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Abstract. This paper examines Java’s exception mechanism, and for-
malises its main operations (throw, try-catch and try-catch-finally)
in a type-theoretic setting. This formalisation uses so-called coalgebras
for modeling Java statements and expressions, thus providing a conve-
nient setting for handling the various termination options that may arise
in exception handling (closely following the Java Language Specifica-
tion). This semantics of exceptions is used within the LOOP project on
Java program verification. It is illustrated in two example verifications
in PVS.

1 Introduction

The LOOP project [27] at the University of Nijmegen aims at Java program
verification using proof tools (such as PVS [23] and Isabelle [24]) and a special
purpose front-end compiler (the so-called LOOP tool, see [3]) for translating Java
classes into the logic of the back-end proof tools. Incorporated in this LOOP
tool is a semantics of (sequential) Java in the higher order logic of PVS and
Isabelle. A distinguishing feature of this semantics is its mathematical basis
given by so-called coalgebras. Several aspects of this semantics have already
been described elsewhere (see [15,2,10,9,8]), but the semantics of exceptions has
not been published yet. It will be the topic of the present paper. The aim of the
formalisation is to (1) clarify the existing informal specification, and (2) provide
a semantical basis for (tool-assisted) verification of Java programs. Currently,
the main application area is JavaCard [25,26].

As in earlier publications we shall not describe Java semantics in the language
of PVS or of Isabelle/HOL, but in a type-theoretic common abstraction of these,
which incorporates the essentials of higher order logic. It is described briefly in
Section 2 below. The main type constructors are labeled product and coproduct,
function space and list. For more information, see e.g. [8]. Higher order logic is
too much for what we need in this paper, but since it exists both in PVS and
Isabelle/HOL, we take it for granted.

Exceptions form an integrated aspect of the Java programming language,
which can contribute to the reliability and robustness of programs written in
Java—if the semantics of the exception mechanism is clear. Exceptions occur in
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programs when certain constraints are violated, e.g. a division by zero, an array
access out of the arrays bounds, an object creation when there is no unused
memory left, or a situation which is seen as unexpected or inappropriate by the
programmer. The occurrence of an exception in a program leads to what is called
abrupt termination1. It means that all subsequent statements are skipped (and
locks are released), until (possibly) an exception handler is reached. One says
that an exception “is thrown” at the point where it occurs, and “is caught” at
the point where it is handled. As we shall see, exception handling is based on the
exceptions type. It will restore normal operation2, when the exception is handled
properly. The Java exception mechanism is integrated with the synchronisation
model, but that will not be relevant here: we only consider what it means when
exceptions are thrown or caught, and not how this affects the flow of control in
a multi-threaded scenario.

We describe a part of Java’s pre-defined exception hierarchy, with super-
classes sitting above subclasses.
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The class Throwable is a direct subclass of the root class Object. It has two
subclasses, Error and Exception. Errors (instances of Error) are exceptions
from which programs are not ordinarily expected to recover [7, §§11.5]. Instances
of Error and RuntimeException are special because they are the only so-called
unchecked exceptions. For all other, checked, exceptions the Java compiler makes
sure that each method either handles this exception (via a catch statement) or
declares it in its method header, as in: void m() throws IOException {...}.
This throws clause may be understood as a contract between the implementor
and the user (in the style of Design-by-Contract [20]), see [7, §§11.2]. An overrid-
ing method in a subclass must respect the throws clause of the method that is
being overridden in the superclass, i.e. cannot throw more exceptions. Whether
or not an exception is checked does not play a rôle for the Java semantics within
the LOOP project.
1 A return, break or continue statement in Java also leads to abrupt termination.
2 Normal termination is not restored at the point where the exception arises: Java has

a so-called termination model for exceptions, and not a resumption model, see [4,
§16.4].
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The semantics of programming languages with exceptions forms a good il-
lustration of the appropriateness of using coalgebras to organise the relevant
structure (via different termination modes, distinguished via coproduct types).
In general, a coalgebra is a “transition” function of the form S −→ · · · S · · ·
with a structured result type that captures a certain kind of computation, where
S is a set of states. See [14] for an introduction. Such a semantics can also be
described in terms of monads [13]. The monadic view emphasises the input-
output relation, whereas the coalgebraic view emphasises the state-based aspect
of the computations—and thus leads to notions like invariant and bisimilarity
(which will not be used here), but also to a logic with appropriate modalities,
which we shall briefly describe here as a Hoare logic (like in [10,12]). The ad-
vantage of this coalgebraic approach—and the reason why we emphasise it—is
that the type system forces one to explicitly handle all possible termination op-
tions (in the box above). See for instance the many cases in the definitions of
TRY-CATCH and TRY-CATCH-FINALLY in Section 5 below, closely correspond-
ing to the cases that are distinguished in the Java Language Specification [7]. A
very different alternative is to incorporate exceptions into one’s state space, like
in the continuation-based approach of [1] or the operational and axiomatic ap-
proaches of [22,21]. This simplifies the type of state transformers, at the expense
of complicating the state space (certainly when the other forms of abrupt termi-
nation are taken into account), and makes the handling of the various cases less
transparent. The axiomatic semantics of exceptions is studied in for example [5,
18,17] (mostly via a weakest precondition calculus), involving a single possible
exception, and not many forms of abrupt termination (like in Java).

This paper starts with two introductory sections. First there is a brief ac-
count of the simple type theory that will be used, concentrating on labeled
(co)products. Next, the (coalgebraic) representation of Java statements and ex-
pressions is explained, together with an associated Hoare logic dealing with the
different termination modes. This forms the basis for the formalisations of ex-
ception throwing in Section 4 and exception handling in Section 5. The latter
section has two parts, one for try-catch and one for try-catch-finally. Each
part contains an extensive quote from the Java Language Specification [7], con-
taining the informal explanations of exception handling. Subsequently, Section 6
describes two example programs involving some tricky aspects of exception han-
dling. Appropriate specifications are provided in the language JML [16], and
proved (after translation by the LOOP tool) in PVS.

2 A Brief Look at the Type Theory

The type theory that we use is the same as in [2,10,9,8]. It has some basic
types like bool, string and unit (for a singleton type), plus function types, labeled
products and coproducts, list etc. as type constructors. We assume that these are
more or less familiar, and only wish to mention the notation we use for labeled
(co)product and function types.
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Given types σ1, . . . , σn, we can form a product (or record) type [ lab1 : σ1, . . . ,
labn : σn ] and a labeled coproduct (or variant) type { lab1 : σ1 | . . . | labn : σn },
where all labels labi are assumed to be different. An example is the well-
known lift type constructor lift[α] = { bot : unit | up : α } which adds a bot-
tom element to an arbitrary type α. For terms Mi : σi, there is a labeled tu-
ple ( lab1 = M1, . . . , labn = Mn ) inhabiting the corresponding product type
[ lab1 : σ1, . . . , labn : σn ]. For a term N : [ lab1 : σ1, . . . , labn : σn ] in this prod-
uct type, we write N.labi for the selection term of type σi. Similarly, for a
term M : σi there is a labeled or tagged term labi M in the coproduct type
{ lab1 : σ1 | . . . | labn : σn }. And for a term N : { lab1 : σ1 | . . . | labn : σn }
in this coproduct type, together with n terms Li : τ containing a free variable
xi : σi there is a case term CASES N OF { lab1 x1 7→ L1 | . . . | labn xn 7→ Ln } of
type τ which binds the xi. For function types we shall use the standard notation
λx : σ. M for lambda abstraction and N · L for application.

3 Basics of Java Semantics

As described earlier, the LOOP tool provides a semantics for (sequential) Java
by translating Java classes into the higher order logic of PVS or Isabelle. This
section will introduce the basic aspects of the semantics and provide the set-
ting for the description of exception handling in the remainder of the paper. It
will concentrate on some special types, on the (coalgebraic) representation of
statements and expressions, and on some basic language constructs.

A memory model is constructed as a specific type OM, for object memory.
It consists of a heap, a stack, and static memory, each consisting of an infinite
series of memory cells. These memory cells can store the contents of objects and
arrays. The type OM comes with various put and get operations for reading
and writing in the object memory. Its precise structure is not so relevant for
what follows, and the interested reader is referred to [2] for more information.
Elements of OM will often be called states.

References will be values of the following type.

type theory

RefType : TYPE def=
{ null : unit | ref : MemLoc }

Thus a reference is either a null-reference, or a non-null-reference consisting of a
memory location (inhabiting an appropriate type MemLoc) pointing to a memory
cell on the heap. In [2] we have included type information in references, but here
we shall assume it to be part of memory cells. Therefore, there is a function

type theory

gettype : MemLoc → OM → ClassName where ClassName def= string
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which gives for a specific memory location p the type of the object stored at p on
the heap. This type is represented as a string. There is also a special predicate

type theory

SubClass? : ClassName → ClassName → bool (1)

incorporating the subtype relationship between classes, given as strings.
Statements and expressions in Java may have different termination modes:

they can hang (e.g. because of an infinite loop), terminate normally, or terminate
abruptly (typically because of an exception, but (statements) also because of
a return, break or continue). All these options are captured in appropriate
datatypes. First, abnormal termination leads to the following two types, one for
statements and one for expressions.

type theory

StatAbn : TYPE def=
{ excp : [ es : OM, ex : RefType ]
| rtrn : OM
| break : [ bs : OM, blab : lift[string] ]
| cont : [ cs : OM, clab : lift[string] ] }

ExprAbn : TYPE def=
[ es : OM, ex : RefType ]

These types are used to define the result types of statements and expressions:

type theory

StatResult : TYPE def=
{ hang : unit
| norm : OM
| abnorm : StatAbn }

ExprResult[α] : TYPE def=
{ hang : unit
| norm : [ ns : OM, res : α ]
| abnorm : ExprAbn }

A Java statement is then translated as a state transformer function OM →
StatResult, and a Java expression of type Out as a function OM →
ExprResult[Out]. Thus both statements and expressions are coalgebras. The re-
sult of such functions applied to a state x : OM yields either hang, norm, or
abnorm (with appropriate parameters), indicating the sort of outcome.

On the basis of this representation of statements and expressions all language
constructs from (sequential) Java are translated. For instance, the composition
of two statements is defined as:
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type theory

s, t : OM → StatResult `
(s ; t) : OM → StatResult def=

λx : OM. CASES s · x OF {
| hang 7→ hang
| norm y 7→ t · y
| abnorm a 7→ abnorm a }

What is important to note is that if s hangs or terminates abruptly, then so
does the composition s ; t. In particular, if an exception is thrown, subsequent
statements are not executed.

Recall that Throwable is the root class of all exceptions. Its constructors
call a native method for creating an exception object. In the LOOP semantics
there is a corresponding function, called MAKE-EXCEPTION. It takes a string
as argument, for the exceptions message, and performs some basic memory op-
erations: allocating an appropriate new memory cell on the heap, and storing
the message3. We skip the details of MAKE-EXCEPTION and only mention its
type:

type theory

MAKE-EXCEPTION : string → OM → [ es : OM, ex : RefType ]

It takes a string and a state, and produces an appropriately adapted return state
together with a (non-null) reference to the exception object that it created in
the return state.

Exception classes in the Java API typically call the constructors from Throw-
able to create new instances. Therefore we can also use MAKE-EXCEPTION for
these classes directly.

3.1 Specifications with Exceptions

The coalgebraic representation of statements and expressions formalises the dif-
ferent termination modes that can occur. It naturally gives rise to a Hoare logic
with different, corresponding modes for reasoning about “normal” and “abnor-
mal” states, see [10]. For example, there is a partial Hoare triple:

{pre} stat {exception(E, post)}
Informally, it says that if the precondition pre holds and the statement stat termi-
nates abruptly by throwing a non-null exception (see (2) below), this exception
belongs to class E and the postcondition post holds. More formally,
3 Our semantics does not take the backtrace field in Throwable into account.
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type theory

pre : OM → bool, post : OM → RefType → bool,
stat : OM → StatResult, E : ClassName `

{pre} stat {exception(E, post)} : bool def=
∀x : OM. pre · x ⇒ CASES stat · x OF {

| hang 7→ true
| norm y 7→ true
| abnorm a 7→

CASES a OF {
| excp e 7→

CASES e.ex OF{
| null 7→ true
| ref p 7→

SubClass? · (gettype · p · (e.es)) · E
∧ post · (e.es) · (e.ex) }

| rtrn z 7→ true
| break b 7→ true
| cont c 7→ true } }

Notice that the postcondition has type OM → RefType → bool and can thus also
say something about the exception object (like in the example in Subsection 6.2).
Similar such Hoare triples can be defined for the other termination modes. They
are essential for reasoning about Java programs, for example for proving a suit-
able postcondition for a program which involves an exception inside a while
loop, see e.g. [11].

These different termination modes also occur in the behavioural interface
specification language JML [16] that will be used in Section 6. JML has pre-
and post-conditions which can be used to describe “normal” and “exceptional”
behaviour. The LOOP tool translates these JML specifications into suitable
Hoare formulas, combining several termination options, see [12] for details.

4 Throwing Exceptions

A programmer in Java can explicitly throw an exception via the command throw
Expression, where Expression should belong to Throwable, or one of its sub-
classes. This statement will immediately lead to abrupt termination. The Java
Language Specification [7, §§14.17] says:

A throw statement first evaluates the Expression. If the evaluation of the
Expression completes abruptly for some reason, then the throw completes
abruptly for that reason. If evaluation of Expression completes normally, pro-
ducing a non-null value V, then the throw statement completes abruptly, the
reason being a throw with value V. If evaluation of the Expression completes
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normally, producing a null value, then an instance V’ of class NullPointer-
Exception is created and thrown instead of null. The throw statement then
completes abruptly, the reason being a throw with value V’.

The LOOP tool uses the following translation of throw statements.

[[ throw Expression ]] def= THROW · [[Expression ]]

The function THROW captures the above explanation in ordinary language in a
type-theoretic formulation.

type theory

e : OM → ExprResult[RefType] `
THROW · e : OM → StatResult def=

λx : OM. CASES e · x OF {
| hang 7→ hang
| norm y 7→

CASES y.res OF{
| null 7→

LET d = MAKE-EXCEPTION ·
(“NullPointerException”) · (y.ns)

IN abnorm(excp(es = d.es, ex = d.ex))
| ref p 7→ abnorm(excp(es = y.ns, ex = ref p)) }

| abnorm a 7→ abnorm a }

Interestingly, the formalisations within the LOOP project and the Bali
project (see [22, p. 123]) revealed an omission in the first edition of the Java
Language Specification [6, §§14.16]: the case where Expression evaluates to a
null-reference was not covered. Following a subsequent suggestion for improve-
ment, this was repaired in the second edition [7] (as described in the quote
above).

There is an important implicit assumption about Java related to this, namely:

A thrown exception is never a null-reference. (2)

This “invariant” holds clearly for exceptions thrown by users (as can be seen
from the definition of THROW, or the explanation of throw), but also holds for
exceptions that are thrown by the Java Virtual Machine (both for synchronous
and asynchronous exceptions), see [19]. It seems that this assumption has not
been made explicit before (but it is hard-wired into the Bali semantics [22,21]:
there it automatically holds because of a syntactic distinction between valid
locations and Null; exceptions can only return valid locations). It will play a
rôle in the way we formalise the catching mechanism.
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5 Catching Exceptions

For neatly handling possible exceptional cases in a statement S, Java uses try
S followed by a series of catch blocks for different exceptions, possibly followed
by a finally block. When S terminates normally, no catch block is executed,
but the finally block is (if any). If S results in an exception, say belonging to
class E, the first catch block in the series that handles E-exceptions is executed,
followed by the finally block (if any).

The list of catches in a try statement will be translated into a list (in type
theory) consisting of pairs of strings (with label exc) and functions (with label
handler) from RefType to statements for the corresponding handler code. The
possible input of these functions is a reference to the exception thrown by the
try statement. The parameter exceptions are treated as local variables. These
are initialised to the RefType input of the handler function. The interpretations
used by the LOOP tool look as follows.

[[ try{tb}catch(E1 e1){h1}...catch(En en){hn} ]]
def= TRY-CATCH · [[ tb ]] ·

[ ( exc = “E1”,
handler = λv1 : RefType. [[ E1 e1 = v1; h1 ]] ),

...
( exc = “En”,
handler = λvn : RefType. [[ En en = vn; hn ]] ) ]

[[ try{tb}catch(E1 e1){h1}...catch(En en){hn}finally{fb} ]]
def= TRY-CATCH-FINALLY · [[ tb ]] ·

[ ( exc = “E1”,
handler = λv1 : RefType. [[ E1 e1 = v1; h1 ]] ),

...
( exc = “En”,
handler = λvn : RefType. [[ En en = vn; hn ]] ) ] ·

[[ fb ]]

The two type-theoretic functions TRY-CATCH and TRY-CATCH-FINALLY used
for these interpretations will be described separately. They involve many subtle
case distinctions, which are not easy to understand without direct access to the
relevant descriptions of the Java Language Specification. Therefore, these are
included.

5.1 Try-Catch

The Java Language Specification [7, §§14.19.1] says:

A try statement without a finally block is executed by first executing the
try block. Then there is a choice:
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• If execution of the try block completes normally, then no further action
is taken and the try statement completes normally.

• If execution of the try block completes abruptly because of a throw of a
value V, then there is a choice:

� If the run-time type of V is assignable (§5.2) to the Parameter of
any catch clause of the try statement, then the first (leftmost) such
catch clause is selected. The value V is assigned to the parameter
of the selected catch clause, and the Block of that catch clause is
executed. If that block completes normally, then the try statement
completes normally; if that block completes abruptly for any reason,
then the try statement completes abruptly for the same reason.

� If the run-time type of V is not assignable to the parameter of any
catch clause of the try statement, then the try statement completes
abruptly because of a throw of the value V.

• If execution of the try block completes abruptly for any other reason, then
the try statement completes abruptly for the same reason.

This behaviour will be realised by the TRY-CATCH function below. It first
executes its first argument s (the meaning of the try block), and then, when
an exception occurs, it calls a recursive function TRY-LOOP; otherwise it does
nothing else. By the earlier mentioned invariant (2), this exception can be as-
sumed to be a non-null reference. Therefore we can choose an arbitrary outcome
(hang) when the null reference case is distinguished.

type theory

s : OM → StatResult,
` : list[[ exc : ClassName, handler : RefType → OM → StatResult ]] `

TRY-CATCH · s · ` : OM → StatResult def=
λx : OM. CASES s · x OF {

| hang 7→ hang
| norm y 7→ norm y
| abnorm a 7→

CASES a OF {
| excp e 7→

CASES e.ex OF {
| null 7→ hang // don’t care, see (2)
| ref r 7→ TRY-LOOP · r · ` · (e.es) }

| rtrn z 7→ rtrn z
| break b 7→ break b
| cont c 7→ cont c } }

The TRY-LOOP function recursively goes through the list of exception class
names and corresponding handler functions, checking whether an exception is
assignable to a parameter. It uses the SubClass? predicate from (1). If the end
of the list is reached and the exception is still not handled, it is returned.
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type theory

p : MemLoc, ` : list[[ exc : ClassName, handler : RefType → OM → StatResult ]] `
TRY-LOOP · p · ` : OM → StatResult def=

λx : OM. CASES ` OF {
| nil 7→ abnorm(excp(es = x, ex = ref p))
| cons(h, t) 7→ IF SubClass? · (gettype · p · x) · (h.exc)

THEN (h.handler) · (ref p) · x
ELSE TRY-LOOP · p · t · x
ENDIF }

5.2 Try-Catch-Finally

Again, our starting point is the Java Language Specification [7, §§14.19.2]. Now
there are many more cases to be distinguished.

A try statement with a finally block is executed by first executing the try
block. Then there is a choice:

• If execution of the try block completes normally, then the finally block
is executed, and then there is a choice:

� If the finally block completes normally, then the try statement com-
pletes normally.

� If the finally block completes abruptly for reason S, then the try
statement completes abruptly for reason S.

• If execution of the try block completes abruptly because of a throw of a
value V, then there is a choice:

� If the run-time type of V is assignable to the parameter of any catch
clause of the try statement, then the first (leftmost) such catch clause
is selected. The value V is assigned to the parameter of the selected
catch clause, and the Block of that catch clause is executed. Then
there is a choice:

• If the catch block completes normally, then the finally block is
executed. Then there is a choice:
· If the finally block completes normally, then the try state-

ment completes normally.
· If the finally block completes abruptly for any reason, then

the try statement completes abruptly for the same reason.
• If the catch block completes abruptly for reason R, then the fi-

nally block is executed. Then there is a choice:
· If the finally block completes normally, then the try state-

ment completes abruptly for reason R.
· If the finally block completes abruptly for reason S, then the
try statement completes abruptly for reason S (and reason R
is discarded).

� If the run-time type of V is not assignable to the parameter of any
catch clause of the try statement, then the finally block is executed.
Then there is a choice:
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• If the finally block completes normally, then the try statement
completes abruptly because of a throw of the value V.

• If the finally block completes abruptly for reason S, then the
try statement completes abruptly for reason S (and the throw of
value V is discarded and forgotten).

• If execution of the try block completes abruptly for any other reason R,
then the finally block is executed. Then there is a choice:

� If the finally block completes normally, then the try statement com-
pletes abruptly for reason R.

� If the finally block completes abruptly for reason S, then the try
statement completes abruptly for reason S (and reason R is dis-
carded).

type theory

s, f : OM → StatResult,
` : list[[ exc : ClassName, handler : RefType → OM → StatResult ]] `
TRY-CATCH-FINALLY · s · ` · f : OM → StatResult def=

λx : OM. CASES s · x OF {
| hang 7→ hang
| norm y 7→ f · y
| abnorm a 7→

CASES a OF {
| excp e 7→

CASES e.ex OF {
| null 7→ hang // don’t care, see (2)
| ref r 7→ TRY-LOOP-FINALLY · r · ` · f · (e.es) }

| rtrn z 7→
CASES f · z OF {

| hang 7→ hang
| norm y′ 7→ abnorm(rtrn y′)
| abnorm a′ 7→ abnorm a′ }

| break b 7→
CASES f · (b.bs) OF {

| hang 7→ hang
| norm y′ 7→ abnorm(break(bs = y′, blab = b.blab))
| abnorm a′ 7→ abnorm a′ }

| cont c 7→
CASES f · (c.cs) OF {

| hang 7→ hang
| norm y′ 7→ abnorm(cont(cs = y′, clab = c.clab))
| abnorm a′ 7→ abnorm a′ } } }

Fig. 1. Formalisation of Java’s try-catch-finally
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As before, this is formalised in two steps, see Figures 1 and 2. The main
difference with the TRY-CATCH function is in the occurrence of the additional
“finally” statement f , which is executed after each possible outcome of the “try”
statement s, and the catch statements. The most subtle point is that in case the
statement s terminates abruptly because of a return, break or continue, and
the finally clause f terminates normally, the side-effect of f is passed on in the
eventual result (via the state y′). This is not so explicitly stated in (the above
quote from) [7, §§14.19.2], but made explicit in our type-theoretic formalisation.
It will be illustrated in an example in the next section.

The function TRY-LOOP-FINALLY in Figure 2 handles the actual catching
much like before, except that the “finally” statement needs to be executed after
every possibility. This involves appropriate handling of side-effects, like for TRY-
CATCH-FINALLY above. The following results are then as expected.

Lemma 1. Let skip : OM → StatResult be the function λx : OM. norm x
which directly terminates normally. For all locations p : MemLoc, statements
s : OM → StatResult and lists ` : list[[ exc : ClassName, handler : RefType → OM →
StatResult ]],

1. TRY-LOOP-FINALLY · p · ` · skip = TRY-LOOP · p · `
2. TRY-CATCH-FINALLY · p · ` · skip = TRY-CATCH · p · `.

Proof. The first statement follows by induction on `. The second one by unpack-
ing the definitions, distinguishing many cases, and using 1. ut

6 Examples

In order to illustrate the rôle of our formalisation of Java’s exception mechanism
we shall discuss two examples. These are two artificial Java programs, concentrat-
ing on exception handling. The relevant properties of these programs are stated
as annotations, written in the behavioural specification language JML [16]. We
shall not describe this language in detail, and hope that the annotations are
largely self-explanatory. The two examples have been translated into PVS [23],
using the LOOP tool. The JML annotations become predicates, on class imple-
mentations. The actual Java code is translated into a specific implementation.
Thus it becomes possible to prove in PVS that the given implementation sat-
isfies the JML specification. This has been done for both the examples. The
proofs proceed almost entirely by automatic rewriting—unfolding in particular
the type-theoretic functions for exception handling from the previous section—
and do not require real user interaction. Hence there is not much to say about
these proofs. But we hope that the reader appreciates the organisational and
semantical complications that are involved.

6.1 Side Effects in Finally Clauses

In the previous section the formalisations TRY-CATCH-FINALLY and TRY-
LOOP-FINALLY showed the handling of side effects of the finally clause f (via
the state y′). Here we shall see that these effects indeed take place in Java. For
this purpose we use the following Java program.
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type theory

p : MemLoc, f : OM → StatResult
` : list[[ exc : ClassName, handler : RefType → OM → StatResult ]] `
TRY-LOOP-FINALLY · p · ` · f : OM → StatResult def=

λx : OM. CASES ` OF {
| nil 7→

CASES f · x OF {
| hang 7→ hang
| norm y 7→ abnorm(excp(es = y, ex = ref p))
| abnorm a 7→ abnorm a }

| cons(h, t) 7→
IF SubClass? · (gettype · p · x) · (h.exc)
THEN

CASES (h.handler) · (ref p) · x OF {
| hang 7→ hang
| norm y 7→ f · y
| abnorm a 7→

CASES a OF {
| excp e 7→

CASES f · (e.es) OF {
| hang 7→ hang
| norm y′ 7→ abnorm(excp( es = y′,

ex = e.ex))
| abnorm a′ 7→ abnorm a′ }

| rtrn z 7→
CASES f · z OF {

| hang 7→ hang
| norm y′ 7→ abnorm(rtrn y′)
| abnorm a′ 7→ abnorm a′ }

| break b 7→
CASES f · (b.bs) OF {

| hang 7→ hang
| norm y′ 7→ abnorm(break(bs = y′,

blab = b.blab))
| abnorm a′ 7→ abnorm a′ }

| cont c 7→
CASES f · (c.cs) OF {

| hang 7→ hang
| norm y′ 7→ abnorm(cont( cs = y′,

clab = c.clab))
| abnorm a′ 7→ abnorm a′ } } }

ELSE TRY-LOOP-FINALLY · p · t · f · x
ENDIF }

Fig. 2. Formalisation of the auxiliary function TRY-LOOP-FINALLY used in Figure 1
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java
class SideEffectFinally {

int i, j;
int aux_test() { try { return i; }

finally { i += 10; j += 100; } }
/*@ normal_behavior

@ requires: true;
@ modifiable: i, j;
@ ensures: \result == \old(i) + \old(j) + 100
@ && i == \old(i) + 10 && j == \old(j) + 100;
@*/

int test() { return aux_test() + j; }
}

class SideEffectFinallyPrint {
public static void main (String[] args) {

SideEffectFinally a = new SideEffectFinally();
System.out.println(a.test()); }

}

This example contains two classes, namely SideEffectFinally and
SideEffectFinallyPrint. The latter is only used for printing one specific
result, namely the outcome of the test method after both i and j from
SideEffectFinally have been initialised to the default value 0. The main
method will then print 100. There are actually two subtle points here. First,
of course that the finally clause does have an effect after the return state-
ment (which leads to abrupt termination). Secondly, the result of the aux test
method only shows the effect on j because the value of i has already been bound
to the result of the method before the finally clause, so that the increment
statement i += 10 does not have an influence on the outcome.

The JML specification for the test method involves a higher degree of gen-
erality, because it is not restricted to the case where both i and j are 0. It states
that the test method always terminates normally and that its result equals the
sum of the values of i and j before the method call, plus 100. It also states
that this method may modify both i and j—which it actually does, but the
modification of i is not shown via the result of the method. As said, this spec-
ification holds for the method implementation. The proof in PVS relies on the
try-catch-finally formalisation from Subsection 5.2.

6.2 Exception Selection

The second example concentrates on the selection of the appropriate catch
clause, for a thrown exception. It requires several auxiliary exception classes,
with suitable inheritance relations between them, namely:
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Exception

iiiiiiiii
UUUUUUUUU

MyFirstException MyThirdException

MySecondException

java

class MyFirstException extends Exception {
public MyFirstException(String s) { super(s); }

}
class MySecondException extends MyFirstException {

public MySecondException(String s) { super(s); }
}
class MyThirdException extends Exception {

public MyThirdException(String s) { super(s); }
}
class MyExceptions {

int i;
void throwSecond() throws Exception {

throw new MySecondException("oops"); }
/*@ exceptional_behavior

@ requires: true;
@ modifiable: i;
@ signals: (MyFirstException e) i == \old(i) + 1010 &&
@ e.getMessage().equals("oops");
@*/

void test() throws Exception {
String s = "";
try { throwSecond(); }
catch (MyThirdException e) { i += 1; }
catch (MyFirstException e) {

i += 10;
s = e.getMessage();
throw new MyThirdException("bla"); }

catch (Exception e) { i += 100; }
finally { i += 1000; throw new MyFirstException(s); } }

}

The exception that is thrown by the method throwSecond is handled by the
second catch, because MySecondException is a subclass of MyFirstException.
Subsequently, the third catch clause is not executed, but, of course, the finally
clause is. Thus i is incremented by 10 + 1000 = 1010. The exception thrown
in the finally clause is the one that eventually appears.

The JML specification of the method test tells that this method will ter-
minate abruptly because of a MyFirstException. Further, that in the resulting
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“abnormal” state the value of i is 1010 more than in the original state (before
the method call), and the message of the exception is “oops”. The verification in
PVS proceeds entirely automatic, and involves almost 5000 small rewrite steps.

7 Conclusion

Java’s exception handling mechanism can be a powerful technique for increas-
ing the reliability and robustness of programs written in Java. Proper use of
it requires proper understanding of its behaviour. The type-theoretic semantics
presented in this paper helps to clarify the different termination possibilities that
may occur, by describing them via coalgebras in a precise formal language. It
also allows us to precisely formalise the throw and catch behaviour, following
the informal language specification. This semantics forms the basis for Java pro-
gram verification with an appropriate Hoare logic, using proof tools. This has
been illustrated with two Java programs involving non-trivial exception han-
dling, whose specifications in JML were verified in PVS.

Acknowledgements. Thanks to Gilad Bracha, Tobias Nipkow and David von
Oheimb for discussing (and confirming) the exception invariant (2). Joachim van
den Berg, Marieke Huisman, Hans Meijer and Erik Poll provided useful feedback
on a first draft.
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