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Abstract. This paper presents a new technique for the perception and
recognition of activities using statistical descriptions of their spatio-
temporal properties. A set of motion energy receptive fields is designed
in order to sample the power spectrum of a moving texture. Their struc-
ture relates to the spatio-temporal energy models of Adelson and Bergen
where measures of local visual motion information are extracted by com-
paring the outputs of a triad of Gabor energy filters. Then the probabi-
lity density function required for Bayes rule is estimated for each class
of activity by computing multi-dimensional histograms from the outputs
from the set of receptive fields. The perception of activities is achieved
according to Bayes rule. The result at each instant of time is the map of
the conditional probabilities that each pixel belongs to each one of the
activities of the training set. Since activities are perceived over a short
integration time, a temporal analysis of outputs is done using Hidden
Markov Models.

The approach is validated with experiments in the perception and re-
cognition of activities of people walking in visual surveillance scenari.
The presented work is in progress and preliminary results are encou-
raging, since recognition is robust to variations in illumination conditi-
ons, to partial occlusions and to changes in texture. It is shown that it
constitute a powerful early vision tool for human behaviors analysis for
smart-environnements.

1 Introduction

The use of computer vision for recognition of activities has many potential ap-
plications in man-machine interaction, inter-personal communication and visual
surveillance. Considering several classes of body actions, the machine would be
able to react to some command gestures. Such techniques support applications
such as video-conferencing, tele-teaching and virtual reality environments, where
the user is not confined to the desktop but is able to move around freely. The
aim of the research described in this paper is the characterization for recognition
of human actions such as gestures, or full body movements.

Analyzing the motion of deformable objects from image sequences is a chal-
lenging problem for computer vision. Different approaches have been proposed
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for this task. With the exception of algorithms whose aim is to determine the 3D
motion of objects, two trends emerge: the techniques using 2D geometric model
of the objects, and appearance based methods.

In the case of human activity analysis a central problem results from the fact
that the human body consists of body parts linked to each other. A possible ap-
proach is to model the articulated structure of the human body. For example, in
the system Pfinder [WADP96] the human body is modeled as a connected set of
blobs, each blob having a spatial and color distribution. An other example is the
Cardboard person model of Ju, Black and Yacoob [YB98], where human limbs
are represented as a set of connected planar patches. Some of these techniques
using human body models assumes that a two-dimensional reconstruction prece-
des the recognition of action. In either case, the methods require algorithms with
relatively high computational costs whose robustness and stability are difficult
to analyze.

An alternative to geometric and kinematic modeling is to employ an image
based description that captures the appearance of the motion. Davis and Bobick
[BD96] have defined a representation of action in terms of Motion History Image
(MHI). A MHI is a scalar-valued image where intensity is a function of recency
of motion. An appearance-based technique is used to match temporal templates,
computing statistical descriptions of MHI with Hu moments. The Motion History
Image acts as a local low pass temporal filter, and the distribution over space of
the filter output is used for recognition. The MHI of Davis and Bobick is based
on local motion appearance. In this case, appearance of motion is defined as the
temporal memory of motion occurrences, but no grey level information is used.

Another alternative is the use of object appearance based on contour ana-
lysis or active contours. Such an approach has been used by Cootes and al. in
[CTL93| where flexible shape templates are fitted to data according to a sta-
tistical model of grey level information around model points. In a more recent
work Active Appearance Model (A.A.M.) are used, modeling the object shape
and gray level appearance. Baumberg and Hogg [BH95] use a Point Distribution
Models of the shapes of walking pedestrians. The main characteristics of the
body shape deformations are captured by a Principal Component Analysis of
these point sets. This approach is robust to occlusion, but it requires a backgro-
und segmentation to allow the extraction of the boundary of the pedestrian.

The approach described in this paper is related to the MHI of Davis and
Bobick, as a local appearance based method. It is influenced by the work of
Murase and Nayar [MN95], where the set of appearances of objects is expressed
as a trajectory in a principal component space. It is also inspired by Black and
Jepson [B.J96] who extended a global P.C.A. approach to track articulated ob-
ject in a principal component space. All of these approaches derived a space by
performing principal component analysis (P.C.A.) on an entire image. Such glo-
bal approaches are sensitive to partial occlusions as well as to the intensity and
shape of background regions. These problems can be avoided by using methods
based on local appearance [Sch97JCC98|. In such an approach, the appearance
of neighborhoods is described with receptive fields. Schiele [Sch97] and Colin
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de Verdiére [CCO8| define an orthonormal space for expressing local appearance.
This space is based on Gaussian derivatives or it is computed via P.C.A. over the
set of windows of all the images of the training data. In this space of receptive
fields an image is modeled as a manifold. Colin de Verdiere achieved the reco-
gnition by measuring distance between the vector of receptive fields responses
of an observed window and the surface points from a discrete sampling of the
manifold. Whereas Schiele has developed a statistical approach using multidi-
mensional histograms of the responses of vectors of receptive fields.

In this paper the appearance of human motion is described using the ap-
pearance of small spatio-temporal neighborhoods over a set of sequences, and
a statistic approach is used to achieved recognition of activity patterns. The
next section of this paper deals with the approach which is used for describing
spatio-temporal structures. A synopsis of the local visual motion information is
obtained by signal decomposition onto a set of oriented motion energy receptive
fields. Section Bl provides the description of a probabilistic framework for analy-
zing the receptive fields responses. Multi-dimensional histograms are computed
to characterize each class of activity. Section [ shows results from the percep-
tion of human activities in the context of computer assisted visual surveillance.
Since humans are perceived as deformable moving objects, the challenge is to
discriminate different classes of human activities. The output of the probabili-
stic sensor are maps of the probability that each pixel belong to each one of the
trained classes of activities. Recognition of activities elements is done by selec-
ting best local probabilities. Since the temporal aperture window of description
is relatively small compared to the temporal duration of activity, Hidden Mar-
kov Models (HMM) are employed to recognize the complete activity In a sense,
the HMM provides context. That is the purpose of section [[. The last section
presents discussions and perspectives.

2 Describing Spatio-Temporal Structures

Adelson and Bergen [ABOI] define the appearance space of images for a given
scene as a 7 dimensional local function, whose dimensions are viewing position,
time instant, position in the image, and wavelength. They have given this func-
tion the name “plenoptic function” from the Latin roots plenus, full, and opticus,
to see. Adelson and Bergen propose to detect local changes along one or more
plenoptic dimensions and to represent the structure of the visual information in
a table of the detectors responses, comparing them two by two. The two dimen-
sions of the table are simple visual detectors such as derivatives and the table
contents are possible visual elements. Adelson and Bergen use low order derivati-
ves operators as 2-D receptive fields to analyze the plenoptic function. However,
the technique which they describe is restricted to derivatives of order one and
two, and does not include measurements involving derivatives along three or
more dimensions of the plenoptic function. It appears that the authors did not
follow up on their idea and that little or no experimental work was published on
this approach.
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Nevertheless the plenoptic function provides a powerful formalism for the
measurement of specific local structures, including spatio-temporal patterns.
This paper employs with such framework to describe activity patterns. Activity
patterns are characterized by describing their local visual information using a set
of spatio-temporal receptive fields, and by statistically modeling the descriptors
responses. The result is a software sensor able to discriminate different patterns
of activities.

2.1 Using Receptive Fields

The notion of receptive field in vision is stemed from studies on the description
of cortex visual cells. Those studies attempt to understand the biological visual
system to reach its performance for extracting local information measures.

Classically receptive fields structure relates from signal decomposition tech-
niques. The two most widely used approaches for signal decomposition are the
Taylor expansion and the Fourier transform The Taylor series expansion gives
a local signal description in the spatial dimension, while the Fourier transform
provides a description in the spectral domain. These two methods for signal
decomposition correspond respectively to the projection of the signal onto a ba-
sis of functions with amplitude modulation and onto a basis of functions which
are frequency modulated. Other local decomposition bases are also possible. A
decomposition basis is generally chosen to suit the problem to be solved. For
example, a frequency-based analysis is more suitable for texture analysis, or a
fractal-based description for natural scene analysis. Independently from the basis
choice, the description is done over an estimation support relative to the loca-
lity of the analysis. The next section formulates the derivative operator of the
Taylor expansion and the spectral operator of the Fourier transform as generic
operators.

2.2 Generic Neighborhood Operators

The concept of linear neighborhood operators was redefined by Koenderink and
Doorn [Kv92] as generic neighborhood operators. Typically operators are re-
quired at different scales corresponding to different sizes of estimation support.
Authors have motivated their method by rewriting neighborhood operators as
the product of an aperture function, A (p,o), and a scale equivariant function,
¢ (p/o):

G(p) = A(p,0)¢(p/o) (1)

The aperture function takes a local estimation at location p of the plenoptic
function which is a weighted average over a support proportional to its scale
parameter, o. An aperture function is the Gaussian kernel as it satisfies the
diffusion equation:
_1ipp
Ap,0) = 2)
P,0) = ——=—<
’ (V2moP)
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The function ¢ (p/o) is a specific point operator relative to the decomposition
basis. In the case of the Taylor expansion ¢ (p/c) is the n*" Hermite polynomials:

¢(p/o) = (=1)" He, (p/o) 3)

In the case of the Fourier series ¢ (p/o) are the complex frequency modulation
functions tuned to selected frequencies, v:

¢ (p/o) = e*mvPle (4)

Within the context of spatial, respectively spectral, signal decomposition
the generic neighborhood operators are scale normalized Gaussian derivatives
[Lin98], and respectively scale normalized Gabor filters.

2.3 Motion Energy Receptive Fields

The perception of activities involves extraction of local visual motion informa-
tion. Techniques which reconstruct explicitly the optical flow are often complex
and specific to the analyzed scene all the more so since that there are not well
suited for describing the motion of moving deformable objects. The extraction of
low level motion information involves the use of a decomposition basis sensitive
to motion like signal decomposition using combination of Gaussian derivatives
or Gabor filters.

A measure of motion information rich enough to describe activities is ea-
sily obtained in the spectral domain, since an energy measure depends on both
the velocity and the contrast of the input signal at a given spatio-temporal fre-
quency. Consider a space-time image, I (p), and its Fourier Transform, I (q),
with p = (z,y,t) and ¢ = (u,v,w). Let r, and r, be respectively the speed
of horizontal and vertical motion. The Fourier transform of the moving image,
I(x—rgt,y—ryt,t),is I (u,v,w 4+ ryu + ryv). This means that spatial frequen-
cies are not changed, but all the temporal frequencies are shifted by minus the
product of the speed and the spatial frequencies. A set of Gabor based motion
energy receptive fields is used to sample the power spectrum of the moving tex-
ture. Their structure relates to the spatio-temporal energy models of Adelson
and Bergen [AB91], and Heeler [Hee88|. Motion energy measures are computed
from the sum of the square of even (Geyer) and odd-symmetric (Goqq) oriented
spatio-temporal Gabor filters which have been tuned for the same orientation,
thus in order to be phase independent:

H (p) = (I (p) * Geven)” + (I (D) * Goaa) (5)

Adelson and Bergen [AB85] suggested that these energy outputs should be com-
bined in opponent fashion, subtracting the output of a mechanism tuned for
leftward motion from one tuned for rightward motion. The output of such filters
depends on both the velocity and the local spatial-content of the input signal,
I (p). The extraction of velocity information within a spatial frequency band
involves normalizing the energy of the filter outputs according to the response
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of a static energy filter tuned to the same spatial orientation and null temporal
orientation:
Hp; - H
w (p) _ Right (p) : Left (p) (6)
HStatlc (p)

A triad of rightward, leftward and static Gabor energy filters is shown in part

Fig. 1. Bandwidths of spatio-temporal receptive field triads. Figure (a) represents re-
sponses for rightward (R), leftward (L) and static (S) units for a given spatial band
in the frequency domain (u,w) where u are the spatial frequencies and w the temporal
ones. Figure (b) is a map of the spatial bandwidths of a set of 12 motion energy recep-
tive fields in the spatial frequency domain (u,v). There is 4 different orientations and
3 different scales. And figure (c) is a 3D view of a set 4 motion energy receptive fields
corresponding to 4 orientations and 1 scale.

(a) of figure[dl. Such a spatio-temporal energy model allows the measurement of
low level visual motion information. A set of 12 motion energy receptive fields
are used, corresponding to 4 spatial orientations and 3 ranges of motions. This
set of motion energy receptive fields allows the description of the spatio-temporal
appearance of activity.

Note that the optical flow is not reconstructed explicitly but a vector of
measures, w (p), is obtained, where the elements w; (p) of w (p) are motion
energy measures tuned for different sub-bands. The combination of the 12 mo-
tion energy receptive fields can lead to a motion estimate. Heeger [Hee88| use
a numerical optimization procedure to find the plane that best accounted for
the measurements (the error criterion is least-squares regression on the filter
energies). Spinei and al. [SPH98] make the response of a triad of Gabor energy
filters w (p) proportional to motion using a non-linear combination of the res-
ponse of the Gabor filters. Than he merges the estimated motion components
corresponding to different orientations and scales. But we insist on that optical
flow estimation is not the purpose of the proposed approach since we are motiva-
ted by signal decomposition. Low level motion information is extracted using a
set of motion energy receptive fields based on Gabor energy filters. The outputs
from the set of receptive fields provide a vector of measurements, w (p) giving
a synopsis of the local visual motion information.
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3 Probabilistic Analysis of Feature Space

The outputs from the set of motion energy receptive fields provide a vector of
measurements, w (p), at each pixel. The joint statistics of these vectors allow the
probabilistic perception of activity. A multi-dimensional histogram is computed
from the outputs of the filter bank for each class of activity. These histograms can
be seen as a form of activity signature and provide an estimate of the probability
density function for use with Bayes rule.

3.1 Measurements Probability Density

For each class of activity ag, a multi-dimensional histogram of vectors of mea-
surements is computed. The histogram is an estimate of the density probability
p (wlay) of action ag. The subspace of receptive fields presents a large number
of dimensions, which is 12D in the case of the basis of motion energy receptive
fields defined previously. The main problem is the computation of an histogram
over such a large space.

An extension of the quad-tree technique is used to represent the histograms.
Let be N the number of dimensions (e.d. number of motion energy receptive
fields). A dichotomic tree is designed where each node expects 2V potential
branches corresponding to filled cells. Cells are sub-divided by 2 along each
dimension. Among the 2V resulting new cells, the filled cells are sub-divided
themselves until the final resolution.

This algorithm allows the computation and the storage of high dimensional
histograms which are quite sparse.

3.2 Probabilistic Perception of Activities

The probabilistic perception of action, ay, is achieved considering the vector
of local measures, w (p), whose elements 7 are motion energy measures, w; (p),
tuned for different sub-bands. The probability, p (ax|w), that the pixel p belongs
to action ay according to w (p) is computed using Bayes rule:

p(wlag) p (ak) . p(wlay) p(ax) (7)

p(w) - Y p(wla) p(ar)

where p(ay) is the a priori probability of action ag, p (w) is the a priori pro-
bability of the vector of local measures w, and p (w|ax) the probability density
of action ag. The probability p (ax) of action aj is estimated according to the
context. But without a priori knowledge, it is fixed to the maximum.

The probability, p (ax|w), allows only a local decision at location p = (x, y, t).
The final result at a given time (¢) is the map of the conditional probabilities
that each pixel belongs to an activity of the training set based on its space-time
neighborhood appearance.

p (ag|lw) =
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4 Application to the Perception of Human Activities

The vast amount of raw data generated by digital video units and their poor
capacities to filter out useless information lead us to develop a framework for
highlighting specific relevant events according to scene activities. Some exam-
ples of applications are assisted video-surveillance helping users concentrate their
attention, or intelligent office environments understanding and reacting to the
configuration of the scene. In this context the probabilistic framework was trai-
ned for the perception of human activities of an office fitted out with a camera
for visual surveillance.

The wide angle camera allows the surveillance of the whole office. The analy-
zed activities are “coming in”, “going out”, “sit down”, “wake up”, “dead” (when
somebody fall down), “first left”, “first right”, “second left”, “second right” and
“turn left”, “turn right”. Those actions can take place anywhere in the scene
and under any illumination conditions. A view of the scene and an example of
the considered activities is shown in figure

Fig. 2. A view of the large visual angle camera. Examples of the analyzed activities are
shown. Images are 192 x 144 pizels a per pizels and the acquisition rate is 10 Hz.

4.1 Assumptions and Parameters

This section deals with the conditions of application to evaluate the probabilistic
sensor ability to perceive the class of activities defined previously.

Global conditions: It is assumed that the camera is fixed, therefore there is no
global motion to compensate. The changes in the scene illumination are uncon-
trolled and the static objects can move location. Images are 192 x 144 pixels a
per pixels and the acquisition rate is 10 Hz.

Receptive fields parameters: All of the results presented in this paper were

produced with a spatial frequency tuning for each Gabor filter as y/u3 +v2 = 1

cycles per pixel and a standard spatial deviation of o, = 0, = 1.49 corresponding

to a bandwidth of 0.25. The 4 spatial orientations are 0, 7, 5 and 3%. Additional
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scales are obtained using families of filters, which are spaced one octave apart in
spatial frequency and with a standard spatial deviation which is twice largest.
The sub-band-filters are tuned for the same temporal frequency wy = + cycles

1
per frame and the same temporal scale o; = 1.49.

Histograms computation: The histograms are computed by quantifying the re-
ceptive fields responses from 1 to 8 bits. Each class of activity is done between
5 times to 18 times corresponding to 5 people acting anywhere in the scene and
depending from the activity rate in a scenario. Each sequence of an activity is
between 11 to 44 frames long. The left hand side of table[Il resumes information
for each class of activity histograms computation.

Table 1. Informations on the sequences of each class of activity. The left hand part of
the table deals with sequences used for histogram computation and right hand part of
the table deals with test sequences.

class number of number of frames|total number|[number of number of frames|total number
of activity|sequences per sequence of frames sequences per sequence of frames
in 5 26-35 151 18 21-26 423
out 5 30-36 166 18 18-26 394
sit 18 14-27 378 24 13-28 474
wake 18 13-25 320 36 11-33 759
dead 5 20-23 105 12 10-14 143
leftl 4 31-41 146 15 10-35 370
rightl 4 26-41 140 12 21-32 320
left2 4 29-44 143 28 6-32 513
right2 4 25-40 132 36 6-34 785
turn right 6 11-18 93 15 7-28 182
turn left 6 12-19 82 25 6-33 299

Perception: The perception of activities according to Bayes rule (equation [7))
is weighted by the a priori probability p (ax) of action ai. Without a priori
knowledge the probability p (ax) is fixed to the maximum.

Test sequences: A set of test sequences are used to evaluate the sensitivity of
the probabilistic sensor. Those test sequences are different from ones used to
compute the multi-dimensional histograms. Information on each activity test
sequences are summarize in the right hand side of table [II

4.2 Results

The method presented in this paper is a sensor able to perceive elements of trai-
ned class of activities. Since the receptive fields integrate temporal information
over 9 frames and each of the sequences of activities are typically 20 frames
long, the sensor outputs a sequence of elements, rather than a single response
element for each trained activity. So it is difficult to qualify its sensitivity and its
robustness to variations. Regardless, an example of a probabilistic perception of
the activity “second left” is shown in figure Bl The framework output is a map
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RIGHT1

RIGHT2 TURN_RIGHT TURN_LEFT

Fig. 3. Ezamples of resulting maps of the local probabilities p (ax|w). The original
image is in the upper left corner. Maps of the probability that each pixel belongs to one
of the trained class of activity are shown. White pizels correspond to high probabilities
and dark pizels to low probabilities. The occurring activity “second left” which has been
recognized is highlighted in red.

of the local probabilities p (ax|w) that each pixel belongs to one of the trained
class of activities.

To evaluate the sensor ability to perceive different classes of activity a glo-
bal decision rule is first designed with input the map of the local probabilities.
Then the recognition rate is evaluated in function of the number of bits used to
estimate the density probability of each class of activity, and in function of the
number of receptive fields.

Decision rule: A global decision is taken by selecting the largest, p (ax|w) among
the K classes. The class of activity which has the largest number of largest proba-
bilities is selected for recognition. An example of activity recognition using such
a rule is shown in figure Bl where the class of activity “second left” is highlighted
in red.

Histograms quantification: The subspace of receptive fields responses presents
a large number of dimensions and histograms are quite sparse. To bring to the
fore the sparseness of histograms, the recognition rates are studied as a function
of the quantification rate of the histograms and as a function of the number of
dimensions in the subspace of receptive fields. The graphs of figure @ deal with the
evolution of recognition rates as a function of the number of bits per dimensions
used to represent histograms. The left hand side of the figure [ summarizes
results in a subspace using only one range of Gabor filters (corresponding to one
standard spatial deviation o = 1.49). In this case the number of dimensions is
4, corresponding to the 4 orientations of the receptive fields. Over an histogram
quantification rate of 5 bits the histograms cells are empty and Bases rule is
unusable. But below a quantification rate of 4 bits histograms overlaps and
activities are confused. The right hand side of figure [4 relates result with the
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three scale ranges of filters, corresponding to a subspace of receptive fields of 12
dimensions. The graphs show that histograms are too sparse and a quantification
rate of 2 or 3 bits is the limit. It appears clearly that the training set of sequences
of activities is not large enough for such a large appearance space.

08

Tl TURN_RIGHT »—
~ <. TURN_LEFT -4~

06

04

2 3 4 5 6
histograms quantification rate (in bits)

4 5 6
histograms quantification rate (in bits)

Fig. 4. Recognition rates per class of activity as a function of the quantification rate
of histograms (in bits). The left hand side figure deals with results using a 4D subspace
and the right hand side figure with results for a 12D subspace.

Recognition rates: Recognition rates are compared using histograms computed
over one range of receptive fields (4D subspace) and coded with 4 bits per di-
mension, and with histograms computed over a 12D subspace and coded with 2
bits per dimension. Table 2lsummarizes recognition rates for each class of activi-
ties. Notes that activities “turn left” and “turn right” are not recognized. The

Table 2. Recognition rates for each class of activity of the test sequences. The first
row deals with results using a 4D subspace with histograms computed with 4 bits per
dimension. The second row show results for a 12D subspace with histograms computed
with 2 bits per dimension. The activities “turn left” and “turn right” are not recognized.

% in |out| sit |wake|dead|leftl|rightl|left2|right2
4D - 4 bits |11.1]| 5.4 |57.6| 56.5 | 5.7 |64.5| 92.5 |58.5| 82.1
12D - 2 bits|35.0{12.2|64.5| 68.5 | 10.0 [65.9 | 90.9 |65.5| 78.7

activities “in”, “out” and “dead” are not well perceived.

There are two reasons why those activities can not be discriminated. The
first reason is that the acquisition rate is only 10 Hz, and it isn’t enough to
catch the motion information of short time activities. The second reason comes
from the decision rule which is not rich enough to take into account the temporal



498 O. Chomat, J. Martin, and J.L. Crowley

Table 3. Confusion matriz of class of activities for the test sequences. The first left
column deals with input activities an the first upper row are outputs. Each cell is the
number of output labels for the corresponding input. The last right column is the total
number of inputs per class of activity.

in |out| sit [wake|dead |leftl|rightl |left2|right2|turn right|turn left||total

in 148| 22 8 4 0 43 39 85 8 0 0 423
out 28 (48 | 3 25 0 71 107 8 27 0 2 394
sit 9 2 [306| 29 2 30 46 32 13 1 1 474
wake 23 | 1 22 | 520 2 66 62 11 41 0 1 759
dead 3 0 88 4 14 0 8 24 0 0 0 143
left1l 1 1 1 1 0 244 9 53 60 0 0 370
rightl 1 0 5 7 0 0 291 16 0 0 0 320
left2 16 1 120 0 1 8 31 336 0 0 0 513
right2 0 11 1 103 0 40 9 0 618 0 0 785
turn right| 4 1 25 21 0 44 25 40 21 0 1 182
turn left | 22 | 19 | 26 36 1 66 42 27 51 0 0 299

complexity of activities. Table Bldeals with the confusion matrix of activities. It
appears that the activity “in”is composed of “in” and “right1”, the activity “out”
is composed of “out”, “left1” and “right1”, and the activity “dead” is composed
of “sit” and “left2”. And so on. The figure B]shows examples of sequences of the

IN
LEFT1
our
RIGHT1
LEFT2
SIT
WAKE
DEAD

(DEAD) [
) I —
(WAKE) I ——

(srr) I

\]

Fig. 5. Examples of sequences of the probabilistic activity sensor outputs. The inputs
are respectively sequences of the activities “dead”, “coming in”, “wake up” and “sit
down”.

probabilistic activity sensor outputs for the inputs activities “dead”, “coming
m”, “wake up” and “sit down”. For example the activity “sit down” is perceive
with two mains components which are effectively the activity element “sit down”
followed by the activity element “first right”. This time decomposition is natural
since the end of the action sit down is a pure horizontal translation corresponding

to the phase when the person leans back onto the chair back.

4.3 Conclusion

The probabilistic sensor allows the discrimination of several class of complex
elements of activities. Results are encouraging and make clear several points:

— A large subspace of receptive fields is necessary to perceive and discriminate
complex activities. Only one range of receptive fields corresponding to a 4D
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subspace is not enough to catch signal disparity. Three ranges of receptive
fields (12D subspace) have given interesting recognition rates.

— A difficulty is to make up a training basis of classes of activities large enough
to allow multi-dimensional histograms computation. It has been shown that
histograms computed over such a large subspace (12D) are quite sparse. But
sparseness can be limited by enlarging the training set, and results can be
improved.

— Improvements can be obtained by increasing the acquisition rate, in order to
catch finer temporal motion information, like opening the door in the case
of the activity “coming in”.

The main difficulty is still in the definition of a recognition framework allo-
wing the evaluation of the robustness of the activity sensor, and to evaluate its
sensivity to the histograms computation and to the receptive fields selectivity.
The decision rule used previously is not rich enough to take into account that
activities elements are complex. The sensor output is a sequence of the activity
elements detected over a temporal window which is short relatively to the dura-
tion of the input activity. A good cue is to use temporal sequences of decisions
(see figure [l as input of a more global decision scheme. The next section define
a complex global decision scheme based on Hidden Markov Models.

5 A Hidden Markov Model Based Recognition Scheme

The output of the probabilistic sensor is the temporal decomposition of complex
activities into the most probable class of short activities elements. Since this
temporal decomposition is difficult to predict for a given class of activity the
use of Hidden Markov Model seems appropriate for recognition. Hidden Markov
Model, HMM, are doubly stochastic models, because they income an underlying
stochastic process that is not observable. HMMs are appropriate for modeling
and recognizing time-warping dynamic patterns. HMMs have been popularized
in the application area of speech recognition. Recently, HMMs have also been
employed for gesture recognition and activities recognition.

5.1 Discrete Hidden Markov Model

A discrete Hidden Markov Model can be view as a nondeterministic finite au-
tomaton. Each state, s;, is characterized by a transition probability, a;;, (the
transition probability to reach state s; from state s;), an initial state probability
7; and a discrete output probability distribution, b;(Oy), which defines the con-
ditional probability of emitting observation symbol, Oy, from state s;. HMM is
denoted by A = (A, B, ) where A is the transition matrix, A = {a;;};;, B is the
observation probability vector, B = {b;(Og) }ix, and IT is the initial probability
vector, IT = {m;};.

The transition matrix, A, defines the topology of the automation. In the
general case, all values of a;; are defined and the HMM is called ergodic. If A
is band diagonal, HMM is left-right A left-right HMM is appropriate when a
temporal order appear.
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5.2 HMM-Based Activities Recognition Scheme

This section detail the different steps to design our approach for a discrete
HMM-based activities recognition thus using one HMM per class of activity
for classifying.

1. Describing an HMM for each activity:

A HMM is employed to model each activity, a, which is characterized by

Ao = (A, Ba, I1,). Even though values of element in A,, B, and II, will be

estimated in the training process, the structure of matrix, A,, have to be

determined. The structure considers in the same time the topology of the

model (ergodic or left-right) and the number of states. The number of states

can be determined using different methods.

exhaustive (a priori) : testing all possible number of states between one
and an arbitrary selected number and selecting the number which ma-
ximize the probability of recognition.

heuristic (a posteriori) : the number is selected by studying the problem
and the observation sequences.

automatic : the maximization of Bayesian Information Criterion (BIC)
[BCGI8] provides an automatic method to find the number of states.
Given a training sample, S,, for activity a, the criterion is defined as:

BIC(Xa, No) = 108 P(Salday Nuy 6) — 5% log(card(S.)) ()

In the above equation, vy, n, is the number of independent parameters
in the HMM A, composed of N, states and gz@ is an estimator of maximum
likelihood. The equation can be viewed as the difference between a term
measuring the appropriateness of data to the model, and a penalty term
which penalizes models with a great number of independent parameters.
2. Training the HMMs:
For each class of activity (i.e. HMM), the model parameters A\, = (Aq, B,
I1,) are adjusted in order to maximize the likelihood P(S,|A,), the proba-
bility of observing a training sample, S,, given the model parameters, \,.
Baum—Welch’s re-estimation formulas is used to to reestimate model para-
meters to achieve a local maximum.
3. Classifying new activity:
Given an observations sequence of an unknown activity, O, the classification
process estimate the class, a*, such that:

a" = arg max P(X|0) (9)

In many cases, only P(O|)\,) is known. Bayes rule allows computation of
P(X\.|O) = kP(O|)\,) where k is a constant depending of the probability of
each activity. The activities are considered with equal probability, k = %
The Baum’s forward-backward procedure is used to compute efficiently the

probability P(O|)\,).
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HMMs are composed of several parameters: observation sequences, HMMs
topology and number of states. Next paragraphs deal with those parameters and
experimental results useful to select there values.

Sequences of observable symbols The vocabulary used as input to the HMMs are
the different classes of elements of activities from the probabilistic sensor (see
section Hl). But only the activities (composed of several elements of activities)
“sit down”, “wake up”, “first left”, “first right”, “second left” and “second right”
are studied. The reason why is that activities “coming in”, “going out”, “dead”
(as somebody fall down), “turn left” and “turn right” are not considered because
of a large number of confusion (see table[3).

HMMs Topology The nature of the activities and the outputs provided by the
probabilistic sensor (see section Hland table [)) result in a succession of different
elements of activity in a complete activity. This tendency fits with the left—right
topology.

Number of states The number of states can be estimated using methods pre-
sented in section [5:2] The number of states fixed a priori (heuristic method) or
estimated by the Bayesian Information Criterion converges to the same value
which 2 states per activity.

Training sets HMMs are trained with 130 sequences divided in A/ = 11 clas-
ses as shown in table @ The training set is too small to estimate efficiently the
HMM. This set allows to have preliminary results and to estimate the feasibility
of such recognition. If we consider left-right HMMs with two states, the num-
ber of parameters to estimate is 26: 2 for the transition matrix, 2 for the initial
probability vector, 2 x 11 for the observations probability vector (one for each
states). Considering between 10 and 20 example per parameters, for future ex-
periments we will have to compose a training set between 260 and 520 example
per activity.

Table 4. Number of training sequences for each class of activity.

Classes of activity |sit|wake|left! |rightl|left2|right2|| Total
Number of sequences|23| 34 | 12 12 | 22| 27 130

5.3 Recognition of Activities

This section presents preliminary results on the recognition of complete activi-
ties. In this experiment, we have used a cross validation on the training set
presented in section From the 130 sequences, one is extracted for recogni-
tion, all the remaining 129 sequences are used to train the 6 HMMs per activity
to be recognize. Table [bl shows recognition rates.
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Table 5. Recognition rates of activities. A cross validation is used.

Classes of activity sit|wake|left1 |right1 |left2|right2|| Total
Recognition rates (%) 91%| 88%|83%| 92%|82%| 85%| 87%
Number of misclassified activities 2 4 2 1 4 5 18

Table Blshows promising results. We obtain a global recognition rate of 87%,
corresponding to 18 misclassified activities on 130 ones. Those misclassified ac-
tivities are due to the small number of training examples which imply impossi-
bility to compute the probability of some observations sequences or the misclas-
sification.

6 Conclusion and Perspectives

A new approach for activity recognition has been presented. Recognition of ac-
tivity elements is processed statistically according to the conditional probability
that a measure of the local spatio-temporal appearance is occurring for a given
action. Then a temporal regularisation of perceived activity elements is done to
recognize complex activities.

This paper describes work in progress and experimental results are limited
but encouraging. Further experiments will attempt to quantify the limits of the
technique. Also several technical details must be resolved to provide improved
results. On one hand the vector of receptive fields responses is sensitive simul-
taneously to three motion ranges. The space and time scales have been selected
to ensure large bandwidth. Since multi-scale strategies are redundant, a solution
will be to select automatically local scale parameters according to the maxima
over scales of normalized derivatives [Lin98|. On the other hand the framework
presented in this paper is sensor able to perceive activities previously learned.
Enlarging the training basis of each class of activities will certainly improve
results since instabilities comes from the histograms sparseness.

The output of the probabilistic sensor is the temporal decomposition of com-
plex activities (about 20 frames) into the most probable class of short activities
elements (9 frames). Since the temporal aperture window of description is re-
latively small compared to the temporal duration of activity, Hidden Markov
Models are employed to regularize the recognition. In a sense, the H.M.M. pro-
vides context. The temporal sequences of decisions are used as input of H.M.M.
for the recognition of complex activities. It has been shown that some misclas-
sification are due to the lack of training examples. Further experiments using
larger training set will be done soon.

Nevertheless, plugging the perception of activities framework in an intelligent
office environment controlled by a supervisor is highly considered. If the intelli-
gent environment knows where people are in the scene, the a priori probability
of each class of activities could be estimated according to the context (context
cells). Introducing this a priori knowledge into the Bayes rule will improve the
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sensitivity of activities. For example if the tracked person comes in front of a
computer the probability that the action “sit down” occurs is higher than the
“going out” one.

Note that the probabilist framework for the perception of activities runs at
10 Hz on a standard bi-Pentium IIT 600 MHz PC.
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