Minimax TD-Learning with Neural Nets in a Markov
Game

Fredrik A. Dahl and Ole Martin Halck

Norwegian Defence Research Establishment (FFI)
P.O. Box 25, NO-2027 Kjeller, Norway
{Fredrik-A.Dahl, Ole-Martin.Halck}@ffi.no

Abstract. A minimax version of temporal difference learning (minimax TD-
learning) is given, similar to minimax Q-learning. The algorithm is used to train
a neural net to play Campaign, a two-player zero-sum game with imperfect
information of the Markov game class. Two different evaluation criteria for
evaluating game-playing agents are used, and their relation to game theory is
shown. Also practical aspects of linear programming and fictitious play used for
solving matrix games are discussed.

1 Introduction

An important challenge to artificial intelligence (Al) in general, and machine learning
in particular, is the development of agents that handle uncertainty in a rational way.
This is particularly true when the uncertainty is connected with the behavior of other
agents.

Game theory is the branch of mathematics that deals with these problems, and
indeed games have always been an important arena for testing and developing Al.
However, almost all of this effort has gone into deterministic games like chess, go,
othello and checkers. Although these are complex problem domains, uncertainty is
not their major challenge.

With the successful application of temporal difference learning, as defined by
Sutton [1], to the dice game of backgammon by Tesauro [2], random games were
included as a standard testing ground. But even backgammon features perfect
information, which implies that both players always have the same information about
the state of the game.

We believe that imperfect information games, like poker, are more challenging and
also more relevant to real world applications. Imperfect information introduces
uncertainty about the opponent’s current and previous states and actions, uncertainty
that he cannot quantify as probabilities because he does not know his opponent’s
strategy. In games like chess and backgammon deception and bluff has little
relevance, because a player’s state and actions are revealed immediately, but with
imperfect information these are important concepts.

As Koller and Pfeffer [3] and Halck and Dahl [4] have observed, imperfect
information games have received very little attention from AI researchers. Some
recent exceptions are given by Billings et al [S] and Littman [6].

R. Lépez de Mdntaras, E. Plaza (Eds.): ECML 2000, LNAI 1810, pp. 117-128, 2000.
© Springer-Verlag Berlin Heidelberg 2000

118 Fredrik A. Dahl and Ole Martin Halck

The present article deals with minimax TD-learning, a value-based reinforcement
learning algorithm that is suitable for a subset of two-player zero-sum games called
Markov games. The set of Markov games contains some, but not all, imperfect
information games, and represents a natural extension of the set of perfect information
games. The algorithm is tested on a military air campaign game using a neural net.

The article is structured as follows. Section 2 covers some elementary game theory.
Section 3 gives two evaluation criteria that we use for evaluating the performance of
game-playing agents. In Section 4 the game Campaign, which will serve as testing-
ground for our algorithm, is defined. Section 5 gives the definition of our
reinforcement learning algorithm. Section 6 presents implementation and
experimental results, and Section 7 concludes the article.

2 Game Theory

We now give a brief introduction to some elementary game-theoretic concepts. The
theory we use is well covered by e.g. Luce and Raiffa [7].

A game is a decision problem with two or more decision-makers, called players.
Each player evaluates the possible game outcomes according to some payoff (or
utility) function, and attempts to maximize the expected payoff of the outcome. In this
article we restrict our attention to two-player zero-sum games, where the two players
have opposite payoffs, and therefore have no incentive to co-operate. We denote the
players Blue and Red, and see the game from Blue’s point of view, so that the payoff
is evaluated by Blue. The zero-sum property implies that Red’s payoff is equal to
Blue’s negated. Note that constant-sum games, where Blue’s and Red’s payoffs add
to a fixed constant ¢ for all outcomes, can trivially be transformed to zero-sum games
by subtracting ¢/2 from all payoff values.

A pure strategy for a player is a deterministic plan that dictates all decisions the
player may face in the course of a game. A mixed, or randomized, strategy is a
probability distribution over a set of pure strategies.

Under mild conditions (e.g. finite sets of pure strategies) a two-player zero-sum
game has a value. This is a real number v such that Blue has a (possibly mixed)
strategy that guarantees the expected payoff to be no less than v, and Red has a
strategy that guarantees it to be no more than v. A pair of strategies for each side that
has this property is called a minimax solution of the game. These strategies are in
equilibrium, as no side can profit from deviating unilaterally, and therefore minimax
play is considered optimal for both sides.

Games of perfect information are an important subclass of two-player zero-sum
games containing games like chess and backgammon. With perfect information both
players know the state of the game at each decision point, and the turn of the players
alternate. In perfect information games there exist minimax solutions that consist of
pure strategies, so no randomization is required. In imperfect information games like
two-player poker, however, minimax play will often require mixed strategies. Any
experienced poker player knows that deterministic play is vulnerable. Randomization
is best seen as a defensive maneuver protecting against an intelligent opponent who

Minimax TD-Learning with Neural Nets in a Markov Game 119

may predict your behavior. In chess this plays little part, because your actions are
revealed to the opponent immediately.

2.1 Matrix Games

A special class, or rather representation, of two-player zero-sum games is matrix
games. In a matrix game both players have a finite set of pure strategies, and for each
combination of Blue and Red strategy there is an instant real valued reward. The
players make their moves simultaneously. If Blue’s strategies are numbered from 1 to
m, and Red’s are numbered from 1 to n, the game can be represented by an mXxn
matrix M whose entry m;; equals Blue’s payoff if Blue and Red use strategies i and j

respectively. Any finite two-player zero-sum game can be transformed to matrix form
by enumerating the strategies. If the game is stochastic, the matrix entries will be
expected payoffs given Blue and Red strategy. However, if the game has sequences of
several decisions, the dimensions of the matrix will grow exponentially, making the
matrix representation impractical to produce.

It has long been known that the problem of finding a minimax solution to a matrix
game is equivalent to solving a linear programming problem (LP), see Strang [8].
Efficient algorithms exist for LP, such as the simplex procedure. We will return to
this in the implementation section.

3 Evaluation Criteria

Our goal is to use machine learning techniques to develop agents that play two-player
zero-sum games well. To quantify success of our agents, we need to define evaluation
criteria. This is not quite as straightforward as one might believe, because game
outcomes are not in general transitive. Even if agent A beats agent B every time, and
B beats C consistently, it may well be that C beats A all the time. The obvious
example of this is the well-known game scissors-paper-rock. Therefore, one cannot
develop a strength measure that ranks a pool of agents consistently so that stronger
agents beat weaker ones. Instead we seek to develop evaluation criteria that conform
to game theory. These criteria have previously been published in Halck and Dahl [4].

31 Gegq

Our strictest evaluation criterion is called equity against globally optimizing
opponent, abbreviated Geq. The Geq of an agent is the minimum of the player’s
expected outcome, taken over the set of all possible opponents. The Gegq is less than
or equal to the game’s value, with equality if and only if the agent is a minimax
solution.

Let P, and P, be agents, and let P be the randomized agent that uses P, with

probability p, 0< p <1, and P, with probability 1— p. (Of course, P, and P, may also

120 Fredrik A. Dahl and Ole Martin Halck

contain randomization, and this is assumed independent of P’s randomization
between P, and P,.) Then

Geq(P) 2 p-Geq(P,) +(1-p)-Geq(P,). (M

This is easily seen by observing that the most dangerous opponent of P, may be
different from that of P,. Inequality (1) shows that mixing strategies with similar Gegq
is beneficial according to the Geg measure, particularly if the component players have
different weaknesses.

Mixing of strategies is most important in games of imperfect information, where
this is required for minimax play, but even in games of perfect information it will
often improve the Geq. Consider chess, and imagine a version of IBM’s Deep Blue
that plays deterministically. As long as there is even just a single way of tricking the
program, its Geq would be zero. On the other hand, a completely random agent would
do better, getting a positive Geg, as there is no way of beating it with probability 1.

3.2 Peq

Our second performance measure is equity against perfect opponent, abbreviated Peq.
The Peqg of an agent is its expected outcome against a minimax-playing opponent.
Note that minimax solutions are not in general unique, so there may actually be a
family of related Peq measures to choose from. In the following we assume that one
of them is fixed.

For all agents Peq = Geq, as the minimax agent is included in the set of opponents
that the Gegq calculations minimize over. The Peq measure also has the game’s value
as its maximum, and a minimax-playing agent achieves this. But this is not a
sufficient condition for minimax play. Consider again our agent P as the mixture of
agents P, and P, . The Peq measure satisfies the following equation:

Peq(P)=p-Peq(P,)+(1-p)- Peq(P,). 2

This property follows directly from the linearity of the expected value. Equation (2)
tells us that according to the Peq measure there is nothing to be gained by
randomizing. This makes sense, because randomization is a defensive measure taken
only to ensure that the opponent does not adjust to the agent’s weaknesses. When
playing against a static opponent, even a perfect one, there is no need for
randomization. Equation (2) implies that Peq only measures an agent’s ability to find
strategies that may be a component of some minimax solution.

This touches a somewhat confusing aspect of the minimax solution concept. Like
we stated in the game theory section, a pair of agents that both play a minimax
solution is in equilibrium, as neither can gain by deviating. However, the equilibrium
is not very coercive, because one agent does not have anything to gain from
randomizing as long as the other agent does. As we have just seen, all it takes to
secure the value against a minimax-playing opponent is any deterministic strategy that
may be a randomized component of a minimax solution.

This can be illustrated with an example from poker. In some poker situations it is
correct (in the minimax sense) for a player to bluff with a given probability, and for

Minimax TD-Learning with Neural Nets in a Markov Game 121

the opponent to call with a different probability. But the optimal bluffing probability
is exactly the one that makes calling and folding equally strong for the opponent. And
similarly, if the opponent calls with his optimal probability, it makes no difference if
the first player bluffs all the time or not at all.

4 Campaign

In this article we will describe and explore an algorithm that is defined for Markov
games, which is a proper subclass of two-player zero-sum games. Markov games
include some, but not all, games with imperfect information. We have developed our
own game, called Campaign, which features imperfect information, as testing ground
for agents. Rather than burdening the reader with formal definitions, we present
Campaign as an example of a Markov game, and describe general Markov games in-
formally afterwards. Campaign was first defined and analyzed in Dahl and Halck [9].

4.1 Rules

Both players start the game with five units and zero accumulated profit. There are five
consecutive stages, and at each stage both players simultaneously allocate their
available units between three roles: defense (D), profit (P) and attack (A). A unit
allocated to P increases the player’s accumulated profit by one point. Each unit
allocated to D neutralizes two opponent attacking units. Each unit allocated to A, and
not neutralized, destroys one opponent unit for the remaining stages of the game.
Before each stage the players receive information about both side’s accumulated
profit and number of remaining units. After the last stage the score for each player is
calculated as the sum of accumulated profit and number of remaining units. The
player with the higher score wins, and with equality the game is a draw. Margin of
victory is irrelevant. If both players evaluate a draw as “half a win”, the game is zero
sum. We assign the payoffs 0, 0.5 and 1 to losing, drawing and winning, respectively,
which technically makes the game constant-sum. The rules are symmetric for Blue
and Red, and the value is clearly 0.5 for both. Campaign has imperfect information
due to the simultaneity of the player’s actions at each stage.

The military interpretation of the game is an air campaign. Obviously, a model
with so few degrees of freedom can not represent a real campaign situation
accurately, but it does capture essential elements of campaigning. After Campaign
was developed, we discovered that it was in fact very similar to “The Tactical Air
Game” developed by Berkovitz [10]. This may indicate that Campaign is a somewhat
canonical air combat model.

Define the game’s state as a four-tuple (b,r, p,n), with b being the number of
remaining Blue units, r the number of Red units, p Blue’s lead in accumulated profit
points and n the number of rounds left. The initial state of the game is then (5,5,0,5).
Note that it is sufficient to represent the difference in the players’ accumulated profit,
as accumulated profit only affects evaluation of the final outcome, and not the
dynamics of the game. Our state representation using Blue’s lead in accumulated

122 Fredrik A. Dahl and Ole Martin Halck

profit introduces some asymmetry in an otherwise symmetric game, but this is of no
relevance. For that matter, both players may regard themselves as Blue, in which case
a state seen as (a,b,c,d) for one player, would be perceived as (b,a,—c,d) to the
other. An allocation is represented as a three-tuple (D, P, A) of natural numbers sum-
ming to the side’s number of remaining units. A sample game is given in Table 1.

Table 1. A sample game of Campaign

Stage State Blue action | Red action
1 (5,5,0,5) (2,2,1) (2,3,0)
2 (5,5,-1,4) (1,4,0) (2,3,0)
3 (5,5,0,3) 2,2,1) (0,0,5)
4 (4,4,2,2) (1,2,1) (1,0,3)
5 (3,4,4,1) (0,3,0) (0,4,0)
Final state: (3,4,3,0)

Blue wins the game, as his final lead in accumulated profit (3) is larger than his deficit
in remaining units (4 -3 =1).

4.2 Solution

Because perfect information is available to the players before each stage, earlier states
visited in the game can be disregarded. It is this property that makes the game
solvable in practical terms with a computer. As each state contains perfect
information, it can be viewed as the starting point of a separate game, and therefore
has a value, by game theory. This fact we can use to decompose the game further by
seeing a state as a separate game that ends after both players have made their choice.
The outcome of this game is the value of the next state reached. At each state both
players have at most 21 legal allocations, so with our decomposition a game state’s
value is defined as the value of a matrix game with at most 21 pure strategies for both
sides, with matrix entries being values of succeeding game states. One can say that
our solution strategy combines dynamic programming and solution of matrix games.
First all games associated with states having one stage left are solved using linear
programming. (Again we refer to the implementation section for a discussion of
solution algorithms for matrix games.) These have matrix entries defined by the rules
of the game. Then states with two stages remaining are resolved, using linear pro-
gramming on the game matrices resulting from the previous calculations, and so on.
To shed some light on what the game solution looks like, we will give some
examples of states with solutions. For all states (b, r, p,1), that is, the last stage of the
game, allocating all units to profit is a minimax solution. Other states have far more
complex solutions. Figure 1 shows the solutions for three different states, in which
solutions are unique. In each one both players have all five units remaining, and their
complete state descriptions are (5,5,0,5), (5,5,0,3) and (5,5,2,2). Superficially these
states appear similar, but as the figure shows, their solutions are very different. Note
in particular that the allocation of one unit to defense, three to profit and one to attack
is not given positive probability for the first two states, and it is in general rarely a

Minimax TD-Learning with Neural Nets in a Markov Game =~ 123

good allocation. But in the special case of Blue leading with two points, with all units
intact and two stages to go, it is the only allocation that forces a win.

1
z 08 5505
z 0.5,
Z 06 6:50,5)
] H(5.5.0.3)
£ 04
e (5522
- L1
0 —_— —_— — —_—
B e afaBacAAaacaRaeadasdaa
(=] — ol o <t vy [=} — o o <I’. [=} —_— o o f=} —_— o (=] — (=]
S g g e cddddddaod 9
Allocation

Fig. 1. Examples of solutions for some states

These examples show that apparently similar game states may have very different
solutions. Therefore the game should pose a serious challenge to machine learning

techniques.

4.3 Markov Games

We mentioned above that Campaign belongs to the game class called Markov games
(see e.g. [6]). Markov games have the same general structure as Campaign with the
players making a sequence of simultaneous decisions. The “Markov” term is taken
from stochastic process theory, and loosely means that the future of a game at a given
state is independent of its past, indicating that the state contains all relevant
information concerning the history of the game.

There are three general features that Markov games may have that Campaign does
not have. Firstly, the game may return to states that have previously been visited,
creating cycles. Secondly, there may be payoffs associated with all state-action
combinations, not just the terminal game states. The combination of these effects,
cycles and payoffs of non-terminal states, opens the possibility of unlimited payoff
accumulations, and this is usually prevented by some discounting factor that
decreases exponentially with time. Thirdly, there may be randomness in the rules of
the game, so that a triple (blue-action, state, red-action) is associated with a
probability distribution over the set of states, rather than just a single state.

Markov games extend the class of perfect information games into the area of
imperfect information. Note that perfect information games are included in Markov
games by collapsing the decision set of the player that is not on turn to a single action.
Therefore the simultaneous decisions trivially include sequential alternating decisions.
Markov games can also be seen as a generalization of Markov decision problems
(MDP), as an MDP is a “game” where the opponent’s options are collapsed

completely.

124 Fredrik A. Dahl and Ole Martin Halck

5 Minimax TD-Learning

Littman [6] defines minimax Q-learning for Markov games, which is similar to Q-
learning in MDP, and uses this successfully for a simple soccer game. If the agent one
is training knows the rules of the game (called complete information in the game
theory language), a simpler learning rule can be used, that only estimates values of
states, and this is what we do in this article. We are not aware of this algorithm being
published previously, and give it the natural name of minimax TD-learning. We do
not claim that this is an important new concept, more of a modification of minimax
Q-learning. Minimax TD-learning is in fact even more similar to standard TD-
learning for MDP than minimax Q-learning is to Q-learning. We assume the reader is
familiar with TD-learning. Barto et al [11] gives an overview of TD-learning and
other machine learning algorithms related to dynamic programming.

We describe the Minimax TD-learning method with Campaign in mind, but it
should be obvious how it works for more general Markov games, featuring the
general properties not present in Campaign. Minimax TD-learning trains a state
evaluator to estimate the game-theoretic minimax value of states. This state evaluator,
be it a lookup table, a neural net or whatever, is used for playing games, and standard
TD(A)-learning is used to improve estimates of state values based on the sequence of
states visited.

The way that the state evaluator controls the game, however, is different from the
MDP case. At each state visited a game matrix is assembled. For each combination of
Blue and Red strategy the resulting state is calculated (which is why the algorithm
requires knowledge of the rules). The evaluator’s value estimate of that state is used
as the corresponding game matrix entry. If the resulting state is a terminal one, the
actual payoff is used instead. Then the matrix game is solved, and random actions are
drawn for Blue and Red according to the resulting probability distributions. This
procedure is repeated until the game terminates. A long sequence of games will
normally be needed to get high quality estimations from the TD-learning procedure.

It is a well-known fact that TD-learning in MDPs may get stuck with a sub-optimal
solution, unless some measures are taken that forces the process to explore the state
space. This may of course happen with Markov games as well, being a superset of
MDPs.

6 Implementation and Experimental Results

In this section we describe implementation issues concerning our state evaluator,
different techniques used for solving matrix games, calculation of performance and
experience with the learning algorithm itself.

6.1 Neural Net State-Evaluator

We have implemented our state evaluator as a neural net. The net is a “vanilla-
flavored” design with one layer of hidden units, sigmoid activation functions, and

Minimax TD-Learning with Neural Nets in a Markov Game 125

back-propagation of errors. The net has four input nodes associated to the state
variables (b,r, p,n), each scaled by a factor 0.2 to get an approximate magnitude
range of [0,1]. The net has one output node, which gives the estimated state value.
The number of hidden nodes was set to eight.

6.2 Solving Matrix Games by Linear Programming

It is a well-established fact that matrix games can be solved by LP techniques, see e g
Strang [8]. However, the practical problems encountered when implementing and
using the simplex algorithm surprised us, and we would like to share this with the
public. The problems would surely be less if we had used a commercial LP package,
but that would require close integration of it into our program, which was not
desirable. Instead we copied the simplex procedure published in [12].

Recall that our game matrix M e R™" has as entry m, Blue’s (expected) payoff

when Blue uses his strategy with index i and Red uses his strategy j. We see the game
from Blue’s side, so we surely need variables x,,..., x, that represent his probability
distribution. These will give the randomizing probabilities associated with his pure
strategies. They must be non-negative (which fits the standard representation of LP
problems), and sum to 1, to represent a probability distribution: Z:’;l x;, =1

We also need a variable x,,,, for the game’s value, which is not necessarily non-
negative. A standard trick for producing only non-negative variables is to split the
unbounded variable into its positive and negative parts: x,,, =v—u. We do not have
any convincing explanation of it, but from our experience this was not compatible
with the simplex algorithm used, as it claimed the solution was unbounded. A
different problem arose in some cases when the optimal value was exactly 0, as it was
unable to find any feasible solution. This is probably due to rounding errors. To
eliminate these problems we transformed the matrix games by adding a constant,
slightly higher than the minimum matrix entry negated, to all matrix entries, thereby
keeping the solution structure and ensuring strictly positive value. Afterwards the
same constant must of course be deducted from the calculated value.

Minimax solutions are characterized by the fact that Blue’s expected payoff is no
less than the value, whichever pure strategy Red uses. For each j € {1,...,n}this gives

the inequality ZZI x; -my —x,,,; 2 0. The objective function is simply the value x,,,.

With this problem formulation the simplex procedure appeared to be stable, but
only with double precision floating point numbers.

6.3 Solving Matrix Games by Fictitious Play

During our agonizing problems with the simplex algorithm we quickly implemented
an iterative algorithm for matrix games called fictitious play. This algorithm is also
far from new, see Luce and Raiffa [7]. Fictitious play can be viewed as a two-sided
competitive machine learning algorithm. It works like this: Blue and Red sequentially
find the most effective pure strategy, under the assumption that the opponent will play

126 Fredrik A. Dahl and Ole Martin Halck

according to the probability distribution manifested in the histogram of his actions in
all previous iterations. The algorithm is very simple to implement, and it is
completely stable. Its convergence is inverse linear, which does not compete with the
simplex algorithm that reaches the exact solution in a finite number of steps.
However, we do not need exact solutions in the minimax TD-training, because the
game matrices are also not exact. From our experience fictitious play is faster than
simplex for the required precision in training. But when it comes to calculating the
Campaign solution, which is needed for evaluating the Peq of agents, the accuracy
provided by the simplex algorithm is preferable. After this work had been done, we
registered that Szepesvari and Littman [13] also suggests the use of fictitious play in
minimax Q-learning to make the implementation “LP-free”.

6.4 Calculating Geq and Peq Performance

To measure the progress of our Campaign-playing agent we need to evaluate its Geq
and Peq performance.

The Gegq calculations are very similar to the algorithm we use for calculating the
solution. Because the behavior of the agent that is evaluated (Blue) is given, the
problem of identifying its most effective opponent degenerates to an MDP problem,
which can be solved by dynamic programming. First Red’s most effective actions are
calculated for states with one stage left (b, r, p,1). Then the resulting state values are
used for identifying optimal actions at states with two stages left, and so on.

The Peq could be calculated in much the same way, except that no optimization is
needed as both Blue and Red’s strategies are fixed. However, it is more efficient to
propagate probability distributions forwards in the state space, and calculating the
expected outcome with respect to the probability distribution at the terminal states.
This saves time because calculations are done only for states that are visited when this
Blue agent plays against the given minimax Red player.

6.5 Experimental Results

When used without exploration the minimax TD-algorithm did not behave well. The
first thing the net learned was the importance of profit points. This led to game
matrices that result in a minimax strategy of taking profit only, for all states. The
resulting games degenerated to mere profit-taking by both sides, and all games were
draws. Therefore it never discovered the fact that units are more important than profit
points, particularly in early game states. In retrospect it is not surprising that the
algorithm behaved this way, because the action of using all units for profit is optimal
in the last stage of the game, which is likely to be the first thing it learns about.

One way of forcing the algorithm to explore the state space more is by introducing
random actions different from those recommended by the algorithm. Instead we have
been randomizing the starting state of the game. Half of the games were played from
the normal starting state (5,5,0,5), and the rest were drawn randomly. To speed up
training, the random starting states were constructed to be “interesting”. This was

Minimax TD-Learning with Neural Nets in a Markov Game 127

done by ensuring that a player cannot start with a lead in both number of units and
profit points.

TD-learning is subject to random noise. We were able to reduce this problem by
utilizing a symmetry present in the game. If a given state (b, r, p,n) receives feedback
v, it implicitly means that the state (r,b,—p,n) seen by the opponent deserves
feedback 1—v. Adding this to the training procedure helps the net towards consistent
evaluations, and automatically ensures that symmetric states (like the starting state)
get neutral feedback (that is 0.5) on average. This reduced the random fluctuations in
the net’s evaluations considerably.

With these modifications the algorithm behaved well. Figure 2 shows the learning
curves of the agent’s Geq and Peq, with A = 0 and learning rate decreasing from 1 to
0.1. The number of iterations in the fictitious play calculations was increased linearly
from 100 to 500. The unit on the x-axis is 1000 games, and the curves are an average
of five training batches.

0.5

0'4 'fﬁ

o 0. VY WAVV\[VWAV
Q
=
é 0.3 W —Peq
9] i —Ge
< 0.2 ‘ q
o}
A 0.1

0 T T T T

0 50 100 150 200

Number of games (thousands)

Fig. 2. Geq and Peq learning curves

We see that the Peq of the agent quickly approaches the optimal 0.5. The Geg values
do not quite reach this high, but the performance is acceptable in light of the relatively
small neural net used. The Gegq is close to zero in the first few thousand games, and
the Peq also has dip in the same period. This is because the agent first learns the value
of profit points, and it takes some time before the exploration helps it to discover the
value of units.

7 Conclusion

Our main conclusion is that minimax TD-learning works quite well for our Markov
game named Campaign. Unlike the experience of Littman [6], the algorithm fails
completely without forced exploration, but our exploration technique of randomizing
the starting point of the game appears successful.

The results show that it is far easier to achieve high performance according to the
Peg measure (expected outcome against a minimax-playing opponent) than according
to Geg (expected outcome against the agent’s most effective opponent).

128 Fredrik A. Dahl and Ole Martin Halck

Our experience indicates that the simple fictitious play algorithm can compete with
LP algorithms for producing solutions for matrix games in cases where high precision
is not needed. As a bonus fictitious play is also far simpler to implement.

References

1. Sutton, R.S.: Learning to predict by the methods of temporal differences, Machine
Learning 3 (1988) 9-44.

2. Tesauro, G.J.: Practical issues in temporal difference learning, Machine Learning 8 (1992)
257-2717.

3. Koller, D., Pfeffer, A.: Representations and solutions for game-theoretic problems.
Artificial Intelligence 94(1) (1997) 167-215.

4. Halck, O.M., Dahl, F.A.: On classification of games and evaluation of players — with some
sweeping generalizations about the literature. In: Fiirnkranz, J., Kubat, M. (eds.):
Proceedings of the ICML-99 Workshop on Machine Learning in Game Playing, Jozef
Stefan Institute, Ljubljana (1999).

5. Billings, D., Papp, D., Schaeffer, J., Szafron, D.: Poker as a testbed for machine intelligence
research. In: Mercer, R., Neufeld, E. (eds.): Advances in Artificial Intelligence, Springer-
Verlag, Berlin—Heidelberg—New York (1998) 228-238.

6. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In:

Proceedings of the 11th International Conference on Machine Learning, Morgan

Kaufmann, New Brunswick (1994) 157-163.

Luce, R.D., Raiffa, H.: Games and Decisions. Wiley, New York (1957).

8. Strang, G.: Linear Algebra and Its Applications. Second Edition. Harcourt Brace
Jovanovich, Orlando (1980).

9. Dahl, F.A., Halck, O.M.: Three games designed for the study of human and automated
decision making. Definition and properties of the games Campaign, Operation Lucid and
Operation Opaque. FFI/RAPPORT-98/02799, Norwegian Defence Research Establishment
(FFD), Kjeller, Norway (1998).

10. Berkovitz, L.D.: The Tactical Air Game: A multimove game with mixed strategy solution.
In: Grote, J.D. (ed.): The Theory and Application of Differential Games, Reidel Publishing
Company, Dordrecht, The Netherlands (1975) 169-177.

11. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic
programming. Artificial Intelligence 72 (1995) 81-138.

12. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C.
The Art of Scientific Computing. Cambridge University Press, Cambridge, UK (1988).

13. Szepesvari, C., Littman, M.L.: A unified analysis of value-function-based reinforcement-
learning algorithms. Neural Computation 11 (1999) 2017-2060.

=~

	Minimax TD-Learning with Neural Nets in a Markov Game
	1 Introduction
	2 Game Theory
	2.1 Matrix Games

	3 Evaluation Criteria
	3.1 Geq
	3.2 Peq

	4 Campaign
	4.1 Rules
	4.2 Solution
	4.3 Markov Games

	5 Minimax TD-Learning
	6 Implementation and Experimental Results
	6.1 Neural Net State-Evaluator
	6.2 Solving Matrix Games by Linear Programming
	6.3 Solving Matrix Games by Fictitious Play
	6.4 Calculating Geq and Peq Performance
	6.5 Experimental Results

	7 Conclusion
	References

