Points-to and Side-Effect Analyses for Programs
Built with Precompiled Libraries

Atanas Rountev and Barbara G. Ryder

Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA
{rountev,ryder}@cs.rutgers.edu

Abstract. Large programs are typically built from separate modules.
Traditional whole-program analysis cannot be used in the context of such
modular development. In this paper we consider analysis for programs
that combine client modules with precompiled library modules. We define
separate analyses that allow library modules and client modules to be
analyzed separately from each other. Our target analyses are Andersen’s
points-to analysis for C [I] and a side-effect analysis based on it. We
perform separate points-to and side-effect analyses of a library module
by using worst-case assumptions about the rest of the program. We also
show how to construct summary information about a library module and
how to use it for separate analysis of client modules. Our empirical results
show that the separate points-to analyses are practical even for large
modules, and that the cost of constructing and storing library summaries
is low. This work is a step toward incorporating practical points-to and
side-effect analyses in realistic compilers and software productivity tools.

1 Introduction

Large programs are typically built from separate modules. Such modular devel-
opment allows better software management and provides a practical compilation
model: instead of (re)compiling large programs from scratch, compilers can per-
form separate compilation of individual modules. This approach allows sharing
of modules between programs; for example, an already compiled library module
can be reused with no implementation or compilation cost. This development
model also allows different modules to be developed by different teams, at dif-
ferent times and in separate locations.

Optimizing compilers and software productivity tools use static analyses to
determine various properties of program behavior. Many of these analyses are
performed by analyzing the whole program. However, such whole-program anal-
yses cannot be used in the context of a modular development process. To make
these analyses useful in real-world compilers and software tools, analysis tech-
niques must be adapted to handle modular development.

This paper investigates one instance of this problem. We consider analysis
for programs built with reusable precompiled library modules. Reusable modules
are designed to be combined with many (yet unknown) clients, and are typically
packaged as precompiled libraries that are subsequently linked with the client

R. Wilhelm (Ed.): CC 2001, LNCS 2027, pp. 20-36] 2001.
© Springer-Verlag Berlin Heidelberg 2001

Points-to and Side-Effect Analyses 21

code. We consider programs with two modules: a library module that is devel-
oped and compiled independently of any particular client, and a client module
that uses the functionality of the library module] For such programs, compil-
ers cannot use whole-program analyses because the two modules are compiled
separately. We show how certain whole-program points-to and side-effect anal-
yses can be extended to handle such applications. Our work is a step toward
incorporating practical points-to and side-effect analyses in realistic compilers.

Points-to Analysis and Side-Effect Analysis. Modification side-effect analysis
(MOD) determines, for each statement, the variables whose values may be modi-
fied by that statement. The complementary USE analysis computes similar infor-
mation for the uses of variable values. Such information plays a fundamental role
in optimizing compilers and software tools: it enables a variety of other analyses
(e.g., reaching definitions analysis, live variables analysis, etc.), which in turn
are needed for code optimization and for program understanding, restructuring
and testing. For brevity, we only discuss MOD analysis; all results trivially apply
to USE analysis, because the two analysis problems are essentially identical.

Side-effect analysis for languages like C is difficult because of pointer us-
age; typically, a points-to analysis is needed to resolve pointer dereferences. Our
work is focused on flow- and context-insensitive points-to analyses [IJI8J2TII7]
5], which ignore the flow of control and the calling contexts of procedures. Such
analyses are very efficient and can be used in production-strength compilers with
little additional cost. Several combinations of a MOD analysis and a flow- and
context-insensitive points-to analysis have been investigated [L6J15/10]. Similarly
to [16l10], we consider a MOD analysis based on Andersen’s points-to analysis for
C [1]. Even though we investigate these specific analyses, our results also apply
to similar flow- and context-insensitive points-to analyses (e.g., [18/1715]) and
related MOD analyses.

1.1 Separate Analysis of Modules

Optimizing compilers cannot use whole-program analyses for programs built with
precompiled library modules. When compiling and optimizing a library module,
the compiler has no available information about client modules. When compiling
and optimizing a client module, only the library binary is available. Therefore,
the compiler must use separate analyses that allow each module to be analyzed
separately from the rest of the program. We define such separate analyses based
on Andersen’s analysis and the corresponding MOD analysis.

Worst-Case Separate Analysis of Library Modules. The compilation and opti-
mization of the library module is performed independently of any client modules.
In this case, the separate analyses used by the optimizing compiler must make
worst-case assumptions about the rest of the program. The resulting analysis
solutions should represent all possible points-to and MOD relationships in the

! The work in [12] discusses programs built with more than one library module.

22 A. Rountev and B.G. Ryder

library module; these solutions can then be used for library compilation and op-
timization. In our approach, the worst-case separate analyses are implemented
by adding auxiliary statements that model the effects of all possible statements
in client modules. The library is combined with the auxiliary statements and
the standard whole-program analyses are applied to it. This approach is easy to
implement by reusing existing implementations of the whole-program analyses.

Summary-Based Separate Analysis of Client Modules. During the compilation
and optimization of a client module, the compiler can employ separate analyses
that use precomputed summary information about the called library module.
Such summary-based analyses of the client module can compute more precise
points-to and MOD information, as opposed to making worst-case assumptions
about the library in the case when only the library binary is available. This
improvement is important because the precision of the analyses has significant
impact on subsequent analyses and optimizations [16/10].

The summary information should encode the effects of the library module
on arbitrary client modules. Such information can be constructed at the time
when the library module is compiled, and can be stored together with the library
binary. The library summary can later be used during the separate analysis of any
client module, and can be reused across different client modules. In our summary-
based analyses, the client module is combined with the summary information,
and the result is analyzed as if it were a complete program. This approach can
reuse existing implementations of the corresponding whole-program analyses,
which allows minimal implementation effort.

Summary Information. Our summaries contain a set of summary elements,
where each element represents the points-to or MOD effects of one or more li-
brary statements. We extract an initial set of elements from the library code and
then optimize it by merging equivalent elements and by eliminating irrelevant
elements. The resulting summary is precision-preserving: with respect to client
modules, the summary-based solutions are the same as the solutions that would
have been computed if the standard whole-program analyses were possible.

Our approach for summary construction has several advantages. The sum-
mary can be generated completely independently of any callers and callees of
the library; for example, unlike previous work, our approach can handle call-
backs from the library to client modules. The summary construction algorithm
is simple to implement, which makes it a good candidate for inclusion in realistic
compilers. The summary optimizations reduce the cost of the summary-based
analyses without sacrificing any precision. Finally, our experiments show that
the cost of constructing and storing the summary is practical.

Contributions. The contributions of our work are the following:

— We propose an approach for separate points-to and MOD analyses of library
modules, by using auxiliary statements to encode worst-case assumptions
about the rest of the program. The approach can be easily implemented with
existing implementations of the corresponding whole-program analyses.

Points-to and Side-Effect Analyses 23

— We present an approach for constructing summary information for a library
module. The library summary is constructed independently of the rest of the
program, and is optimized by merging equivalent summary elements and by
eliminating irrelevant summary elements. With this summary, the summary-
based analyses are as precise as the standard whole-program analyses.

— We show how to use the precomputed library summaries to perform separate
points-to analysis and MOD analysis of client modules. The summary-based
analyses can be implemented with minimal effort by reusing existing imple-
mentations of the corresponding whole-program analyses.

— We present empirical results showing that the worst-case points-to analysis
and the summary construction algorithm are practical even for large library
modules. The results also show that the summary optimizations can signif-
icantly reduce the size of the summary and the cost of the summary-based
points-to analysis.

2 Whole-Program Analyses

In this section we present a conceptual model of Andersen’s points-to analysis
for C [I] and a MOD analysis based on it. These whole-program analyses are the
foundation for our worst-case and summary-based separate analyses.

We assume a simplified C-like program representation (defined formally in
[12]), similar to the intermediate representations used in optimizing compilers.
Similarly to [IBI7UT6I6I5/10], structures and arrays are represented as monolithic
objects without distinguishing their individual elements. Calls to malloc and
similar functions are replaced by statements of the form “x = &heap,;”, where
heap; is a variable unique to the allocation site. Because of the weak type system
of C (due to typecasting and union types), we assume that type information is
not used in the points-to and MOD analyses@, and therefore the representation
is untyped. Figure [[lshows an example of a program with two modules.

Let V be the set of variables in the program representation. We classify
the elements of V' as (i) global variables, (ii) procedure variables, which denote
the names of procedures, (iii) local variables, including formals, and (iv) heap
variables introduced at heap-allocation sites. Andersen’s analysis constructs a
points-to graph in which nodes correspond to variables from V. A directed edge
(v1,v2) shows that v; may contain the address of ve. Each statement defines a
transfer function that adds edges to points-to graphs. For example, the function
for “«p=¢q” is f(G) = GU{(z,y)]|(p,x) € G A (q,y) € G}. Conceptually, the
analysis starts with an empty graph and applies transfer functions until a fixed
point is reached. Figure [Tl shows the points-to solution for the sample program.

We define a MOD algorithm which computes a set of modified variables
Mod(s) CV for each statement s. The algorithm is derived from similar MOD al-
gorithms [T6IT5IT0] by adding two variable filters that compensate for the some

2 This analysis approach is the simplest to implement and therefore most likely to be
the first one employed by realistic compilers. Our techniques can be easily adapted
to approaches that use some form of type information.

24 A. Rountev and B.G. Ryder

global g

proc main() { proc exec(p,fp) { Var Pt(v)
local x,y,z,w local s,u,q,t z T
1: x =1 11: s =3 12: u=4 g T,y
2: y=2 13: t =p w, fp div
3: z = &x 14: (xfp)(g,t) p,t,b T
4: g = &y 15: q = &s 16: neg(q) a x,y
5: w = &div 17: q = &u 18: neg(q) q,r s,u
6: exec(z,w) 19: *xt = u

} 20: g =t Stmt | Mod(s)

proc div(a,b) { } 1 x
local c,d,e proc neg(r) { 6 9%, Y
7: c = *a local i,j 10 Y
8: d = *b 21: i = #*r 14 z,y
9: e=c/ d 22: j = -i 16,18 S, U
10: *a = e 23: *r = j 19 T

} } 23 s,u

Client Lib

Fig. 1. Program with two modules Client = {main, div} and Lib = {ezec, neg}, and
the points-to and MOD solutions computed by the whole-program analyses.

of the imprecision of the underlying points-to analysis. The first filter adds a
variable v to Mod(s) only if v represents memory locations whose lifetime is ac-
tive immediately before and immediately after the execution of s. For example,
if v is a non-static local variable in procedure P, it represents locations whose
lifetime is active only for P and for procedures that are directly or transitively
called by P. We define a relation active(s,v) that holds only if (i) v is a global
variable, a static local variable, or a heap variable, or (ii) v is a non-static local
variable in procedure P;, s belongs to procedure P», and either P, is reachable
from P; in the program call graph, or P and P, are the same procedure.

Our second filter is applied only to Mod(s) of a call statement s. Suppose that
s invokes procedure P. Among all locations whose lifetime is active with respect
to s, only a subset is actually accessible by P and the procedures transitively
called by P. An active location is accessible if it can be referenced either directly,
or through a series of pointer dereferences. Only accessible variables can be
modified by the call to P, and only they should be included in Mod(s).

An active global variable is always directly accessible by P and the proce-
dures transitively called by P. Similarly, an active static local could be directly
accessible if its defining procedure is P or a callee of P. However, an active non-
static local can only be accessed indirectly through pointer dereferences; any
direct reference to this local in P and in the callees of P accesses a different
run-time instance of the local. Similarly, heap variables can only be accessed
through pointers. Based on these observations, for each call statement s we de-
fine a relation accessible(s,v) that holds only if active(s,v) holds and (i) v is a
global variable or a static local variable, or (ii) v € Pt(a), where a is an actual

Points-to and Side-Effect Analyses 25

input Stmt: set of statements Proc: set of procedures
SynMod: Stmt — Vx{D,I1} Pt:V = P(V)
Called: Stmt — P(Proc)

output Mod: Stmt — P(V)

declare ProcMod: Proc — P(V)

[1] foreach s€ Stmt do

2 if SynMod(s) = (v, D) then

[3 Mod(s) := {v}

[4 if v is global or static local then

[5 add {v} to ProcMod(EnclosingProc(s))

]
]
|
[6] if SynMod(s) = (v,I) then
]
]
]

[7 Mod(s) := {z |z € Pt(v) A active(s,z) }

8 add Mod(s) to ProcMod(EnclosingProc(s))
[9 while changes occur in Mod or ProcMod do

[10 foreach call statement s € Stmt do

[11 foreach P e Called(s) do

]
]
[12] Mod(s) :== Mod(s) U {z |z € ProcMod(P) A accessible(s,z)}
] add Mod(s) to ProcMod(EnclosingProc(s))

Fig. 2. Whole-program MOD analysis. P(X) denotes the power set of X.

parameter of s, or (ili) v € Pt(w) and accessible(s, w) holds for some w € V.
For example, variable u from Figure [[]is active for all statements in procedures
exec, div, and neg. With respect to calls 16 and 18, u is accessible because it is
pointed to by actual ¢; however, u is not accessible for call 14.

The MOD algorithm is shown in Figure[2 SynMod stores syntactic modifica-
tions, which are pairs (v,d) where v is a variable that occurs on the left-hand
side of an assignment or a call, and d € {D, I} indicates whether the modifi-
cation is direct or indirect. For example, in Figure M SynMod(s) is (x, D) for
statement 1 and (a, I) for statement 10. Called contains the procedures invoked
by each call statement; indirect calls are resolved using the points-to solution.
ProcMod stores the sets of variables modified by each procedure. Filters active
and accessible are used whenever a variable is added to a Mod set (lines 7 and
12). In addition, we filter out direct modifications of non-static locals (lines 4-
5), because the lifetime of the modified memory location terminates when the
procedure returns. This filtering improves the precision of the analysis in the
presence of recursion [12] and results in more compact summaries, as discussed
in Section [Figure [[lshows some of the Mod sets for the sample program.

3 Worst-Case Separate Analysis of Library Modules

During the compilation and optimization of a library module, a compiler must
use separate analyses that make worst-case assumptions about possible client
modules. In our approach, these assumptions are introduced by adding auzil-
1ary statements to the library. The combination of the auxiliary statements and
the library is treated as a complete program and the whole-program analyses

26 A. Rountev and B.G. Ryder

global v_ph

proc pph(fi,..,f,) returns pphret {
vph = £f; (1<i<n) vph = &v (v € Vegp) v_ph = &v_ph
v_ph = *v_ph *v_ph = v_ph v_ph = &p_ph
v_ph = (*v_ph) (v_ph,..,v_ph) (with m actuals)

p-ph.ret = v_ph
}

Fig. 3. Placeholder procedure and auxiliary statements.

from Section [2] are applied to it. The resulting solutions are safe abstractions
of all points-to and MOD relationships in all possible complete programs. These
solutions can then be used for library compilation and optimization.

Given a library module Lib, consider a complete program p containing Lib
and some client module. Let PROG(Lib) be the (infinite) set of all such complete
programs. We use V), to denote the variable set of any such p. Let Vi, C V, be
the set of all variables that occur in statements in Lib (this set is independent
of any particular p). Also, let Vi, € Vi, be the set of all variables that may be
explicitly referenced by client modules; we refer to such variables as exported.
Exported variables are either globals that could be directly accessed by library
clients, or names of procedures that could be directly called by client code.

Example. We use module Lib from Figure [as our running example; for
convenience, the module is shown again in Figure El For this module, V; =
{exec, p, fp, s,u,t,g,q,neg,r,i,j}. For the purpose of this example, we assume
that Vegp ={g, exec}. Note that the complete program in Figure [l is one of the
(infinitely many) elements of PROG(Lib).

Auziliary Statements. The statements are located in a placeholder procedure p_ph
which represents all procedures in all possible client modules. The statements use
a placeholder variable v_ph which represents all global, local, and heap variables
ve (V,—Vy) for all pe PROG(Lib). The placeholder procedure and the auxiliary
statements are shown in Figure [3l Each statement represents different kinds of
statements that could occur in client modules; for example, “v_ph = xv_ph”
represents statements of the form “w=sw”, where u,w € (V, — V).

The indirect call through v_ph represents all calls originating from client
modules. In the worst-case analyses, the targets of this call could be (i) p_ph,
(i) the procedures from Vi, or (iil) any library procedure whose address is
taken somewhere in Lib. To model all possible formal-actual pairs, the number
of actuals m should be equal to the maximum number of formals for all possible
target procedures. Similarly, all callbacks from the library are represented by
indirect calls to p_ph; thus, the number of formals n in p_ph should be equal to
the maximum number of actuals used at indirect calls in the library.

Worst-Case Analyses. The worst-case points-to and MOD analyses combine the
library module with the auxiliary statements and apply the whole-program anal-
yses from Section B An important advantage of this approach is its simple im-
plementation by reusing already existing implementations of the whole-program

Points-to and Side-Effect Analyses 27

global g
proc exec(p,fp) { proc neg(r) {
local s,u,q,t 11: s = 3 12: u = 4 local i,j
13: t =p 14: (x£fp) (g,t) 15: q = &u 21: i = *r
16: neg(q) 17: q = &s 18: neg(q) 22: j = -i
19: *t = u 20: g =t 23: *r = j
} }
Ptye(v) =0 for v € {s,u,1,J, neg} Modyc(s) = {v_ph, g} for s € {14,19}
Ptye(v) = {s,u} for v € {q,r} and for the indirect call through v_ph
Ptue(v) = {v_ph, p_ph, g, exec} for every Mod ,c(23) = {s,u}
other v € Vi, U{v_ph, p_ph, f;, p_-ph_ret} Calledwe(s) = {p-ph, exec} for s = 14

and for the indirect call through v_ph

Fig. 4. Module Lib (Vezp = {g, exec}) and the corresponding worst-case solutions.

analyses. It can be proven that the resulting worst-case solution is a safe ab-
straction of all points-to and MOD relationships in all pe PROG(Lib) [12].

Ezample. Consider module Lib from Figure] For the purpose of this example
assume that Ve, = {g, ezec}. The library has one indirect call with two actuals;
thus, p_ph should have two formals (n = 2). The indirect call through v_ph
has possible targets exec and p_ph, and should have two actuals (m =2). The
points-to solution shown in Figure [represents all possible points-to pairs in all
complete programs. For example, pair (p, v_ph) shows that p can point to some
unknown variable from some client module; similarly, (p, p_ph) indicates that p
can point to an unknown procedure from some client module. The computed
call graph represents all possible calls in all complete programs. For example,
Called . (14) = {p_ph, exec} represents the possible callback from ezec to some
client module and the possible recursive call of exec. Similarly, the computed
MOD solution represents all possible Mod sets in all complete programs.

4 Summary Construction and Summary-Based Analysis

In this section we present our approach for constructing summary information
for a library module, and show how to use the library summaries for separate
summary-based analysis of client modules.

Some previous work on context-sensitive points-to analysis [9213] uses com-
plete summary functions to encode the cumulative effects of all statements in
a procedure P and in all procedures transitively called by P. This approach
can be used to produce summary information for a library module, by comput-
ing and storing the summary functions for all exported procedures. However,
this technique makes the implicit assumption that a called procedure can be
analyzed either before, or together with its callers. This assumption can be eas-
ily violated—for example, when a library module calls another library module,
there are no guarantees that any summary information will be available for the
callee [I2]. In the presence of callbacks, the library module may call client mod-
ules that do not even exist at the time of summary construction. For example, for

28 A. Rountev and B.G. Ryder

1. Variable summary

Procedures = {exec, neg} Locals(ezec) = {p, fp, s,u, q,t}
Globals = {g} Locals(neg) = {r,4,5}

2. Points-to summary
proc exec(p,fp) q=&s *t=u i=xr
t=p neg(q) g=t *r=j
(xfp) (g,t) g=&u proc neg(r)

3. Mod summary
SynMod(exec) = {(t,1), (g, D)} SynMod(neg) = {(r,I)}
SynCall(exec) = {(fp,I), (neg, D)} SynCall(neg) = 0

Fig. 5. Basic summary for module Lb.

module Lib from Figure @ the effects of exec cannot be expressed by a summary
function because of the callback to some unknown client module.

We use a different summary construction approach that has several advan-
tages. The summary can be constructed independently of any callers and callees
of the library; therefore, our approach can handle callbacks. The summary con-
struction algorithm is inexpensive and simple to implement, which makes it a
good candidate for inclusion in realistic compilers. The summary is precision-
preserving: for every statement in the client module, the MOD solution computed
by the summary-based analyses is the same as the solution that would have been
computed if the standard whole-program analyses were possible. This ensures
the best possible cost and precision for the users of the MOD information.

The basic summary is the simplest summary information produced by our
approach. Figure [shows the basic summary for module Lib from Figure @l The
summary has three parts. The variable summary contains all relevant library
variables. The points-to summary contains all library statements that are rel-
evant to points-to analysis. The proc declarations are used by the subsequent
points-to analysis to model the formal-actual pairings at procedure calls. The
Mod summary contains syntactic modifications and syntactic calls for each li-
brary procedure. A syntactic modification (defined in Section[2) is a pair (v, D)
or (v, I) representing a direct or indirect modification. A syntactic call is a sim-
ilar pair indicating a direct or indirect call through v. The Mod summary does
not include direct modifications of non-static local variables—as discussed in
Section Bl such modifications can be filtered out by the MOD analysis.

In the summary-based separate analysis, the program representation of a
client module is combined with the library summary and the result is analyzed
as if it were a complete program. Thus, already existing implementations of the
whole-program analyses from Section [2 can be reused with only minor adjust-
ments, which makes the approach simple to implement. Clearly, the computed
points-to and MOD solutions are the same as the solutions that would have been
produced by the standard whole-program analyses. However, the cost of the
summary-based analyses is essentially the same as the cost of the whole-program
analyses. The next section presents summary optimizations that reduce this cost.

Points-to and Side-Effect Analyses 29

1. Variable summary
Procedures = {exec,neg} Locals(exec) = {fp,s,u} Reps = {rep,, rep,}

Globals = {g} Locals(neg) = {i,7}
2. Points-to summary
proc exec(repl,fp) rep2=&s *repl=u i=*rep2
(*fp) (g,repl) rep2=&u g=repl *rep2=j
3. Mod summary
SynMod (ewec) = {(rep,, 1), (9, D)} SynMod(neg) = {(rep,, I)}
SynCall(ezxec) = {(fp,I), (neg, D)} SynCall(neg) = 0

Fig. 6. Optimization through variable substitution.

5 Summary Optimizations

In this section we describe three techniques for optimizing the basic summary.
The resulting optimized summary has two important features. First, the sum-
mary is precision-preserving: for each statement in a client module, the summary-
based MOD solution computed with the optimized summary is the same as the so-
lution computed with the basic summary. Second, as shown by our experiments
in Section [6] the cost of the summary-based analyses is significantly reduced
when using the optimized summary, compared to using the basic summary.

Variable Substitution. Variable substitution is a technique for reducing the cost
of points-to analysis by replacing a set of variables with a single representative
variable. We use a specific precision-preserving substitution proposed in [TTJT3].
With this technique we produce a more compact summary, which in turn reduces
the cost of the subsequent summary-based analyses without any loss of precision.

Two variables are equivalent if they have the same points-to sets. The substi-
tution is based on mutually disjoint sets of variables V7, ..., Vi such that for each
set V; (i) all elements of V; are equivalent, (ii) no element of V; has its address
taken (i.e., no element is pointed to by other variables), and (iii) no element of V;
is exported. For example, for module Lib in Figure H] possible sets are V; = {p, t}
and V5 = {q,r}. Each V; has associated a representative variable rep,. We op-
timize the points-to summary by replacing all occurrences of a variable v € V;
with rep;. In addition, in the Mod summary, every pair (v,I) is replaced with
(rep;, I). It can be proven that this optimization is precision-preserving—given
the modified summary, the subsequent MOD analysis computes the same solution
as the solution computed with the basic summary.

We identify equivalent variables using a linear-time algorithm presented in
[13], which extends a similar algorithm from [IT]. The algorithm constructs a
subset graph in which nodes represent expressions and edges represent subset re-
lationships between the points-to solutions for the nodes. For example, edge (g, p)
shows that Pt(q) C Pt(p). The graph represents all subset relationships that can
be directly inferred from individual library statements. A strongly-connected
component (SCC) in the graph corresponds to expressions with equal points-to
sets. The algorithm constructs the SCC-DAG condensation of the graph and

30 A. Rountev and B.G. Ryder

traverses it in topological sort order; this traversal identifies SCCs with equal
points-to sets. Due to space limitations, the details of the algorithm are not
presented in this paper; we refer the interested reader to [13] for more details.
Ezample. Consider module Lib from Figure Bl Since t is assigned the value of
p and there are no indirect assignments to ¢ (because its address is not taken), ¢
has exactly the same points-to set as p. In this case, the algorithm can identify
set Vi = {p,t}. Similarly, the algorithm can detect set V2 = {q,r}. After the
substitution, the summary can be simplified by eliminating trivial statements.
For example, “t=p” is transformed into “repl=rep1”, which can be eliminated.
Call “neg(rep2)” can also be eliminated. Since this is the only call to neg (and
neg is not exported), declaration “proc neg(rep2)” can be removed as well.
Figure [(] shows the resulting summary, derived from the summary in Figure [Bl
In addition to producing a more compact summary, we use the substitution
to reduce the cost of the worst-case points-to analysis. During the analysis, every
occurrence of v € Vj is treated as an occurrence of rep,; in the final solution, the
points-to set of v is defined to be the same as the points-to set computed for
rep,. This technique produces the same points-to sets as the original analysis.

Statement Elimination. After variable substitution, the points-to summary is
simplified by removing statements that have no effect on client modules. A vari-
able v € V, is client-inactive if v is a non-static local in procedure P and there is
no path from P to procedure p_ph in the call graph used for the worst-case MOD
analysis of the library module. The worst-case call graph represents all possible
call graphs for all complete programs; thus, for any such v, active(s,v) (defined
in Section [2) is false for all statements s in all client modules.

Let Reach,.(u) be the set of all variables reachable from w in the points-
to graph computed by the worst-case points-to analysis of the library modulef
A variable v € Vi, is client-inaccessible if (i) v is not a global, static local, or
procedure variable, and (ii) v does not belong to Reachq.(u) for any global
or static local variable u, including v_ph. It is easy to show that in this case
accessible(s,v) is false for all call statements s in all client modules.

In the summary-based MOD analysis, any variable that is client-inactive or
client-inaccessible will not be included in any Mod set for any statement in a
client module. We refer to such variables as removable. The optimization elimi-
nates from the points-to summary certain statements that are only relevant with
respect to removable variables. As a result, the summary-based points-to analy-
sis computes a solution in which some points-to pairs (p,v) are missing. For any
such pair, v is a removable variable; thus, the optimization is precision-preserving
(i.e., Mod sets for statements in client modules do not change).

The optimization is based on the fact that certain variables can only be used
to access removable variables. Variable v is irrelevant if Reachq.(v) contains
only removable variables. Certain statements involving irrelevant variables can
be safely eliminated from the points-to summary: (i) “p = &q”, if ¢ is removable
and irrelevant, (i) “p = ¢”7, “p = *¢”, and “xp = ¢”, if p or ¢ is irrelevant, and

3 w is reachable from w if there exists a path from u to w containing at least one edge.

Points-to and Side-Effect Analyses 31

1. Variable summary
Procedures = {exec,neg} Locals(exec) = {fp} = Reps = {rep,}
Globals = {g} Locals(neg) =0

2. Points-to summary
proc exec(repl,fp) (*fp) (g,repl) g=repl

3. Mod summary
SynMod(ezec) = {(rep,I), (g, D)} SynMod(neg) = 0
SynCall(ezec) = {(fp, I), (neg, D)} SynCall(neg) = 0

Fig. 7. Final optimized summary.

(iii) calls “p = f(q1,.-.,qn)” and “p = (xfp)(q1,...,qs)", ifallof p,q1,. .., qn are
irrelevant. Intuitively, the removal of such statements does not “break” points-to
chains that end at non-removable variables. It can be proven that the points-to
solution computed after this elimination differs from the original solution only
by points-to pairs (p,v) in which v is a removable variable [12] A

Ezample. Consider module Lib and the worst-case solutions from Figure @l
Variables {r,i,j} are client-inactive because the worst-case call graph does not
contain a path from neg to p_ph. Variables {p,fp,s,u,q,t, 74,5} are client-
inaccessible because they are not reachable from g or v_ph in the worst-case
points-to graph. Variables {s,u,,j} have empty points-to sets and are irrele-
vant. Variables {q, r, rep,} can only reach s and u and are also irrelevant. There-
fore, the following statements can be removed from the points-to summary in
Figure [t rep2=&s, rep2=&u, *repl=u, i=xrep2, and *rep2=j.

Modification Elimination. This optimization removes from the Mod summary
each syntactic modification (v,I) for which Pt,.(v) contains only removable
variables. Clearly, this does not affect the Mod sets of statements in client mod-
ules. In Figure[6, (rep,, I') can be removed because rep, points only to removable
variables s and u. The final optimized summary for our running example is shown
in Figure [7]

6 Empirical Results

For our initial experiments, we implemented the worst-case and summary-based
points-to analyses, as well as the summary construction techniques from Sec-
tion Bl Our implementation of Andersen’s analysis is based on the BANE toolkit
for constraint-based analysis [6]; the analysis is performed by generating and
solving a system of set-inclusion constraints. We measured (i) the cost of the
worst-case points-to analysis of the library, (ii) the cost of constructing the op-
timized summary, (iii) the size of the optimized summary, and (iv) the cost of

4 Identifying client-inaccessible and irrelevant variables requires reachability compu-
tations in the worst-case points-to graph; the cost of these traversals can be reduced
by merging v_ph with all of its successor nodes, without any loss of precision [12].

32 A. Rountev and B.G. Ryder

Table 1. Data programs and libraries. Last two columns show absolute and relative
library size in lines of code and in number of pointer-related statements.

Program Library LOC| Statements
gnuplot-3.7.1|libgd-1.3 |22.2K (34%)| 2965 (6%)
gasp-1.2 libiberty [11.2K (43%)| 6259 (50%)
b2ip2-0.9.0c |Tibbz2 15K (71%)| 7263 (36%)
wnzip5.40 |Zib-1.1.3 | 8.0K (29%)| 9005 (33%)
fudgit-2.41 |readline-2.0(14.8K (50%)|10788 (39%)
cjpeg-5b libjpeg-5b [19.1K (84%)[17343 (84%)
tiff2ps-3.4 |libtif-3.4 |19.6K (94%)|20688 (84%)
povray-3.1 |libpng-1.0.3|25.7K (19%)|25322 (23%)

the summary-based points-to analysis of the client module. At present, our im-
plementation does not perform MOD analysis. Nevertheless, these preliminary
results are important because the total cost of the two analyses is typically
dominated by the cost of the points-to analysis [16/15].

Table[M describes our C data programs. Each program contains a well-defined
library module, which is designed as a general-purpose library and is developed
independently of any client applications. For example, unzip is an extraction
utility for compressed archives which uses the general-purpose data compression
library z1ib. We added to each library module a set of stubs representing the
effects of standard library functions (e.g., strcpy, cos, rand); the stubs are
summaries produced by hand from the specifications of the library functions

Table [[lshows the number of lines of source code for each library, as an abso-
lute value and as percentage of the number for the whole program. For example,
for povray 19% (25.7K) of the source code lines are in the library module, and
the remaining 81% (108.2K) are in the client module. The table also shows the
number of pointer-related statements in the intermediate representation of the
library, as an absolute value and as percentage of the whole-program number.
These numbers represent the size of the input for the points-to analysis.

For our first set of experiments, we measured the cost of the worst-case points-
to analysis and the cost of constructing the optimized summary. The results
are shown in Figure ISKa)@ Column T,. shows the running time of the worst-
case points-to analysis of the library module. Column Tj,;, contains the time
to compute the variable substitution. Column T, shows the time to identify
removable and irrelevant variables in order to perform statement elimination and
modification elimination. Finally, column S,,,, contains the maximum amount
of memory needed during the points-to analysis and the summary construction.

5 We plan to investigate how our approach can be used to produce summaries for the
standard libraries. This problem presents interesting challenges, because many of
the standard libraries operate in the domain of the operating system.

5 All experiments were performed on a 360MHz Sun Ultra-60 with 512Mb physical
memory. The reported times are the median values out of five runs.

Points-to and Side-Effect Analyses 33

(a) Library Module (b) Client Module
Library |Twe (8)|Tsub (8)|Tetim (S)|Smaz (Mb) Program|(T; (s)| Ar|Sy, (Mb)| Ag
libgd 3.9 0.4 0.1 10.1 gnuplot | 47.3| 4% 79.6| 5%
libiberty 5.8 0.5 0.1 10.4 povray | 111.6{17% 146.7(16%
libbz2 4.1 0.8 0.1 8.5 unzip 21.0125% 39.5/16%
zlib 6.5 1.0 0.1 114 fudgit 39.821% 59.5[17%
readline 10.2 1.3 0.1 12.3 gasp 9.7132% 18.6/26%
libjpeg 15.1 2.5 0.1 19.7 cjpeg 15.7|159% 32.1|56%
libtiff 23.4 3.6 0.2 25.2 tiff2ps 22.5161% 37.5159%
libpng 19.8 4.0 0.2 21.8 bzip2 5.4/169% 13.0/54%

Fig. 8. (a) Cost of the library analyses: running time (in seconds) of the worst-case
points-to analysis (Ty.) and time for constructing the optimized summary (T, and
Tetim). Smaz is the maximum memory usage. (b) Cost of the points-to analyses of the
client. T, is the analysis time with the basic summary, and Ar is the reduction in
analysis time when using the optimized summary. S, and Ag are the corresponding
measurements for analysis memory.

Clearly, the cost of the worst-case points-to analysis and the cost of the
summary construction are low. Even for the larger libraries (around 20K LOC),
the running time and memory usage are practical. These results indicate that
both the worst-case points-to analysis and the summary construction algorithm
are realistic candidates for inclusion in optimizing compilers.

Our second set of experiments investigated the difference between the basic
summary from Section M and the optimized summary from Section Bl We first
compared the sizes of the two summaries. For brevity, in this paper we summarize
these measurements without explicitly showing the summary sizes. The size of
the optimized summary was between 21% and 53% (31% on average) of the size
of the basic summary. Clearly, the optimizations described in Section [l result in
significant compaction in the library summaries. In addition, we measured the
size of the optimized summary as percentage of the size of the library binary.
This percentage was between 14% and 76% (43% on average), which shows that
the space overhead of storing the summary is practical[1

Next, we measured the differences between the basic summary and the opti-
mized summary with respect to the cost of the summary-based points-to analysis
of the client module. The results are shown in Figure B(b). The order of the pro-
grams in the table is based on the relative size of the library, as shown by the
percentages in the last column of Table [Il Column 7} shows the analysis time
when using the basic summary. Column A shows the reduction in analysis time
when using the optimized summary. The reduction is proportional to the rela-
tive size of the library. For example, in bzip2 the majority of the program is
in the library, and the cost reduction is significant. In gnuplot only 6% of the
pointer-related statements are in the library, and the analysis cost is reduced

" The sizes depend on the file format used to store the summaries. We use a simple
text-based format; more optimized formats could further reduce summary size.

34 A. Rountev and B.G. Ryder

accordingly. Similarly, the reduction Ag in the memory usage of the analysis is
proportional to the relative size of the library.

The results from these experiments clearly show that the optimizations from
Section Blcan have significant beneficial impact on the size of the summary and
the cost of the subsequent summary-based points-to analysis.

7 Related Work

The work in [I610] investigates various points-to analyses and their applications,
including Andersen’s analysis and MOD analyses based on it. Our conceptual
whole-program MOD analysis is based on this work. At call sites, [10] filters out
certain variables whose lifetime has terminated; our use of the active filter is
similar to this approach.

A general approach for analyzing program fragments is presented in [I4].
The interactions of the fragment with the rest of the program are modeled by
summary values and summary functions. The worst-case separate analyses are
examples of fragment analyses, in which auxiliary statements play the same role
as summary values and summary functions. Unlike [14], we use abstractions
not only for lattice elements (i.e., points-to graphs and Mod sets), but also for
statements, procedures, and call graphs.

The summary-based separate analyses are also examples of fragment analy-
ses, in which the summary information is used similarly to the summary func-
tions from [14]. However, instead of using a complete summary function for each
exported library procedure, we use a set of elementary transfer functions. This
approach is different from summary construction techniques based on context-
sensitive analysis [92)3]. In these techniques, a called procedure is analyzed be-
fore or together with its callers. In contrast, our summaries can be constructed
completely independently from the rest of the program. This allows handling of
callbacks to unknown client modules and calls to unanalyzed library modules. In
addition, for compilers that already incorporate a flow- and context-insensitive
points-to analysis, our summary construction approach is significantly easier to
implement than the context-sensitive techniques for summary construction. This
minimal implementation effort is an important advantage for realistic compilers.

Escape analysis for Java determines if an object can escape the method or
thread that created it. Our notion of accessible variables is similar to the idea
of escaping objects. Some escape analyses [20/4] calculate specialized points-to
information as part of the analysis. In this context, escape summary information
for a module can be computed in isolation from the rest of the program. The
techniques used in this manner for escape analysis cannot be used for general-
purpose points-to analysis.

Flanagan and Felleisen [7] present an approach for componential set-based
analysis of functional languages. They derive a simplified constraint system for
each program module and store it in a constraint file; these systems are later
combined and information is propagated between them. The constraint files used
in this work are similar in concept to our use of library summaries.

Points-to and Side-Effect Analyses 35

Guyer and Lin [8] propose annotations for describing libraries in the domain
of high-performance computing. The annotations encode high-level semantic in-
formation and are produced by a library expert. Some annotations describe the
points-to and MOD/USE effects of library procedures, in a manner resembling
complete summary functions. The annotations are used for source-to-source op-
timizations of the library and application code. This approach allows domain ex-
perts to produce high-level information that cannot be obtained through static
analysis. However, such approaches cannot be used in general-purpose compilers.

Sweeney and Tip [19] describe analyses and optimizations for the removal of
unused functionality in Java modules. Worst-case assumptions are used for code
located outside of the optimized modules. This work also presents techniques
that allow a library creator to specify certain library properties (e.g., usage of
reflection) that are later used when optimizing the library and its clients.

8 Conclusions and Future Work

Traditional whole-program analyses cannot be used in the context of a modular
development process. This problem presents a serious challenge for the designers
of program analyses. In this paper we show how Andersen’s points-to analysis
and the corresponding MOD analysis can be used for programs built with pre-
compiled libraries. Our approach can be trivially extended to USE analysis. In
addition, our techniques can be applied to other flow- and context-insensitive
points-to analyses (e.g., [I8IT7/5]) and to MOD/USE analyses based on them.
We show how to perform worst-case analysis of library modules and
summary-based analysis of client modules. These separate analyses can reuse
already existing implementations of the corresponding whole-program analyses.
We also present an approach for constructing summary information for library
modules. The summaries can be constructed completely independently from the
rest of the program; unlike previous work, this approach can handle callbacks
to unknown clients and calls to unanalyzed libraries. Summary construction is
inexpensive and simple to implement, which makes it a practical candidate for
inclusion in optimizing compilers. We present summary optimizations that can
significantly reduce the cost of the summary-based analyses without sacrificing
any precision; these savings occur every time a new client module is analyzed.
An interesting direction of future research is to investigate separate analyses
derived from flow-insensitive, context-sensitive points-to analyses. In particular,
it is interesting to consider what kind of precision-preserving summary infor-
mation is appropriate for such analyses. Another open problem is to investigate
separate analyses and summary construction in the context of standard anal-
yses that need MOD/USE information (e.g., live variables analysis and reaching
definitions analysis), especially when the target analyses are flow-sensitive.
Acknowledgments. We thank Matthew Arnold for his comments on an earlier
version of this paper. We also thank the reviewers for their helpful suggestions
for improving the paper. This research was supported, in part, by NSF grants
CCR-9804065 and CCR-9900988, and by Siemens Corporate Research.

36 A. Rountev and B.G. Ryder

References

1. L. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, 1994.

2. R. Chatterjee, B. G. Ryder, and W. Landi. Relevant context inference. In Sympo-
sium on Principles of Programming Languages, pages 133-146, 1999.

3. B. Cheng and W. Hwu. Modular interprocedural pointer analysis using access
paths. In Conference on Programming Language Design and Implementation, pages
57-69, 2000.

4. J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis for
Java. In Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 1-19, 1999.

5. M. Das. Unification-based pointer analysis with directional assignments. In Con-
ference on Programming Language Design and Implementation, pages 35—46, 2000.

6. M. Fahndrich, J. Foster, Z. Su, and A. Aiken. Partial online cycle elimination in
inclusion constraint graphs. In Conference on Programming Language Design and
Implementation, pages 85—96, 1998.

7. C. Flanagan and M. Felleisen. Componential set-based analysis. ACM Trans.
Programming Languages and Systems, 21(2):370-416, Mar. 1999.

8. S. Guyer and C. Lin. Optimizing the use of high performance software libraries.
In Workshop on Languages and Compilers for Parallel Computing, 2000.

9. M. J. Harrold and G. Rothermel. Separate computation of alias information for
reuse. IEEE Trans. Software Engineering, 22(7):442-460, July 1996.

10. M. Hind and A. Pioli. Which pointer analysis should I use? In International
Symposium on Software Testing and Analysis, pages 113123, 2000.

11. A. Rountev and S. Chandra. Off-line variable substitution for scaling points-to
analysis. In Conference on Programming Language Design and Implementation,
pages 47-56, 2000.

12. A. Rountev and B. G. Ryder. Points-to and side-effect analyses for programs built
with precompiled libraries. Technical Report 423, Rutgers University, Oct. 2000.

13. A. Rountev and B. G. Ryder. Practical points-to analysis for programs built with
libraries. Technical Report 410, Rutgers University, Feb. 2000.

14. A. Rountev, B. G. Ryder, and W. Landi. Data-flow analysis of program fragments.
In Symposium on the Foundations of Software Engineering, LNCS 1687, 1999.

15. B. G. Ryder, W. Landi, P. Stocks, S. Zhang, and R. Altucher. A schema for
interprocedural side effect analysis with pointer aliasing. Technical Report 336,
Rutgers University, May 1998. To appear in ACM TOPLAS.

16. M. Shapiro and S. Horwitz. The effects of the precision of pointer analysis. In
Static Analysis Symposium, LNCS 1302, pages 16-34, 1997.

17. M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to analysis.
In Symposium on Principles of Programming Languages, pages 1-14, 1997.

18. B. Steensgaard. Points-to analysis in almost linear time. In Symposium on Prin-
ciples of Programming Languages, pages 32—41, 1996.

19. P. Sweeney and F. Tip. Extracting library-based object-oriented applications. In
Symposium on the Foundations of Software Engineering, pages 98-107, 2000.

20. J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java
programs. In Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 187-206, 1999.

21. S. Zhang, B. G. Ryder, and W. Landi. Program decomposition for pointer aliasing;:

A step towards practical analyses. In Symposium on the Foundations of Software
Engineering, pages 81-92, 1996.

	Introduction
	Separate Analysis of Modules

	Whole-Program Analyses
	Worst-Case Separate Analysis of Library Modules
	Summary Construction and Summary-Based Analysis
	Summary Optimizations
	Empirical Results
	Related Work
	Conclusions and Future Work

