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Abstract. Factorization using Singular Value Decomposition (SVD) is
often used for recovering 3D shape and motion from feature correspon-
dences across multiple views. SVD is powerful at finding the global solu-
tion to the associated least-square-error minimization problem. However,
this is the correct error to minimize only when the x and y positional
errors in the features are uncorrelated and identically distributed. But
this is rarely the case in real data. Uncertainty in feature position de-
pends on the underlying spatial intensity structure in the image, which
has strong directionality to it. Hence, the proper measure to minimize is
covariance-weighted squared-error (or the Mahalanobis distance). In this
paper, we describe a new approach to covariance-weighted factorization,
which can factor noisy feature correspondences with high degree of direc-
tional uncertainty into structure and motion. Our approach is based on
transforming the raw-data into a covariance-weighted data space, where
the components of noise in the different directions are uncorrelated and
identically distributed. Applying SVD to the transformed data now mi-
nimizes a meaningful objective function. We empirically show that our
new algorithm gives good results for varying degrees of directional uncer-
tainty. In particular, we show that unlike other SVD-based factorization
algorithms, our method does not degrade with increase in directionality
of uncertainty, even in the extreme when only normal-flow data is avai-
lable. It thus provides a unified approach for treating corner-like points
together with points along linear structures in the image.

1 Introduction

Factorization is often used for recovering 3D shape and motion from feature
correspondences across multiple frames [8,4,5,6,7]. Singular Value Decomposi-
tion (SVD) directly obtains the global minimum of the squared-error between
the noisy data and the model. This is in contrast to iterative non-linear op-
timization methods which may converge to a local minimum. However, SVD
requires that the noise in the x and y positions of features are uncorrelated and
have identical distributions. But, it is rare that the positional errors of feature
tracking algorithms are uncorrelated in their x and y coordinates. Quality of
feature matching depends on the spatial variation of the intensity pattern aro-
und each feature. This affects the positional inaccuracy both in the x and in
the y components in a correlated fashion. This dependency can be modeled by
directional uncertainty (which varies from point to point, as is shown in Fig. 1).
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(a) (b)

Fig. 1. Directional uncertainty indicated by ellipse. (a) Uncertainty of a sharp corner
point. The uncertainty in all directions is small, since the underlying intensity structure
shows variation in multiple directions. (b) Uncertainty of a point on a flat curve, almost
a straight line. Note that the uncertainty in the direction of the line is large, while the
uncertainty in the direction perpendicular to the line is small. This is because it is hard
to localize the point along the line.

When the uncertainty in a feature position is isotropic, but different features
have different variances, then scalar-weighted SVD can be used to minimize a
weighted squared error measure [1]. However, under directional uncertainty noise
assumptions (which is the case in reality), the error minimized by SVD is no lon-
ger meaningful. The proper measure to minimize is the covariance-weighted error
(the Mahalanobis distance). This issue was either ignored by researchers [8,4,1,
7], or else was addressed using other minimization approaches [3,5]. Morris and
Kanade [3] have suggested a unified approach for recovering the 3D structure
and motion from point and line features, by taking into account their directio-
nal uncertainty. However, they solve their objective function using an iterative
non-linear minimization scheme. The line factorization algorithm of Quan and
Kanade [5] is SVD-based. However, it requires a preliminary step of 2D pro-
jective reconstruction, which is necessary for rescaling the line directions in the
image before further factorization can be applied. This step is then followed by
three sequential SVD minimization steps, each applied to different intermediate
results. This algorithm requires at least seven different directions of lines.

In this paper we present a new approach to factorization, which introduces
directional uncertainty into the SVD minimization framework. The input is the
noisy positions of image features and their inverse covariance matrices which re-
present the uncertainty in the data. Following the approach of Irani [2], we write
the image position vectors as row vectors, rather than as column vectors as is
typically done in factorization methods. This allows us to use the inverse cova-
riance matrices to transform the input position vectors into a new data space
(the “covariance-weighted space”), where the noise is uncorrelated and identi-
cally distributed. In the new covariance-weighted data space, corner points and
points on lines all have the same reliability, and their new positional components
are uncorrelated. (This is in contrast with the original data space, where corner
points and points on lines had different reliability, and their x and y components
were correlated.)

We apply SVD factorization to the covariance-weighted data to obtain a
global optimum. This minimizes the Mahalanobis distance in the original data
space. However, the covariance-weighted data space has double the rank of the
original data space. To obtain the required additional rank-halving, we use a
least-squares minimization step within the double-rank subspace.

Our approach allows the recovery of 3D motion for all frames and the 3D
shape for all points, even when the uncertainty of point position is highly elliptic
(for example, point on a line). It can handle reliable corner-like point correspon-
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dences and partial correspondences of points on lines (e.g., normal flow), all
within a single SVD like framework. In fact, we can handle extreme cases when
the only image data available is normal flow.

Irani [2] used confidence-weighted subspace projection directly on spatio-
temporal brightness derivatives, in order to constrain multi-frame correspon-
dence estimation. The confidences she used encoded directional uncertainty as-
sociated with each pixel. That formulation can be seen a special case of the
covariance-weighted factorization presented in this paper.

Our approach thus extends the use of the powerful SVD factorization tech-
nique with a proper treatment of directional uncertainty in the data. Different
input features can have different directional uncertainties with different ellipti-
cities (i.e., different covariance matrices). However, our extension does not allow
arbitrary changes in the uncertainty of a single feature over multiple frames. We
are currently able to handle the case where the change in the covariance matrices
of all of the image features can be modeled by a global 2D affine transformation,
which varies from frame to frame.

The rest of the paper is organized as follows: Section 2 contains a short review
of SVD factorization and formulates the problem for the case of directional uncer-
tainty. Section 3 describes the transition from the raw data space, where noise is
correlated and non-uniform, to the covariance-weighted data space, where noise
is uniform and uncorrelated, giving rise to meaningful SVD subspace projection.
Section 4 explains how the covariance-weighted data can be factored into 3D mo-
tion and 3D shape. Section 5 extends the solution presented in Sections 3 and 4,
to a more general case when the directional uncertainty of a point changes across
views. Section 6 provides experimental results and empirical comparison of our
factorization method to other common SVD factorization methods. Section 7
concludes the paper.

2 Problem Formulation

2.1 SVD Factorization

A set of P points are tracked across F images with coordinates
{
(u′

fp, v
′
fp) |

f = 1 . . . F, p = 1, . . . , P
}
. The point coordinates are transformed to object-

centered coordinates by subtracting their center of mass: (u′
fp, v

′
fp) is replaced

by (ufp, vfp) = (u′
fp − uf , v′

fp − vf ) for all f and p, where uf and vf are the
centroids of point positions in each frame: uf = 1

P

∑
p u′

fp, vf = 1
P

∑
p v′

fp.
Two F × P measurement matrices U and V are constructed by stacking all

the measured correspondences as follows:

U =

 u11 · · · u1P
...

...
uF1 · · · uFP

 , V =

 v11 · · · v1P
...

...
vF1 · · · vFP

 .

It was shown [8,4,6] that when the camera is an affine camera (i.e., orthographic,
weak-perspective, or paraperspective), and when there is no noise, then the rank

of W =
[

U
V

]
2F ×P

is 3 or less, and can be factored into a product of a motion



542 M. Irani and P. Anandan

matrix M and a shape matrix S, i.e., W = MS, where:

M =
[

MU

MV

]
2F ×3

, MU =

mT
1
...

mT
F


F ×3

, MV =

 nT
1
...

nT
F


F ×3

, S = [s1 · · · sP ]3×P
.

The rows of M encode the motion for each frame (rotation in the case of or-
thography), and the columns of S contain the 3D position of each point in the
reconstructed scene.

When there are errors in the measurement matrix W , then each position
(ufp vfp)T has a 2D noise vector associated with it

Efp =

[
ufp − mT

f sp

vfp − nT
f sp

]
2×1

.

When the noise Efp is an isotropic Gaussian random variable with a fixed vari-
ance σ2, i.e., ∀f ∀p Efp ∼ N(0, σ2I2×2), then the maximum likelihood estimate
is obtained by minimizing the squared error:

ErrSVD(M, S) =
∑
f,p

ET
fpEfp = ‖W − MS‖2

F

where ‖ · ‖
F

denotes the Frobenius norm. The global minimum to this non-linear
problem is obtained by performing Singular Value Decomposition (SVD) on the
measurement matrix: W = AΣBT , and setting to zero all but the three largest
singular values in Σ, to get a noise-cleaned matrix Ŵ = AΣ̂BT . The recovered
motion and shape matrices M̂ and Ŝ are then obtained by: M̂ = AΣ̂1/2, and
Ŝ = Σ̂1/2B. Note that M̂ and Ŝ are defined only up to an affine transformation.

2.2 Scalar Uncertainty

The model in Section 2.1 (as well as in [8]) weights equally the contribution
of each point feature to the final shape and motion matrices. However, when
the noise Efp is isotropic, but with different variances for the different points
{σ2

p | p = 1 · · ·P}, then Efp ∼ N(0, σ2
pI2×2). In such cases, applying SVD to the

weighted-matrix Wσ = Wσ−1, where σ−1 = diag(σ−1
1 , ..., σ−1

P ), will minimize
the correct error function:

Errweighted-SVD(M, S) =
∑ ET

fpEfp

σ2
p

= ‖(W − MS)σ‖
F

= ‖Wσ − MSσ‖
F

where Sσ = Sσ−1. Applying SVD-factorization to Wσ will give M̂ and Ŝσ, from
which Ŝ = Ŝσσ can be recovered. This approach is known as weighted-SVD or
weighted-factorization [1].

2.3 Directional Uncertainty

So far we have assumed that the noise in ufp is uncorrelated with the noise in
vfp. In real image sequences, however, this is not the case. Tracking algorithms
introduce non-uniform correlated error in the tracked positions of points which
depends on the local image structure. For example, a corner point p will be
tracked with high reliability both in ufp and in vfp, while a point p on a line
will be tracked with high reliability in the direction of the gradient (“normal



Factorization with Uncertainty 543

flow”), but with low reliability in the tangent direction (see Fig. 1). This leads
to non-uniform correlated noise in ufp and vfp. We model the correlated noise
Efp by: Efp ∼ N(0, Q−1

fp ) where Qfp is the 2× 2 inverse covariance matrix of the
noise at point p in image-frame f . The covariance matrix determines an ellipse
whose major and minor axes indicate the directional uncertainty in the location
(ufp vfp)T of a point p in frame f (see Fig. 1, as well as [3] for some examples).

Assuming that the noise at different points is independent, then the maxi-
mum likelihood solution is obtained by finding matrices M and S which minimize
the following objective function:

Err(M, S) =
∑

f,p(ET
fpQfpEfp)

=
∑
f,p

([
(ufp − mT

f sp) (vfp − nT
f sp)

]
Qfp

[
ufp − mT

f sp

vfp − nT
f sp

])
. (1)

Eq. (1) implies that in the case of directional uncertainty, the metric that we want
to use in the minimization is the Mahalanobis distance, and not the Frobenius
(least-squares) norm, which is the distance minimized by the SVD process.

Morris and Kanade [3] have addressed this problem and suggested an ap-
proach to recovering M and S which is based on minimizing the Mahalano-
bis distance. However, their approach uses an iterative non-linear minimization
scheme. In the next few sections we present our approach to SVD-based facto-
rization, which minimizes the Mahalanobis error. Our approach combines the
benefits of SVD-based factorization for getting a good solution, with the proper
treatment of directional uncertainty1. However, unlike [3], our approach cannot
handle arbitrary changes in covariance matrices of a single feature over multi-
ple frames. It can only handle frame-dependent 2D affine deformations of the
covariance matrices across different views (see Section 5).

3 From Raw-Data Space to Covariance-Weighted Space

In this section we show how by transforming the noisy data (i.e., correspon-
dences) from the raw-data space to a new covariance-weighted space, we can
minimize the Mahalanobis distance defined in Eq. (1), while still retaining the
benefits of SVD minimization. In particular, we will show that minimizing the
Frobenius Norm in the new data space (e.g., via SVD) is equivalent to mini-
mizing the Mahalanobis distance in the raw-data space. This transition is made
possible by rearranging the raw feature positions in a slightly modified matrix
form: [U | V ]

F ×2P
, namely the matrices U and V stacked horizontally (as oppo-

sed to vertically in W =
[

U
V

]
, which is the standard matrix form used in the

traditional factorization methods (see Section 2.1)). This modified matrix repre-
sentation is necessary to introduce covariance-weights into the SVD process, and
was originally proposed by Irani [2], who used it for applying confidence-weighted
subspace projection to spatio-temporal brightness derivatives for computing op-
tical flow across multiple frames.
1 When directional uncertainty is used, the centroids {uf} and {vf} defined in Sec-

tion 2.1, are the covariance-weighted means over all points of {ufp} and {vfp} in
frame f .
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For simplicity, we start by investigating the simpler case when the directional
uncertainty of a point does not change over time (i.e., frames), namely, when the
2×2 inverse covariance matrix Qfp of a point p is frame-independent: ∀f Qfp ≡
Qp. Later, in Section 5, we will extend the approach to handle the case when the
covariance matrices undergo frame-dependent 2D-affine changes. Because Qp is
positive semi-definite, its eigenvalue decomposition has the form Qp = ΩΛΩT ,
where Ω 2×2 is a real orthonormal matrix, and Λ 2×2 = diag(λmax, λmin). Let
Cp = ΩΛ

1
2 and [αfp βfp]1×2 = [ufp vfp]1×2Cp 2×2

. Therefore, αfp is the
component of [ufp vfp] in the direction of the highest certainty (scaled by its
certainty), and βfp is the component in the direction of the lowest certainty
(scaled by its certainty). For example, in the case of a point p which lies on a
line, αfp would correspond to the component in the direction perpendicular to
the line (i.e., the direction of the normal flow), and βfp would correspond to the
component in the direction tangent the line (the direction of infinite uncertainty).
In the case of a perfect line (i.e., zero certainty in the direction of the line), then
βfp = 0. When the position of a point can be determined with finite certainty in
both directions (e.g., for corner points), then Cp is a regular matrix. Otherwise,
when there is infinite uncertainty in at least one direction (e.g., as in lines or
uniform image regions), then Cp is singular.

Let αp, βp, up and vp be four F ×1 vectors corresponding to a point p across
all frames:

αp =

 α1p

...
αFp

 , βp =

 β1p

...
βFp

 , up =

 u1p

...
uFp

 , vp =

 v1p

...
vFp


then

[αp βp]
F ×2

= [up vp]
F ×2

Cp 2×2
. (2)

Let α and β be two F × P matrices:

α =

 α11 · · · α1P
...

...
αF1 · · · αFP


F ×P

and β =

 β11 · · · β1P
...

...
βF1 · · · βFP


F ×P

then, according to Eq. (2):

[α | β ]
F ×2P

= [U | V ]
F ×2P

C
2P ×2P

(3)

where C is a 2P x 2P matrix, constructed from all 2 x 2 matrices Cp =
[

cp1 cp2

cp3 cp4

]
(p = 1 · · ·P ), as follows:

C =



c11 0 c12 0
. . . . . .

0 cP1 0 cP2
c13 0 c14 0

. . . . . .
0 cP3 0 cP4


2P ×2P

.
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Note that matrix α contains the components of all point positions in their direc-
tions of highest certainty, and β contains the components of all point positions
in their directions of lowest certainty. These directions vary from point to point
and are independent. Furthermore, αfp and βfp are also independent, and the
noise in those two components is now uncorrelated. This will be shown and used
below.

Let R denote the rank of W =
[

U
V

]
2F ×P

(when W is noiseless, and the

camera is an affine camera, then R ≤ 3; see Section 2.1). A review of different
ranks R for different camera and world models can be found in [2]. Then the
rank of U and the rank of V is each at most R. Hence, the rank of [U | V ]F×2P

is at most 2R (for an affine camera, in the absence of noise, 2R ≤ 6). Therefore,
according to Eq. (3), the rank of [α | β ] is also at most 2R.

The problem of minimizing the Mahalanobis distance of Eq. (1) can be re-
stated as follows: Given noisy positions

{
(ufp vfp)T | f = 1 · · ·F, p = 1 · · ·P},

find new positions
{
(ûfp v̂fp)T | f = 1 · · ·F, p = 1 · · ·P} that minimize the

following error function:

Err
({

(ûfp v̂fp)T
})

=
∑
f,p

[
(ufp − ûfp) (vfp − v̂fp)

]
Qfp

[
ufp − ûfp

vfp − v̂fp

]
. (4)

Because Qfp = Qp = CpC
T
p , we can rewrite this error term as:

=
∑
f,p

([
(ufp − ûfp) (vfp − v̂fp)

]
Cp

)([
(ufp − ûfp) (vfp − v̂fp)

]
Cp

)T

= ‖ [U − Û | V − V̂ ]C ‖2
F

= ‖ [U | V ]C − [Û | V̂ ]C ‖2
F

= ‖ [α | β ] − [α̂ | β̂] ‖2
F

where [Û | V̂ ] is the F × 2P matrix containing all the {ûfp, v̂fp}, and [α̂ | β̂] =
[Û | V̂ ]C. Therefore:

Minimizing the Mahalanobis distance of Eq. (4) is equivalent to finding the

rank-2R matrix [α̂ | β̂] closest to [α | β ] in the Frobenius norm.

This minimization can be done by applying SVD subspace projection to the

matrix [α | β ], to obtain the optimal [α̂ | β̂]. This is done by applying SVD
to the known [α | β] matrix, and setting to zero all but the highest 2R singular

values. However, note that although optimal, [α̂ | β̂] = [Û | V̂ ]C is in general a

rank-2R matrix, and does not guaranty that Ŵ =
[

Û
V̂

]
is a rank-R matrix. In

Section 4 we show how we complete the process by making the transition from

the optimal rank-2R matrix [α̂ | β̂ ] to the rank-R solution Ŵ =
[

M̂U

M̂V

]
Ŝ.
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4 Factoring Shape and Motion

The process of finding the rank-2R [α̂ | β̂], as outlined in Section 3, does not
yet guarantee that the corresponding Û and V̂ can be decomposed into rank-R

matrices as follows:
[

Û
V̂

]
= M̂Ŝ =

[
M̂U

M̂V

]
Ŝ. In this section we complete the

process and recover M̂ and Ŝ by enforcing this matrix constraint on Û and V̂ .
Note that if C were an invertible matrix, then we could have recovered

[Û | V̂ ] = [α̂ | β̂]C−1, and then proceeded with applying standard SVD to
[

Û
V̂

]
to impose the rank-R constraint and recover M̂ and Ŝ. However, C is in general
not invertible (e.g., because of points with high aperture problem). Imposing the
rank-R constraint on Û = M̂U Ŝ and V̂ = M̂V Ŝ must therefore be done in the

[α̂ | β̂] space (i.e., without inverting C):

[α̂ | β̂]
F ×2P

= [M̂U Ŝ | M̂V Ŝ]C = [M̂U | M̂V ]
F ×2R

[
Ŝ 0
0 Ŝ

]
2R×2P

C2P ×2P
. (5)

Not every decomposition of [α̂ | β̂] has the matrix form
[

S 0
0 S

]
. However,

if we are able to decompose [α̂ | β̂] into the matrix form of Eq. (5), then the

resulting M̂ =
[

M̂U

M̂V

]
and Ŝ (which can be determined only up to an affine

transformation) will provide the desired rank-R solution.

Because [α̂ | β̂]
F ×2P

is a rank-2R matrix, it can be written as a bilinear
product of an F × 2R matrix H and a 2R × 2P matrix G:

[α̂ | β̂]
F ×2P

= H
F ×2R

G2R×2P
.

This decomposition is not unique. For any invertible 2R × 2R matrix D,

[α̂ | β̂] = (HD−1)(DG) is also a valid decomposition. We seek a matrix D
which will bring DG into a form

DG =
[

S 0
0 S

]
C (6)

where S is an arbitrary R×P matrix. This is a linear system of equations in the
unknown components of S and D. We therefore linearly solve for S and D, from
which the desired solution is obtained by: Ŝ := S and [M̂U | M̂V ] := HD−1.

4.1 Summary of the Algorithm

We summarize the steps of the algorithm:
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Step 1: Project the covariance-weighted data [α | β ] = [U | V ]C onto a

2R-dimensional subspace (i.e., a rank-2R matrix) [α̂ | β̂] (for an affine
camera 2R ≤ 6). This step is guaranteed to obtain the closest 2R-dimensional
subspace because of the global optimum property of SVD.

Step 2: Further enforce the rank-R solution by enforcing that
[

Û
V̂

]
=
[

M̂U

M̂V

]
Ŝ.

This additional subspace projection is achieved within the [α | β] space, and
is obtained with simple least squares minimization applied to the linear set
of equations (6).

Note that the Rank-R subspace obtained by the second step is contained in-
side the Rank-2R subspace obtained in the first step. We cannot prove that the
optimal Rank-R solution is guaranteed to lie within this Rank-2R subspace. Ho-
wever, the bulk of the optimization task is performed in Step 1, which takes the
noisy high-dimensional data into the Rank-2R subspace in an optimal fashion.
Moreover, both steps of our algorithm are linear. Our empirical results presented
in Section 6 indicate that our two-step algorithm accurately recovers the motion
and shape, while taking into account varying degrees of directional uncertainty.

5 Frame-Dependent Directional Uncertainty

So far we have assumed that all frames share the same 2 × 2 inverse covariance
matrix Qp for a point p, i.e., ∀f Qfp ≡ Qp and thus Cfp ≡ Cp. This assumption,
however, is very restrictive, as image motion induces changes in these matrices.
For example, a rotation in the image plane induces a rotation on Cfp (for all
points p). Similarly, a scaling in the image plane induces a scaling in Cfp, and
so forth for skew in the image plane. (Note, however, that a shift in the image
plane does not change Cfp.)

The assumption ∀f Cfp ≡ Cp was needed in order to obtain the separable
matrix form of Eq. (3), thus deriving the result that the rank of [α | β ] is at
most 2R. Such a separation can not be achieved for inverse covariance matrices
Qfp which change arbitrarily and independently. However, a similar result can
be obtained for the case when all the inverse covariance matrices of all points
change over time in a “similar way”.

Let {Qp | p = 1 · · ·P} be “reference” inverse covariance matrices of all the
points (in Section 5.2 we explain how these are chosen). Let {Cp | p = 1 · · ·P}
be defined such that CpC

T
p = Qp (Cp is uniquely defined by the eigenvalue

decomposition, same as defined in Section 3). In this section we show that if
there exist 2 × 2 “deformation” matrices {Af | f = 1, . . . , F} such that:

∀p, ∀f : Cfp = AfCp , (7)

then the approach presented in Sections 3 and 4 still applies.
Such 2×2 matrices {Af} can account for global 2D affine deformations in the

image plane (rotation, scale, and skew). Note that while Cfp is different in every
frame f and at every point p, they are not arbitrary. For a given point p, all its
2 × 2 matrices Cfp across all views share the same 2 × 2 reference matrix Cp

(which captures the common underlying local image structure and degeneracies
in the vicinity of p), while for a given frame (view) f , the matrices Cfp of all
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points within that view share the same 2 × 2 “affine” deformation Af (which
captures the common image distortion induced on the local image structure
by the common camera motion). Of course, there are many scenarios in which
Eq. (7) will not suffice to model the changes in the inverse covariance matrices.
However, the formulation in Eq. (7) does cover a wide range of scenarios, and
can be used as a first-order approximation to the actual changes in the inverse-
covariance matrices in the more general case. In Section 5.2 we discuss how we
choose the matrices {Cp} and {Af}.

We next show that under the assumptions of Eq. (7), the rank of [α | β ]
is still at most 2R. Let [αfp βfp]1×2 = [ufp vfp]1×2Cfp 2×2 (this is the same
definition as in Section 3, only here we use Cfp instead of Cp). Then:

[αfp βfp] = [ufp vfp]AfCp = [ũfp ṽfp]Cp

where [ũfp ṽfp] = [ufp vfp]Af . Let Ũ be the matrix of all ũfp and Ṽ be the
matrix of all ṽfp. Because Cp is shared by all views of the point p, then (just
like in Eq. (3)):

[α | β ] = [Ũ | Ṽ ]C

where C is the same 2P × 2P matrix defined in Section 3. Therefore the rank of
[α | β ] is at most the rank of [Ũ | Ṽ ]. We still need to show that the rank of
[Ũ | Ṽ ] is at most 2R (at most 6). According to the definition of ũfp and ṽfp:[

ũfp

ṽfp

]
2×1

= Af
T
2×2

[
ufp

vfp

]
2×1

= Af
T
2×2

[
mT

f

nT
f

]
2×R

sp
R×1

.

Let Af =
[

af1 af2
af3 af4

]
2×2

, then

[
Ũ
Ṽ

]
2F ×P

=



a11 0 a13 0
. . . . . .

0 aF1 0 aF3
a12 0 a14 0

. . . . . .
0 aF2 0 aF4


2F ×2F

[
Mu

Mv

]
2F ×R

SR×P .

This implies that the rank of
[

Ũ
Ṽ

]
is at most R, and therefore the rank of [Ũ | Ṽ ]

is at most 2R. Therefore, the rank of [α | β ] is at most 2R even in the case of
“affine-deformed” inverse covariance matrices.

5.1 The Generalized Factorization Algorithm

The factorization algorithm summarized in Section 4.1 can be easily generalized
to handle the case of affine-deformed directional uncertainty. Given matrices
{Af | f = 1 · · ·F} and {Cp | p = 1, · · ·P}, such that Cfp = AfCp, then the
algorithm is as follows:
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Step 0: For each point p and each frame f compute:[
ũfp

ṽfp

]
2×1

= Af
T
2×2

[
ufp

vfp

]
2×1

.

Steps 1 and 2: Use the same algorithm (Steps 1 and 2) as in Section 4.1 (with
the matrices {Cp | p = 1 · · ·P}, but apply it to the matrix [Ũ | Ṽ ] instead of
[U | V ]. These two steps yield the matrices Ŝ, M̃V , and M̃V , where[

m̃T
f

ñT
f

]
2×R

= Af
T
2×2

[
m̂T

f

n̂T
f

]
2×R

.

Step 3: Recover M̂U and M̂V by solving for all frames f :[
m̂T

f

n̂T
f

]
2×R

= (AT
f )−1

2×2

[
m̃T

f

ñT
f

]
2×R

.

5.2 Choosing the Matrices Af and Cp

Given a collection of inverse covariance matrices, {Qfp | f = 1 · · ·F, p = 1 · · ·P},
Eq. (7) is not guaranteed to hold. However, we will look for the optimal collec-
tion of matrices {Af | f = 1 · · ·F} and {Cp | p = 1 · · ·P} such that the error∑

f,p ‖Cfp − AfCp‖ is minimized (where CfpC
T
fp = Qfp). These matrices {Af}

and {Cp} can then be used in the generalized factorization algorithm of Sec-
tion 5.1.

Let E be a 2F × 2P matrix which contains all the individual 2 × 2 matrices
{Cfp | f = 1 · · ·F, p = 1 · · ·P}:

E =

 C11 · · · C1P

... · · · ...
CF1 · · · CFP


2F ×2P

.

When all the Cfp’s do satisfy Eq. (7), then the rank of E is 2, and it can be
factored into the following two rank-2 matrices:

E =

 A1
...

AF


2F ×2

[C1 | · · · | CN ]2×2P
.

When the entries of E (the matrices {Cfp}) do not exactly satisfy Eq. (7),
then we recover an optimal set of {Âf} and {Ĉp} (and hence Ĉfp = Âf Ĉp), by
applying SVD to the 2F × 2P matrix E, and setting to zero all but the two
highest singular values. Note that {Af} and {Cp} are determined only up to a
global 2 × 2 affine transformation.

6 Experimental Results

This section describes our experimental evaluation of the covariance weighted
factorization algorithm described in this paper. In particular, we demonstrate
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two key properties of this algorithm: (i) that its factorization of multi-frame posi-
tion data into shape and motion is accurate regardless of the degree of ellipticity
in the uncertainty of the data – i.e., whether the data consists of “corner-like”
points, “line-like” points (i.e., points that lie on linear image structures), or
both, and (ii) that in particular, the shape recovery is completely unhampered
even when the positional uncertainty of a feature point along one direction is
very large (even infinite, such as in the direction of pure normal flow). We also
contrast its performance with two “bench-marks” – regular SVD (with no un-
certainty taken into account; see Section 2.1) and scalar-weighted SVD, which
allows a scalar uncertainty (see Section 2.2). We performed experiments with
synthetically generated data, in order to obtain a quantitative comparison of
the different methods against ground truth under varying conditions.

In our experiments, we randomly generated 3D points and affine motion
matrices to create ground-truth positional data of multiple features in multiple
frames. We then added elliptic Gaussian noise to this data. We varied the ellip-
ticity of the noise to go gradually from being fully circular to highly elliptic, up
to the extreme case when the uncertainty at each point is infinite in one of the
directions.

Specifically, we varied the shape of the uncertainty ellipse by varying the
parameter rλ =

√
λmax/λmin, where λmax and λmin correspond to the major

and minor axes of the uncertainty ellipse (these are the eigenvalues of the covari-
ance matrix of the noise in feature positions). In the first set of experiments, the
same value rλ was used for all the points for a given run of the experiment. The
orientation of the ellipse for each point was chosen independently at random.
In addition, we included a set of trials in which λmin = 0 (rλ = ∞) for all the
points. This corresponds to the case when only “normal flow” information is
available (i.e., infinite uncertainty along the tangential direction).

We ran 20 trials for each setting of the parameter rλ. For each trial of our
experiment, we randomly created a cloud of 100 3D-points, with uniformly
distributed coordinates. This defined the ground-truth shape matrix S. We ran-
domly created 20 affine motion matrices, which together define the ground-truth
motion matrix M . The affine motion matrices were used to project each of the
100 points into the different views, to generate the noiseless feature positions.

For each trial run of the experiment, for each point in our input dataset, we
randomly generated image positional noise εfp with directional uncertainty as
specified above. The noise in the direction of λmax (the least uncertain direction)
varied between 1% and 2% of the feature positions, whereas the noise in the
direction of λmin (the most uncertain direction), varied between 1% and 30%
of the feature positions. This noise vector was added to the true position vector
(ufpvfp)T to create the noisy input matrices U and V .

The noisy input data was then fed to three algorithm: the covariance-weighted
factorization algorithm described in this paper, the regular SVD algorithm, and
the scalar-weighted SVD algorithm, for which the scalar-weight at each point
was chosen to be equal to

√
λmax ∗ λmin (which is equivalent to taking the de-

terminant of the matrix Cfp at each point). Each algorithm outputs a shape
matrix Ŝ and a motion matrix M̂ . These matrices were then compared against
the ground-truth matrices S and M : eS = ||S−ŜN ||

||S|| eM = ||M−M̂N ||
||M ||

where ŜN and M̂N are Ŝ and M̂ after transforming them to be in the same
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Fig. 2. Plots of error in motion and shape w.r.t. ground truth for all three algorithms
(Covariance-weighted SVD, scalar-weighted SVD, regular SVD). (a,b) Plots for the case
when all points have the similar elliptical uncertainty, which is gradually increased (a
= motion error, b = shape error). (c,d) Plots for the case when half of the points have
fixed circular uncertainty, and the other half have varying elliptical uncertainty (c =
motion error, d = shape error). The displayed shape error in this case is the computed
error for the group of elliptic points (the “bad” points).

coordinate system as S and M . These errors were then averaged over the 20
trials for each setting of the parameter rλ.

Fig. 2.a and 2.b display the errors in the recovered motion and shape for
all three algorithms as a function of the degree of ellipticity in the uncertainty
rλ =

√
λmax/λmin. In this particular case, the behavior of regular SVD and

scalar-weighted SVD is very similar, because all points within a single trial (for
a particular finite rλ), have the same confidence (i.e., the same scalar-weight).
Note how the error in the recovered shape and motion increases rapidly for the
regular SVD and for the scalar-weighted SVD, while the covariance-weighted
SVD consistently retains very high accuracy (i.e., very small error) in the re-
covered shape and motion. The error is kept low and uniform even when the
elliptical uncertainty is infinite (rλ = ∞; i.e., when only normal-flow informa-
tion is available). This point is out of the displayed range of this graph, but is
visually displayed (for a similar experiment) in Fig. 3.

In the second set of experiments, we divided the input set of points into two
equal subsets of points. For one subset, we maintained a circular uncertainty
through all the runs (i.e., for those points rλ = 1) , while for the other sub-
set we gradually varied the shape of the ellipse in the same manner as in the
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previous experiment above (i.e., for those points rλ is varied from 1 to ∞). In
this case, the quality of the reconstruction motion for the scalar-weighted SVD
showed comparable results (although still inferior) to the covariance-weighted
SVD (see Fig. 2.c), and significantly better results than the regular SVD. The
reason for this behavior is that “good” points (with rλ = 1) are weighted highly
in the scalar-weighted SVD (as opposed to the regular SVD, where all points
are weighted equally). However, while the recovered shape of the circularly sym-
metric (“good”) points is quite accurate and degrades gracefully with noise, the
error in shape for the “bad” elliptical points (points with large rλ) increases ra-
pidly with the increase of rλ, both in the scalar-weighted SVD and in the regular
SVD. The error in shape for this group of points (i.e., half of the total number
of points) is shown in Fig. 2.d . Note how, in contrast, the covariance-weighted
SVD maintains high quality of reconstruction both in the motion and in shape.

In order to visualize the results (i.e., visually compare the shape reconstruc-
ted by the different algorithms for different types of noise), we repeated these
experiments, but this time instead of applying it to a random shape, we applied
it to a well defined shape – a cube. We used randomly generated affine motion
matrices to determine the positions of 726 cube points in 20 different views, then
corrupted them with random noise as before. Sample displays of the reconstruc-
ted cube by covariance-weighted algorithm vs. the regular SVD algorithm are
shown in Fig. 3 for three interesting cases: case of circular Gaussian noise rλ = 1
for all the points (Figs. 3.a and 3.d), case of elliptic Gaussian noise with rλ = 20
(Figs. 3.b and 3.e), and the case of pure “normal flow”, when λmin = 0 (rλ = ∞)
(Figs. 3.c and 3.f). (For visibility sake, only 3 sides of the cube are displayed).
The covariance-weighted SVD (top row) consistently maintains high accuracy of
shape recovery, even in the case of pure normal-flow. The shape reconstruction
obtained by regular SVD (bottom row), on the other hand, degrades severely
with the increase in the degree of elliptical uncertainty. Scalar-weighted SVD
reconstruction was not added here, because when all the points are equally re-
liable, then scalar-weighted SVD coincides with regular-SVD (see Fig. 2.b), yet
it is not defined for the case of infinite uncertainty (because then all the weights
are equal to zero).

7 Conclusion

In this paper we have introduced a new algorithm for performing covariance-
weighted factorization of multiframe correspondence data into shape and mo-
tion. Unlike the regular SVD algorithms which minimize the Frobenius norm
error in the data, or the scalar-weighted SVD which minimizes a scalar-weighted
version of that norm, our algorithm minimizes the covariance weighted error
(or the Mahalanobis distance). This is the proper measure to minimize when
the uncertainty in feature position is directional. Our algorithm transforms the
raw input data into a covariance-weighted data space, and applies SVD in this
transformed data space, where the Frobenius norm now minimizes a meaning-
ful objective function. This SVD step projects the covariance-weighted data to
a 2R-dimensional subspace. We complete the process with an additional linear
estimation step to recover the rank R shape and motion estimates.

A fundamental advantage of our algorithm is that it can handle input data
with any level of ellipticity in the directional uncertainty – i.e., from purely
circular uncertainty to highly elliptical uncertainty, even including the case of
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Fig. 3. Reconstructed shape of the cube by the Covariance-weighted SVD (top row)
vs. the regular SVD (bottom row). For visibility sake, only 3 sides of the cube are
displayed. (a,d) case of circularly symmetric noise. (b,e) case of elliptical noise with
ratio rλ = 20. (c,f) case of pure “normal flow” (only line-like features) rλ = ∞. Note
that the quality of shape reconstruction of the covariance weighted factorization method
does not degrade with the increase in the degree of ellipticity, while in the case of regular
SVD, it degrades rapidly.

points along lines where the uncertainty along the line direction is infinite. It can
also simultaneously use data which contains points with different levels of direc-
tional uncertainty. We empirically show that our algorithm recovers shape and
motion accurately, even when the more conventional SVD algorithms perform
poorly. However, our algorithm cannot handle arbitrary changes in the uncer-
tainty of a single feature over multiple frames (views). It can only account for
frame dependent 2D affine deformations in the covariance matrices.
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