, ) = 0wl where 2= ("D g gm0 W0
l otherwise u otherwise

We sharpen the basic range analysis with two enhancements. The first enhancement
deals with selecting the most suitable spot in a loop to perform widening. The key ob-
servation is that for a “do-while” loop (which is the kind that dominates in binary
code), it is more effective to perform widening right before the test to exit the loop. In
the case of a loop that iterates over an array (e.g., where the loop test is “i < length”) this
strategy minimizes the imprecision of our relatively crude widening operation: the
range for i is widened to [0, +°°] just before the loop test, but is then immediately sharp-
ened by the transfer function for the loop test, so that the range propagated along the
loop’s backedge is [0, length-1]. Consequently, the analysis quiesces after two itera-
tions. The second enhancement is to utilize correlations between register values. For ex-
ample, if the test under consideration is r < n and we can establish that » = r’+c at that
program point, where c is a constant, we can incorporate this information into the range
analysis by assuming that the branch also tests r’ < n-c.

7 Case Studies

All of the techniques described above, except for the technique to infer sizes of local
arrays (Section 5), have been implemented in our safety-checker for SPARC machine
programs [24]. We illustrate the benefits of these improvements on a few example pro-
grams. These examples include array sum, start-timer and stop-timer code taken from
Paradyn’s performance-instrumentation suite [11], two versions of Btree traversal (one
version compares keys via a function call), hash-table lookup, a kernel extension that
implements a page-replacement policy [17], bubble sort, two versions of heap sort (one
manually inlined version and one interprocedural version), stack-smashing (example
9.b described in [16]), MD5Update of the MD5 Message-Digest Algorithm [13], sev-
eral functions from jPVM [9] (two cases, where one case includes more functions), and
a module in the device driver /dev/kerninst [20] that reads the kernel symbol table.

In our experiments, we were able to find a safety violation in the example that im-
plements a page-replacement policy—it attempts to dereference a pointer that could be
null—and we identified all array out-of-bounds violations in the stack-smashing ex-
ample, and all array out-of-bounds violations in the /dev/kerninst example. Figure 10
summarizes the time needed to verify each of the examples on a 440MHz Sun Ultra 10
machine. The times are divided into the times to perform typestate propagation, create

1. Although “while” and “for” loops are more common in source code, compilers typically trans-
form them to an “if”” with a “do-while” in the “then-part” of the “if”. After this transformation
has been done, the compiler can exploit the fact that the code in the body of the “do-while” will
always be executed at least once if the loop executes. Thus, it is possible to perform code-mo-
tion without the fear of ever slowing down the execution of the program. In particular, the com-
piler can hoist expressions from within the body of the loop to the point in the “then-part” just
before the loop, where they are still guarded by the “if”.
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. _____________________ |
INSTRUCTIONS 13 | 20| 22 ] 25 | 25| 36 | 4t [ 51 | 71 ] 95 | 157 | 309 | 315 | 339 | 883
BRANCHES 2 5 1 4 5 3 11 11 9 16 | 12 | 8 | 16 | 45 11
LooPs (INNER) 1 2] o L |2 0 [2m|2m 4@ 4@ | 3 | 7D | 3 | 6@ | 52
PROCEDURAL CALLS 1 1 2 4 21 40 36
(TRUSTED) 1% o ol lw]|*]%|aen] ? |ay|en]| ®
GLOBAL CONDITIONS | 4 o | 1|6 | 5| 35 | 30 | s6 | 84 | 49 | 100 | 99 | 116 | 121
(BOUNDS CHECKS) | (2) @ | ® a4y | a4y | @6 | @2 | as) | a4 | a8) | @2) | G0

SOURCE LANGUAGE C C C C C C C C C C C C C C++ C

TYPESTATE

PROPAGATION 0.02 [ 0.05 | 0.02 [ 0.04 | 0.04 | 0.03 | 0.09 | 0.11 | 0.17 | 0.15 [ 0.63 | 0.69 | 3.05 | 4.88 | 5.92

ANNOTATION 0.003 | 0.005 | 0.005 | 0.006 | 0.005 | 0.007 | 0.008 | 0.01 | 0.015 | 0.015 [ 0.034 [ 0.03 | 0.069 | 0.068 | 0.082
RANGE ANALYSIS 0.01 0 0 0.01 | 0.03 0 0.03 [ 0.04 [ 008 [ 0.12 | 0.13 | 0.54 | 0.24 | 0.68 | 1.24
GLOBAL VERIFICATION | 0.08 | 0.18 | 0.13 | 0.40 | 0.18 | 0.14 | 0.40 | 0.35 | 1.15 | 2.46 | 0.78 | 12.74 | 1.55 | 8.60 | 3.41

TOTAL (SECONDS) 0.1 023 | 0.16 | 046 | 0.26 [ 0.18 [ 0.53 | 0.51 | 1.42 | 2.75 | 1.57 | 14.0 | 491 | 14.2 | 10.65

Figure 10 Characteristics of the Examples and Performance Results

annotations and perform local verification, perform range analysis, and perform global
verification. Figure 10 also characterizes the examples in terms of the number of ma-
chine instructions, number of branches, number of loops (total versus number of inner
loops), number of calls (total versus number of calls to trusted functions), number of
global safety conditions (number of bounds checks), and the source language in which
each test case is written. Note that the checking of the lower and upper bounds are re-
garded as two separate safety conditions. The times to verify these examples range from
0.1 seconds to 14 seconds.

The extensions to the typestate system allow us to handle a broader class of real-life
examples. Having bit-level representations of integers allow the analysis to deal with
instructions that load/store a partial word in the Md5Update and stack-smashing exam-
ples. The technique to summarize trusted functions allows the analysis to use summa-
ries of several host and library functions in hash, start- and stop-timer, Btree2, the two
jPVM examples, and /dev/kerninst. Subtyping among structures and pointers allows
summaries to be given for JNI [8] methods that are polymorphic. For example, the JNI
function “jsize GetArrayLength (JNIEnv* env, jarray array)’ takes
the type jarray as the second parameter, and it is also applicable to the types jin-
tArray and jobjectArray, both of which are subtypes of jarray. Because all
Java objects have to be manipulated via the JNI interface, we model the types jin-
tArray and jobjectArray as physical subtypes of jarray when summarizing
the JNI interface functions.

Symbolic range analysis allows the system to identify the boundaries of an array
that is one field of a structure in the MD5 example. When the typestate-propagation al-
gorithm needs information about the range of a register value, we run an intraprocedural
version of the range analysis on demand, and the intraprocedural range analysis is run
at most once for each function. In the 11 of our test cases that have array accesses, range
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Time for induction-iteration (normalized)

Ratio

=
Z

]
=
>
=

Bubble
Smashing

Figure 11 Times to perform global verification with range analysis normalized with respect
to times to perform global verification without range analysis.

analysis eliminated 55% of the total attempts to synthesize loop invariants. In 4 of the
11 test cases, it eliminated the need to synthesize loop invariants altogether. The result-
ing speedup for global verification ranges from -4% to 53% (with a median of 29%).
Furthermore, in conjunction with improvements that we made to our global-verification
phase, range analysis allows us to verify the /dev/kerninst example, which we were not
able to handle previously. Figure 11 shows the times for performing global verification,
together with the times for performing range analysis (normalized with respect to the
times for performing global verification without range analysis). The reason that the
analysis of the stack-smashing example is not speeded up is because most array access-
es in that example are out of bounds. When the array accesses are, in fact, out of bounds,
range analysis will not speed up the overall analysis because the analysis still needs to
apply the program-verification technique before it can conclude that there are array out-
of-bounds violations. Similarly, the reason that hash is slowed down is because only 2
of the 14 conditions are array-bounds checks, and the range analysis cannot prove that
the array accesses are within bounds.

Note that range analysis has eliminated the need to synthesize loop invariants for
array bounds checks in about 55% of the cases. Two of the reasons why range analysis
has not been able to do better are: (i) lost precision due to widening, and (ii) the inability
of the range-analysis algorithm to recognize certain correlations among registers. In our
implementation, we perform a widening operation just before the test to exit a loop for
better precision. However, with nested loops, a widening operation in an inner loop
could cause information in its outer loop to lose precision. A potential improvement to
range analysis would be to not perform widening for variables that are invariants in the
loop that contains the widening point. Another potential improvement is to identify cor-
relations among loop induction variables and to include a pass after range analysis to
make use of these correlations.

8 Related Work

There are several papers that have investigated topics related to the typestate-checking
system and symbolic range analysis that we use.
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Mycroft [10] described a technique that reverse engineers C programs from target
machine code using type-inference techniques. His type-reconstruction algorithm is
based on Milner’s algorithm W [12]; it associates type constraints with each instruction
in an SSA representation of a program; type reconstruction is via unification. Mycroft’s
technique infers recursive data-types when there are loops or recursive procedures. We
start from annotations about the initial inputs to the untrusted code, whereas his tech-
nique requires no annotation. We use abstract interpretation, whereas he uses unifica-
tion. Note that the technique we use to detect local arrays is based on the same principle
as his unification technique. Mycroft’s technique currently only recovers types for reg-
isters (and not memory locations), whereas our technique can handle both stack- and
heap-allocated objects. Moreover, his technique recovers only type information, where-
as ours propagates type, state, and access information as well. Our analysis is flow-sen-
sitive, whereas Mycroft’s is flow-insensitive, but it recovers a degree of flow sensitivity
by using SSA form so that different variables are associated with different live ranges.

Several people have described techniques that can be used to statically check for
out-of-bounds array accesses. Cousot and Halbwachs [7] described a method that is
based on abstract interpretation using convex hulls of polyhedra. Their technique is pre-
cise in that it does not simply try to verify assertions, but instead tries to discover asser-
tions that can be deduced from the semantics of the program. Our range analysis can be
regarded as a simple form of Cousot and Halbwachs’ analysis with an eye towards ef-
ficiency. Our goal is to take advantage of the synergy of an efficient range analysis and
an expensive but powerful program-verification technique [24] that can be applied on
demand. We apply the program-verification technique only for conditions that cannot
be proven by the range analysis.

Verbrugge et al [21] described a range-analysis technique called Generalized Con-
stant Propagation (GCP). Our symbolic range analysis differs from GCP in the follow-
ing respects: GCP uses a domain of intervals of scalars, whereas we use symbolic rang-
es. GCP attempts to balance convergence and precision of analysis by “stepping up”
ranges for variables that have failed to converge after some fixed number of iterations.
We perform a widening operation right away for quicker convergence, but sharpen our
analysis by selecting suitable spots in loops for performing the widening operation, and
also by incorporating correlations among register values. Both GCP and our technique
use points-to information discovered in an earlier analysis phase. Our current imple-
mentation of range analysis is context-insensitive, whereas GCP is context-sensitive.

Rugina and Rinard [14] also use symbolic bounds analysis. Their analysis gains
context sensitivity by representing the symbolic bounds for each variable as functions
(polynomials with rational coefficients) of the initial values of formal parameters. Their
analysis proceeds as follows: For each basic block, it generates the bounds for each vari-
able at the entry; it then abstractly interprets the statements in the block to compute the
bounds for each variable at each program point inside and at the exit of the basic block.
Based on these bounds, they build a symbolic constraint system, and solve the con-
straints by reducing it to a linear program over the coefficient variables from the sym-
bolic bound polynomials. They solve the symbolic constraint system with the goal of
minimizing the upper bounds and maximizing the lower bounds.
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Other techniques for eliminating array bounds checks include the work described

by Bodik et al [2] and Wegner at al [23].
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