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Abstract. While providing syntactic flexibility, XML provides little se-
mantic content and so the study of integrity constraints in XML plays
an important role in helping to improve the semantic expressiveness
of XML. Functional dependencies (FDs) and multivalued dependencies
(MVDs) play a fundamental role in relational databases where they pro-
vide semantics for the data and at the same time are the foundation
for database design. Since XML documents are closely coupled with re-
lational databases in that XML documents are typically exported and
imported from relational databases, the study of FDs and MVDs in XML
is of fundamental significance in XML research. In this paper we define
multivalued dependencies in XML (XMVDs). We then propose a nor-
mal form for XML documents in the presence of XMVDs and justify our
normal form by showing that it ensures the elimination of redundancy.

1 Introduction

XML has recently emerged as a standard for data representation and interchange
on the Internet [22,1]. While providing syntactic flexibility, XML provides little
semantic content and as a result several papers have addressed the topic of how
to improve the semantic expressiveness of XML. Among the most important of
these approaches has been that of defining integrity constraints in XML [5]. Sev-
eral different classes of integrity constraints for XML have been defined including
key constraints [5,6], path constraints [8], and inclusion constraints [9] and prop-
erties such as axiomatization and satisfiability have been investigated for these
constraints. However, one topic that has been identified as an open problem in
XML research [22] and which has been little investigated is how to extended
the traditional integrity constraints in relational databases, namely functional
dependencies (FDs) and multivalued dependencies (MVDs), to XML and then
how to develop a normalisation theory for XML. This problem is not of just the-
oretical interest. The theory of normalisation forms the cornerstone of practical
relational database design and the development of a similar theory for XML will
similarly lay the foundation for understanding how to design XML documents.
In addition, the study of FDs and MVDs in XML is important because of the
close connection between XML and relational databases. With current technol-
ogy, the source of XML data is typically a relational database [1] and relational
databases are also normally used to store XML data [13]. Hence, given that FDs
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and MVDs are the most important constraints in relational databases, the study
of these constraints in XML assumes heightened importance over other types of
constraints which are unique to XML [7]. The only papers that have specifically
addressed the problem of FDs in XML are the recent papers [3,19,20]. Before
presenting the contributions of [3,19,20], we briefly outline the approaches to
defining FD satisfaction in incomplete relational databases.

There are two approaches, the first called the weak satisfaction approach and
the other called the strong satisfaction approach [4]. In the weak satisfaction
approach, a relation is defined to weakly satisfy a FD if there exists at least
one completion of the relation, obtained by replacing all occurrences of nulls by
data values, which satisfies the FD. A relation is said to strongly satisfy a FD
if every completion of the relation satisfies the FD. Both approaches have their
advantages and disadvantages (a more complete discussion of this issue can be
found in [19]). The weak satisfaction approach has the advantage of allowing a
high degree of uncertainty to be represented in a database but at the expense
of making maintenance of integrity constraints much more difficult. In contrast,
the strong satisfaction approach restricts the amount of uncertainty that can be
represented in a database but makes the maintenance of integrity constraints
much easier. However, as argued in [11], both approaches have their place in
real world applications and should be viewed as complementary rather than
competing approaches. Also, it is possible to combine the two approaches by
having some FDs in a relation strongly satisfied and others weakly satisfied [10].

The contribution of [3] was, for the first time, to define FDs in XML (what
we call XFDs) and then to define a normal form for an XML document based on
the definition of an XFD. However, there are some difficulties with the definition
of an XFD given in [3]. The most fundamental problem is that although it is
explicitly recognised in the definitions that XML documents have missing infor-
mation, the definitions in [3], while having some elements of the weak instance
approach, are not a strict extension of this approach since there are XFDs that
are violated according to the definition in [3] yet there are completions of the
tree that satisfy the XFDs (see [19] for an example). As a result, it is not clear
that there is any correspondence between weak satisfaction of FDs in incomplete
relations and XFD satisfaction in XML documents as defined in [3].

In [19,20] a different and more straightforward approach was taken to defining
XFDs. The definition in [19,20] is based on extending the strong satisfaction
approach to XML. The definition of an XFD given in [19] was justified formally
by two main results. The first result showed that for a very general class of
mappings from an incomplete relation into a XML document, a relation strongly
satisfies a unary FD (only one attribute on the l.h.s. of the FD) if and only if the
corresponding XML document strongly satisfies the corresponding XFD. The
second result showed that an XML document strongly satisfies an XFD if and
only if every completion of the XML document also satisfies the XFD. The other
contributions in [19] were firstly to define a set of axioms for reasoning about the
implication of XFDs and show that the axioms are sound for arbitrary XFDs.
The final contribution was to define a normal form, based on a modification of
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the one proposed in [3], and prove that it is a necessary and sufficient condition
for the elimination of redundancy in an XML document.

In this paper we extend the work in [19] and investigate the issue of multi-
valued dependencies and normalisation in XML, a topic which to the best of our
knowledge has not been investigated previously. We firstly give a definition of
MVDs in XML (what we call XMVDs) using an extension of the approach used
in [19]. We note that in an allied paper [21], we formally justify the definition
by proving that, for a very general class of mappings from relations to XML, a
relation satisfies a MVD if and only if the corresponding XML document satis-
fies the corresponding XMVD. Thus there is a natural correspondence between
MVDs in relations and XMVDs in XML documents. We then propose a normal
form for XML documents in the presence of XMVDs. We then justify our normal
form by showing that it ensures the elimination of redundancy. Finally, we note
that in contrast to [19], in the present paper we assume that XML documents
do not have missing information and leave the problem of how to extend the
approach to the case of missing information for future research.

The rest of this paper is organised as follows. Section 2 contains some pre-
liminary definitions. Section 3 contains the definition of an XMVD. In Section
4 we define a 4NF for XML and prove that it eliminates redundancy. Finally,
Section 5 contains some concluding comments.

2 Preliminary Definitions

In this section we present some preliminary definitions that we need before defin-
ing XFDs. We model an XML document as a tree as follows.

Definition 1. Assume a countably infinite set E of element labels (tags), a
countable infinite set A of attribute names and a symbol S indicating text. An
XML tree is defined to be T = (V, lab, ele, att, val, vr) where V is a finite set of
nodes in T ; lab is a function from V to E ∪ A ∪ {S}; ele is a partial function
from V to a sequence of V nodes such that for any v ∈ V , if ele(v) is defined
then lab(v) ∈ E; att is a partial function from V × A to V such that for any
v ∈ V and l ∈ A, if att(v, l) = v1 then lab(v) ∈ E and lab(v1) = l; val is a
function such that for any node in v ∈ V, val(v) = v if lab(v) ∈ E and val(v) is
a string if either lab(v) = S or lab(v) ∈ A; vr is a distinguished node in V called
the root of T and we define lab(vr) = root. Since node identifiers are unique, a
consequence of the definition of val is that if v1 ∈ E and v2 ∈ E and v1 �= v2
then val(v1) �= val(v2). We also extend the definition of val to sets of nodes and
if V1 ⊆ V , then val(V1) is the set defined by val(V1) = {val(v)|v ∈ V1}.

For any v ∈ V , if ele(v) is defined then the nodes in ele(v) are called subele-
ments of v. For any l ∈ A, if att(v, l) = v1 then v1 is called an attribute of v.
Note that an XML tree T must be a tree. Since T is a tree the set of ancestors of
a node v, is denoted by Ancestor(v). The children of a node v are also defined
as in Definition 1 and we denote the parent of a node v by Parent(v).
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We note that our definition of val differs slightly from that in [6] since we have
extended the definition of the val function so that it is also defined on element
nodes. The reason for this is that we want to include in our definition paths
that do not end at leaf nodes, and when we do this we want to compare element
nodes by node identity, i.e. node equality, but when we compare attribute or
text nodes we want to compare them by their contents, i.e. value equality. This
point will become clearer in the examples and definitions that follow.

We now give some preliminary definitions related to paths.

Definition 2. A path is an expression of the form l1. · · · .ln, n ≥ 1, where
li ∈ E ∪ A ∪ {S} for all i, 1 ≤ i ≤ n and l1 = root. If p is the path l1. · · · .ln then
Last(p) = ln.

For instance, if E = {root, Division, Employee} and A = {D#, Emp#}
then root, root.Division, root.Division.D#,

root.Division.Employee.Emp#.S are all paths.

Definition 3. Let p denote the path l1. · · · .ln. The function Parnt(p) is the path
l1. · · · .ln−1. Let p denote the path l1. · · · .ln and let q denote the path q1. · · · .qm.
The path p is said to be a prefix of the path q, denoted by p ⊆ q, if n ≤ m and
l1 = q1, . . . , ln = qn. Two paths p and q are equal, denoted by p = q, if p is a
prefix of q and q is a prefix of p. The path p is said to be a strict prefix of q,
denoted by p ⊂ q, if p is a prefix of q and p �= q. We also define the intersection
of two paths p1 and p2, denoted but p1 ∩ p2, to be the maximal common prefix of
both paths. It is clear that the intersection of two paths is also a path.

For example, if E = {root, Division, Employee} and A = {D#, Emp#}
then root.Division is a strict prefix of root.Division.Employee and
root.Division.D# ∩ root.Division.Employee.Emp#.S = root.Division.

Definition 4. A path instance in an XML tree T is a sequence v̄1. · · · .v̄n such
that v̄1 = vr and for all v̄i, 1 < i ≤ n,vi ∈ V and v̄i is a child of v̄i−1. A
path instance v̄1. · · · .v̄n is said to be defined over the path l1. · · · .ln if for all
v̄i, 1 ≤ i ≤ n, lab(v̄i) = li. Two path instances v̄1. · · · .v̄n and v̄′

1. · · · .v̄′
n are said

to be distinct if vi �= v′
i for some i, 1 ≤ i ≤ n. The path instance v̄1. · · · .v̄n is

said to be a prefix of v̄′
1. · · · .v̄′

m if n ≤ m and v̄i = v̄′
i for all i, 1 ≤ i ≤ n. The

path instance v̄1. · · · .v̄n is said to be a strict prefix of v̄′
1. · · · .v̄′

m if n < m and
v̄i = v̄′

i for all i, 1 ≤ i ≤ n. The set of path instances over a path p in a tree T
is denoted by Paths(p)

For example, in Figure 1, vr.v1.v3 is a path instance defined over the path
root.Dept.Section and vr.v1.v3 is a strict prefix of vr.v1.v3.v4

We now assume the existence of a set of legal paths P for an XML application.
Essentially, P defines the semantics of an XML application in the same way
that a set of relational schema define the semantics of a relational application.
P may be derived from the DTD, if one exists, or P be derived from some other
source which understands the semantics of the application if no DTD exists. The
advantage of assuming the existence of a set of paths, rather than a DTD, is that
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it allows for a greater degree of generality since having an XML tree conforming
to a set of paths is much less restrictive than having it conform to a DTD. Firstly
we place the following restriction on the set of paths.

Definition 5. A set P of paths is consistent if for any path p ∈ P , if p1 ⊂ p
then p1 ∈ P .

This is natural restriction on the set of paths and any set of paths that is
generated from a DTD will be consistent.

We now define the notion of an XML tree conforming to a set of paths P .

Definition 6. Let P be a consistent set of paths and let T be an XML tree.
Then T is said to conform to P if every path instance in T is a path instance
over some path in P .

The next issue that arises in developing the machinery to define XFDs is the
issue is that of missing information. This is addressed in [19] but in this we take
the simplifying assumption that there is no missing information in XML trees.
More formally, we have the following definition.

E rootvr

E Deptv1

A Empv4 A Empv5 A Projectv6

E Deptv2

“e1” “e2” “j1”

E Sectionv3 E Sectionv7

A Empv8 v9

“e3”

A Project

“j2”

v10

Fig. 1. A complete XML tree.

Definition 7. Let P be a consistent set of paths, let T be an XML that conforms
to P . Then T is defined to be complete if whenever there exist paths p1 and p2
in P such that p1 ⊂ p2 and there exists a path instance v̄1. · · · .v̄n defined over
p1, in T , then there exists a path instance v̄′

1. · · · .v̄′
m defined over p2 in T such

that v̄1. · · · .v̄n is a prefix of the instance v̄′
1. · · · .v̄′

m.

For example, if we take P to be {root, root.Dept, root.Dept.Section,
root.Dept.Section.Emp, root.Dept.Section.Project} then the tree in Fig-
ure 1 conforms to P and is complete.

The next function returns all the final nodes of the path instances of a path
p in T .
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Definition 8. Let P be a consistent set of paths, let T be an XML tree that
conforms to P . The function N(p), where p ∈ P , is the set of nodes defined by
N(p) = {v̄|v̄1. · · · .v̄n ∈ Paths(p) ∧ v̄ = v̄n}.

For example, in Figure 1, N(root.Dept) = {v1, v2}.
We now need to define a function that returns a node and its ancestors.

Definition 9. Let P be a consistent set of paths, let T be an XML tree that
conforms to P . The function AAncestor(v), where v ∈ V ∪ N, is the set of
nodes in T defined by AAncestor(v) = v ∪ Ancestor(v).

For example in Figure 1, AAncestor(v3) = {vr, v1, v3}. The next function re-
turns all nodes that are the final nodes of path instances of p and are descendants
of v.

Definition 10. Let P be a consistent set of paths, let T be an XML tree that
conforms to P . The function Nodes(v, p), where v ∈ V ∪ N and p ∈ P , is the
set of nodes in T defined by Nodes(v, p) = {x|x ∈ N(p) ∧ v ∈ AAncestor(x)}

For example, in Figure 1 , Nodes(v1, root.Dept.Section.Emp) = {v4, v5}.
We also define a partial ordering on the set of nodes as follows.

Definition 11. The partial ordering > on the set of nodes V in an XML tree
T is defined by v1 > v2 iff v2 ∈ Ancestor(v1).

3 XMVDs in XML

Before presenting the main definition of the paper, we present an example to illus-
trate the thinking behind the definition. Consider the relation shown in Figure 2.
It satisfies the MVD Course →→ Teacher|Text. The XML tree shown in Figure
3 is then a XML representation of the data in Figure 2. The tree has the follow-
ing property. There exists two path instances of root.Id.Id.Id.Text, namely
vr.v13.v17.v21.v9 and vr.v16.v20.v24.v12 such that val(v9) �= val(v12). Also, these
two paths have the property that for the closest Teacher node to v9, namely
v5, and the closest Teacher node to v12, namely v8, then val(v5) �= val(v8) and
for the closest Course node to both v9 and v5, namely v1, and for the closest
Course node to both v12 and v8, namely v4, we have that val(v1) = val(v4). Then
the existence of the two path instances vr.v13.v17.v21.v9 and vr.v16.v20.v24.v12
with these properties and the fact that Course →→ Teacher|Text is satis-
fied in the relation in Figure 2 implies that there exists two path instances of
root.Id.Id.Id.Text, namely vr.v15.v19.v23.v11 and vr.v14.v18.v22.v10, with the
following properties. val(v11) = val(v9) and for the closest Teacher node to v11,
v7, val(v7) = val(v8) and for the closest Course node to v11 and v7, namely v3,
val(v3) = val(v1). Also, val(v10) = val(v12) and the closest Teacher node to v10,
v6, val(v6) = val(v5) and for the closest Course node to v10 and v6, namely v2,
val(v2) = val(v4). This type of constraint is an XMVD. We note however that
there are many other ways that the relation in Figure 2 could be represented in
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an XML tree. For instance we could also represent the relation by Figure 4 and
this XML tree also satisfies the XMVD. In comparing the two representations,
it is clear that the representation in Figure 4 is a more compact representation
than that in Figure 3 and we shall see later that the example in Figure 4 is
normalised whereas the example in Figure 3 is not.

Course Teacher Text
Algorithms Fred Text A
Algorithms Mary Text B
Algorithms Fred Text B
Algorithms Mary Text A

Fig. 2. A flat relation satisfying a MVD.

E rootvr

E Idv13 E Idv14 E Idv15 E Idv16

A Coursev1

E Idv17

A Coursev2 A Coursev3
A Coursev4

E Idv18 E Idv19 E Idv20

A Teacherv5 A Teacherv6 A Teacherv7 A Teacherv8

E Idv21 E Idv22
E Idv23 E Idv24

A Textv9 A Textv10 A Textv11 A Textv12

“Algorithms” “Algorithms” “Algorithms” “Algorithms”

“Fred” “Fred” “Mary” “Mary”

“Text A” “Text B” “Text A” “Text B”

Fig. 3. An XML tree

This leads us to the main definition of our paper. In this paper we consider
the simplest case where there are only single paths on the l.h.s. and r.h.s. of the
XMVD and all paths end in an attribute or text node.

Definition 12. Let P be a consistent set of paths and let T be an XML tree that
conforms to P and is complete. An XMVD is a statement of the form p →→ q|r
where p, q and r are paths in P . T satisfies p →→ q|r if whenever there exists
two distinct paths path instances v̄1. · · · .v̄n and w̄1. · · · .w̄n in Paths(q) such that:

(i) val(v̄n) �= val(w̄n);
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E rootvr

E

E E E

E E E

“Algorithms”

E Teacher Teacher Text Text

“Fred” “Mary” “Text A” “Text B”

Course

Id

Id Idv1 v2 v3

v4
v5 v6 v7

v8

Fig. 4. An XML tree

(ii) there exists two nodes z1, z2, where z1 ∈ Nodes(x11 , r) and z2 ∈
Nodes(y11 , r) such that val(z1) �= val(z2);

(iii) there exists two nodes z3 and z4, where z3 ∈ Nodes(x111
, p) and z4 ∈

Nodes(y111
, p), such that val(z3) = val(z4);

then:
(a) there exists a path v̄′

1. · · · .v̄′
n in Paths(q) such that val(v̄′

n) = val(v̄n)
and there exists a node z′

1 in Nodes(x′
11

, r) such that val(z′
1) = val(z2) and

there exists a node z′
3 in Nodes(x′

111
, p) such that val(z′

3) = val(z3);
(b) there exists a path w̄′

1. · · · .w̄′
n in Paths(q) such that val(w̄′

n) = val(w̄n)
and there exists a node z′

2 in Nodes(x′
11

, r) such that val(z′
2) = val(z1) and there

exists a node z′
4 in Nodes(x′

111
, pl) such that val(z′

4) = val(z4);
where x11 = {v|v ∈ {v̄1, · · · , v̄n} ∧ v ∈ N(r ∩ q)} and y11 = {v|v ∈

{w̄1, · · · , v̄n} ∧ v ∈ N(r ∩ q)} and x111
= {v|v ∈ {v̄1, · · · , v̄n} ∧ v ∈ N(p ∩ r ∩ q)}

and y111
= {v|v ∈ {w̄1, · · · , w̄n} ∧ v ∈ N(p ∩ r ∩ q)}

and x′
11

= {v|v ∈ {v̄′
1, · · · , v̄′

n}∧v ∈ N(r∩q)} and y′
11

= {v|v ∈ {w̄′
1, · · · , v̄′

n}∧
v ∈ N(r ∩ q)} and x′

111
= {v|v ∈ {v̄′

1, · · · , v̄′
n} ∧ v ∈ N(p ∩ r ∩ q)} and y′

111
=

{v|v ∈ {w̄′
1, · · · , w̄′

n} ∧ v ∈ N(p ∩ r ∩ q)} .

We note that since the path r∩q is a prefix of q, there exists only one node in
v̄1. · · · .v̄n that is also in N(r∩q) and so x1 is always defined and is a single node.
Similarly for y1, x111

, y111
, x′

11
, y′

11
, x′

111
, y′

111
. We now illustrate the definition by

some examples.

Example 1. Consider the XML tree shown in Figure 4 and the XMVD
root.Id.Course →→ root.Id.Id.Teacher|root.Id.Id.Text. Let v̄1. · · · .v̄n

be the path instance vr.v8.v2.v4 and let w̄1. · · · .w̄n be the path instance
vr.v8.v2.v5. Both path instances are in Paths(root.Id.Id.Teacher) and
val(v4) �= val(v5). Moreover, x11 = v8, y11 = v8, x111

= v8 and y111
= v8.

So if we let z1 = v6 and z2 = v7 then z1 ∈ Nodes(x11 , root.Id.Id.Text) and
z2 ∈ Nodes(y11 , root.Id.Id.Text). Also if we let z3 = v8 and z4 = v8 then

z3 ∈ Nodes(x111
, root.Id.Course) and z4 ∈ Nodes(y111

, root.Id.Course)
then val(z3) = val(z4). Hence conditions (i), (ii) and (iii) of the definition of
an XMVD are satisfied.
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If we let v̄′i
1 . · · · .v̄′i

n be the path vr.v8.v2.v4 we firstly have that val(v̄′i
n) =

val(v̄i
n) as required. Also, since the path instances are the same we have that

x11 = x′
11

and x111
= x′

111
. So if we let z′

1 = v7 then
z′
1 ∈ Nodes(x′

11
, root.Id.Id.Text) and val(z′

1) = val(z2) and if we let z′
3 =

v8 then
z′
3 ∈ Nodes(x′

11l
, root.Id.Course) and val(z′

3) = val(z3). So part (a) of
the definition of an XMVD is satisfied. Next if we let w̄′i

1 . · · · .w̄′i
n be the path

vr.v8.v2.v5 then we firstly have that val(w̄′i
n) = val(w̄i

n) since the paths are the
same . Also, since the paths are the same we have that y11 = y′

11
and y111

= y′
111

.
So if we let z′

2 = v6 then z′
2 ∈ Nodes(y′

11
, root.Id.Id.Text) and val(z′

2) =
val(z1) and if we let z′

4 = v8 then z′
4 ∈ Nodes(x′

11l
, root.Id.Course) and

val(z′
4) = val(z4). Hence part (b) on the definition of an XMVD is satisfied and

so T satisfies root.Id.Course →→ root.Id.Id.Teacher|root.Id.Id.Text.
As explained earlier, the tree in Figure 4 also satisfies
root.Id.Course →→ root.Id.Id.Teacher|root.Id.Id.Text.

Example 2. Consider the XML tree shown in Figure 5 and the XMVD
root.Project.P# →→ Root.Project.Person.Name|root.Project.Part.Pid.
For the path instances vr.v1.v5.v13 and vr.v2.v8.v16 in

Paths(Root.Project.Person.Name) we have that val(v13) �= val(v16).
Moreover, x11 = v1, y11 = v2, x111

= v1 and y111
= v1. So if we let z1 = v17 and

z2 = v18 then
z1 ∈ Nodes(x11 , root.Project.Part.Pid) and
z2 ∈ Nodes(y11 , root.Project.Part.Pid). Also if we let z3 = v4 and z4 = v7

then z3 ∈ Nodes(x111
, root.Project.P#) and

z4 ∈ Nodes(y111
, root.Project.P# ) and val(z3) = val(z4). Hence condi-

tions (i), (ii) and (iii) of the definition of an XMVD are satisfied. However, for
the only other path in

Paths(Root.Project.Person.Name), namely vr.v3.v11.v19 we have that
x′

11
= v3 and so Nodes(x′

11
, root.Project.part.Pid) = v21 and since

val(v21) �= val(z2) and so it does not satisfy condition (a) and thus
root.Project.P# →→ Root.Project.Person.Name|root.Project.part.Pid
is violated in T .

Consider then the XMVD XMVD root.Project.Person.Name
→→ Root.Project.Person.Skill |root.Project.P# in the same XML

tree. For the path instances vr.v1.v5.v14 and vr.v3.v11.v20 in
Paths(Root.Project.Person.Skill) we have that val(v14) �= val(v20).

Moreover, x11 = v1, y11 = v3, x111
= v13 and y111

= v19. So if we let
z1 = v4 and z2 = v10 then z1 ∈ Nodes(x11 , root.Project.P#) and z2 ∈
Nodes(y11 , root.Project.P#). Also if we let z3 = v13 and z4 = v19 then
z3 ∈ Nodes(x111

, root.Project.Person.Name) and
z4 ∈ Nodes(y111

, root.Project.Person.Name) and val(z3) = val(z4).
Hence the conditions of (i), (ii) and (iii) of the definition of an XMVD
are satisfied. However there does not exist another path instance in
Paths(Root.Project.Person.Skill) such that val of the last node in the path
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is equal to val of node v14 and so part (a) of the definition of an XMVD is
violated.

E rootvr

E Projectv1 E Projectv2 E Projectv3

A P#v4

E Personv5

E Partv6 A P#v7 E Partv9 A P#v10 E Partv12

E Personv8 E Personv11

A Namev13 A Skillv14 A Namev16 A Skillv17 A Namev19 A Skillv20

A Pidv21

“p1” “p1” “p2”

“n1” “s1”

“pt1”

E Pidv17 A Pidv18

“n2” “s2”

“pt2”

“n1” “s3”

“pt3”

Fig. 5. An XML tree

4 A Redundancy Free 4NF for XML Documents

In this section we propose a 4NF for XML documents. We also provide a formal
justification for the normal form by showing that it ensures the elimination of
redundancy in the presence of XMVDs. This approach to justifying the definition
of a normal form is an extension of the approach adopted by one of the authors
in some other research which investigated the issue of providing justification for
the normal forms defined in standard relational databases [14,15,16,12].

The approach that we use to justifying our normal form is to formalise the
notion of redundancy, the most intuitive approach to justifying normal forms,
and then to try to ensure that our normal form ensures there is no redundancy.
However, defining redundancy is not quite so straightforward as might first ap-
pear. The most obvious approach is, given a relation r and a FD A → B and
two tuples t1 and t2, to define a value t1[B] to be redundant if t1[B] = t2[B] and
t1[A] = t2[A]. While this definition is fine for FDs in relations, it doesn’t gener-
alise in an obvious way to other classes of relational integrity constraints, such
as multi-valued dependencies (MVDs) or join dependencies (JDs) or inclusion
dependencies (INDs), nor to other data models. The key to finding the appropri-
ate generalisation is based on the observation that if a value t1[B] is redundant
in the sense just defined then every change of t1[B] to a new value results in



24 M.W. Vincent and J. Liu

the violation of A → B. One can then define a data value to be redundant if
every change of it to a new value results in the violation of the set of constraints
(whatever they may be). This is essentially the definition proposed in [16] where
it was shown that BCNF is a necessary and sufficient condition for there to be
no redundancy in the case of FD constraints and fourth normal form (4NF) is a
necessary and sufficient condition for there to be no redundancy in the case of
FD and MVD constraints.

The definition we propose is the following which is an extension of the defi-
nition given in [16].

Definition 13. Let T be an XML tree and let v be a node in T . Then the change
from v to v′, resulting in a new tree T ′, is said to be a valid change if v �= v′

and val(v) �= val(v′).

We note that the second condition in the definition, val(v) �= val(v′), is auto-
matically satisfied if the first condition is satisfied when lab(v) ∈ E.

Definition 14. Let P be a consistent set of paths and let Σ be a set of XMVDs
such that every path appearing in an XMVD in Σ is in P . Then Σ is said to
cause redundancy if there exists a complete XML tree T which conforms to P
and satisfies Σ and a node v in T such that every valid change from v to v′,
resulting in a new XML tree T ′, causes Σ to be violated.

The essential idea is that if a value is redundant, then it is implied by the
other data values and the set of constraints and so any change to the value causes
a violation of the constraints. For example, consider Figure 3 and the set Σ of
XMVDs

{root.Id.Course →→ root.Id.Id.Teacher|root.Id.Id.Id.Text}. Then
Σ causes redundancy because the tree shown in Figure 3 satisfies Σ yet every
valid change to any of the Text nodes (or Teacher nodes) results in the violation
of Σ.

Before presenting our definition of 4NF we place restrictions on XMVDs
associated with an XML document. As shown in the full length version of this
paper, these restrictions are not essential but they do simplify and shorten the
presentation. The first restriction is on the structure of the XMVDs. In relations
and nested relations, MVDs which have a hierarchical structure occur naturally
and seem to correspond most closely to real world MVDs [11,17]. Given the close
relationship between nested relations and XML documents we believe that the
case is similar for XML documents and propose the following definition.

Definition 15. A set Σ of XMVDs is said to be hierarchical if for every XMVD
p →→ q|r ∈ Σ, Parnt(p) is a strict prefix of both q and r.

For instance, in Example 2 the XMVD root.Project.P# →→
Root.Project.Person.Name|root.Project.Part.Pid is hierarchical but

not the XMVD root.Project.Person.Name →→
Root.Project.Person.Skill|root.Project.P#.
Next, we define the notion of a key.
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Definition 16. Let P be a consistent set of paths, let T be an XML tree that
conforms to P and is complete and let p ∈ P .Then T satisfies the key constraint
p if whenever there exists two nodes v1 and v2 in N(p) in T such that val(v1) =
val(v2) then v1 = v2.

This leads us to the normal form definition and the main result of the paper.

Definition 17. Let Σ be a hierarchical set XMVDs. Then Σ is in XML fourth
normal form (4XNF) if either of the following conditions hold:

(A) q and r are both keys;
(B) p is a key and q ∩ r = p.

We now illustrate the definition by some examples.

Example 3. Consider the tree T in Figure 3 and assume that the only constraint
is the XMVD

root.Id.Course → → root.Id.Id.Teacher|root.Id.Id.Id.Text. T sat-
isfies Σ and is complete. However Σ is not in 4XNF since root.Id.Course is not
a key and root.Id.Id.Teacher is not a key and root.Id.Id.Id.Text is not a
key. Consider then the tree shown in Figure 4 and assume that the only XMVD
is root.Id.Course → → root.Id.Teacher|root.Id.Text. If root.Id.Course
is a key, which would be the case if Course was specified as type ID in the full
DTD, then Σ is in 4XNF since root.Id.Course is a key and root.Id.Teacher
∩ root.Id.Id.Id.Text = textttroot.Id.Course.

This leads to the main result of this section.

Theorem 1. If Σ is in 4XNF then Σ does not cause redundancy.

Proof. Assume that (A) holds, i.e. q and r are both keys, and suppose to
the contrary that Σ causes redundancy. Then by definition there exists an XML
tree T which satisfies Σ and a node v in T such that every valid change from
v to v′, resulting in a new XML tree T ′, causes some XMVD p →→ q|r ∈ Σ
to be violated. We firstly claim that v ∈ N(q) or v ∈ N(r). Suppose that this
is not the case and that v /∈ N(q) and v /∈ N(r) and v /∈ N(p). Then obviously
T ′ satisfies Σ and so Σ does not cause redundancy which is a contradiction.
Suppose then that v in N(p). If lab(v) ∈ E then by definition the new node v′

is distinct in T ′ and so by definition of an XMVD T ′ satisfies Σ and so Σ does
not cause redundancy which is a contradiction. If instead lab(v) ∈ A then if
we choose a change such that val(v′) does not appear anywhere else in T , the
XMVD p →→ q|r is not violated after the change and so T ′ satisfies Σ and
so Σ does not cause redundancy which is a contradiction. Hence v ∈ N(q) or
v ∈ N(r). We suppose firstly that v ∈ N(q).

So since p →→ q|r in T ′ is violated, there exist path instances v̄1. · · · .v̄n

(where v̄n = v′) and w̄1. · · · .w̄n in Paths(q) in T ′ such that:
(i) val(v̄n) �= val(w̄n);
(ii) there exists two nodes z1, z2, where z1 ∈ Nodes(x11 , r) and z2 ∈

Nodes(y11 , r) such that val(z1) �= val(z2);
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(iii) there exists two nodes z3 and z4, where z3 ∈ Nodes(x111
, p) and z4 ∈

Nodes(y111
, p), such that val(z3) = val(z4).

and:
(a.1) there does not exist a path v̄′

1. · · · .v̄′
n in Paths(q) such that val(v̄′

n) =
val(v̄n) and there does not exist a node z′

1 in Nodes(x′
11

, r) such that val(z′
1) =

val(z2) and there does not exist a node z′
3 in Nodes(x′

111
, p) such that val(z′

3) =
val(z3);

or
(b.1) there does not exists a path w̄′

1. · · · .w̄′
n in Paths(q) such that val(w̄′

n) =
val(w̄n) and there does not exist a node z′

2 in Nodes(x′
11

, r) such that val(z′
2) =

val(z1) and there does not exist a node z′
4 in Nodes(x′

111
, pl) such that val(z′

4) =
val(z4);

where
x11 = {v|v ∈ {v̄1, · · · , v̄n}∧v ∈ N(r∩q)} and y11 = {v|v ∈ {w̄1, · · · , v̄n}∧v ∈

N(r ∩ q)} and x111
= {v|v ∈ {v̄1, · · · , v̄n} ∧ v ∈ N(p ∩ r ∩ q)} and y111

= {v|v ∈
{w̄1, · · · , w̄n} ∧ v ∈ N(p ∩ r ∩ q)}

and x′
11

= {v|v ∈ {v̄′
1, · · · , v̄′

n}∧v ∈ N(r∩q)} and y′
11

= {v|v ∈ {w̄′
1, · · · , v̄′

n}∧
v ∈ N(r ∩ q)} and x′

111
= {v|v ∈ {v̄′

1, · · · , v̄′
n} ∧ v ∈ N(p ∩ r ∩ q)} and y′

111
=

{v|v ∈ {w̄′
1, · · · , w̄′

n} ∧ v ∈ N(p ∩ r ∩ q)}.
Next, because v̄1. · · · .v̄n and w̄1. · · · .w̄n satisfy (ii), it follows that since only

node v̄n is changed in T , then z1, z2, z3, z4, x11 , x
′
11

, y11 , y
′
11

, x111
, x′

111
, y111

and
y′
111

are the same in T and T ′. So there exist two nodes z1, z2, where z1 ∈
Nodes(x11 , r) and z2 ∈ Nodes(y11 , r) in T such that val(z1) �= val(z2). Also,
since q is a key it follows that val(v) �= val(w̄n) in T . Consider then the path
instances v̄1. · · · .v and w̄1. · · · .w̄n in Paths(q) in T . As we have already noted,
val(v) �= val(w̄n) so (i) of the definition of an XMVD is satisfied. Then since only
node v is changed, if we let z1, z2 be as defined we have that z1 ∈ Nodes(x11 , r)
and z2 ∈ Nodes(y11 , r) and val(z1) �= val(z2) and so (ii) of the definition of
an XMVD is satisfied. Similarly, if we let z3 and z4 be as defined, then z3 ∈
Nodes(x111

, p) and z4 ∈ Nodes(y111
, p) and val(z3) = val(z4) and so (iii) of the

definition of an XMVD is satisfied. Hence by definition of XMVD satisfaction
and since p →→ q|r is satisfies in T :

(a) there exists a path v̄′
1. · · · .v̄′

n in Paths(q) in T such that val(v̄′
n) = val(v̄n)

and there exists a node z′′
1 in Nodes(s′

11
, r) such that val(z′′

1 ) = val(z2) and there
exists a node z′′

3 in Nodes(s′
111

, p) such that val(z′′
3 ) = val(z3) where s′

11
= {v|v ∈

{v̄′
1, · · · , v̄′

n} ∧ v ∈ N(r ∩ q)} and s′
111

= {v|v ∈ {v̄′
1, · · · , v̄′

n} ∧ v ∈ N(p ∩ r ∩ q)};
and
(b) there exists a path w̄′

1. · · · .w̄′
n in Paths(q) in T such that val(w̄′

n) =
val(w̄n) and there exists a node z′′

2 in Nodes(t′11
, r) such that val(z′′

2 ) = val(z1)
and there exists a node z′′

4 in Nodes(t′111
, pl) such that val(z′′

4 ) = val(z4) where
t′11

= {v|v ∈ {v̄′
1, · · · , v̄′

n} ∧ v ∈ N(r ∩ q)} and t′111
= {v|v ∈ {v̄′

1, · · · , v̄′
n} ∧ v ∈

N(p ∩ r ∩ q)}.
We claim that v̄′

1. · · · .v̄′
n must be distinct from v̄1. · · · .v. Suppose that it is

not. Consider then the result of the change to v. If we let the path v̄′′
1 . · · · .v̄′′

n
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in T ′ be the same as the path instance v̄1. · · · .v̄n, and w̄′′
1 . · · · .w̄′′

n be the same
as w̄1. · · · .w̄n then as we have seen v̄′′

1 . · · · .v̄′′
n and w̄′′

1 . · · · .w̄′′
n satisfy (i), (ii) and

(iii) of the definition of an XMVD. However, if we let z′
1 = z′′

1 and z′
3 = z′′

3
then z′

1 in Nodes(s′
11

, r) and val(z′
1) = val(z2) and z′

3 in Nodes(s′
111

, p) and
val(z′

3) = val(z3) so (a) of the definition of an XMVD is satisfied. Similarly, if
we let z′

2 = z′′
2 and z′

4 = z′′
4 then z′

2 in Nodes(t′11
, r) and val(z′

2) = val(z1) and
z′
4 in Nodes(t′111

, p) and val(z′
4) = val(z4) so (b) of the definition of an XMVD

is satisfied. This contradicts the earlier fact that either (a.1) or (b.1) is satisfied
since p →→ q|r is violated in T ′ and so we conclude that v̄′

1. · · · .v̄′
n must be

distinct from v̄1. · · · .v. However, by (a) above val(v̄′
n) = val(v̄n) = val(v) which

contradicts the fact that q is a key.
Similarly, if v ∈ N(r) then using the same arguments we contradict the fact

that r is a key and so we conclude that Σ does not cause redundancy if (A) of
the definition of 4XNF holds.

Assume next that (B) holds, i.e. p is a key and q ∩ r = p, and suppose to
the contrary that Σ causes redundancy.. Then, as before, there exists an XML
tree T which satisfies Σ and a node v in T such that every valid change from
v to v′, resulting in a new XML tree T ′, causes some XMVD p →→ q|r ∈ Σ
to be violated. Using the same arguments as in (A), it follows that v ∈ N(q) or
v ∈ N(r). We suppose firstly that v ∈ N(q). So since p →→ q|r in T ′ is violated,
there exist path instances v̄1. · · · .v̄n (where v̄n = v′) and w̄1. · · · .w̄n in Paths(q)
in T ′ such that:

(i) val(v̄n) �= val(w̄n);
(ii) there exists two nodes z1, z2, where z1 ∈ Nodes(x11 , r) and
z2 ∈ Nodes(y11 , r) such that val(z1) �= val(z2);
(iii) there exists two nodes z3 and z4, where z3 ∈ Nodes(x111

, p) and z4 ∈
Nodes(y111

, p), such that val(z3) = val(z4).
and:
(a.1) there does not exist a path v̄′

1. · · · .v̄′
n in Paths(q) such that val(v̄′

n) =
val(v̄n) and there does not exist a node z′

1 in Nodes(x′
11

, r) such that val(z′
1) =

val(z2) and there does not exist a node z′
3 in Nodes(x′

111
, p) such that val(z′

3) =
val(z3);

or
(b.1) there does not exists a path w̄′

1. · · · .w̄′
n in Paths(q) such that val(w̄′

n) =
val(w̄n) and there does not exist a node z′

2 in Nodes(x′
11

, r) such that val(z′
2) =

val(z1) and there does not exist a node z′
4 in Nodes(x′

111
, pl) such that val(z′

4) =
val(z4);

Consider then the paths v̄1. · · · .v and w̄1. · · · .w̄n in Paths(q) in T . Since p is
a key and q ∩ r = p, then x11 = x′

11
= y11 = x′

11
and x111

= x′
111

= y111
= y′

111
.

Hence if T ′ violates p →→ q|r then so will T which is a contradiction. The
same argument applies if v ∈ N(r) and so we conclude that Σ does not cause
redundancy. �
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5 Conclusions

In this paper we have investigated the issues of multivalued dependencies and
4NF in XML. We firstly gave a definition of XMVDs in XML using an extension
of the approach used in [19,20]. We then proposed a normal form for XML doc-
uments in the presence of XMVDs and justified it by showing that it ensures the
elimination of redundancy for an important class of XMVDs, namely what we
call hierarchical MVDs. Hierarchical XMVDs are a natural extension of hierar-
chical multivalued dependencies that appear in relational and nested relational
models.

There are several other issues related to the ones addressed in this paper
that warrant further investigation. The first is the need to generalise the main
result of this paper. We need to show that 4XNF we proposed is also a necessary
condition for the elimination of redundancy and also to extend the definition
of 4XNF to the case where the XMVDs are not hierarchical. Secondly, we need
to investigate the problem of developing an axiom system for reasoning about
the implication of XMVDs. In [19] an axiom system for reasoning about the
implication of XFDs was developed and the system was shown to be sound for
arbitrary XFDs. Later [18], the axiom system was shown to be complete for
unary XFDs and a polynomial time algorithm was developed for determining if
a unary XFD is implied by a set of unary XFDs. Similarly, we need to develop an
axiom system and algorithm for the implication problem for XMVDs. Thirdly,
we need to develop algorithms for converting unnormalised XML documents to
normalised ones. In the relational case, the equivalent procedure is performed
using a decomposition algorithm based on the projection operator. However,
at the moment there has been no commonly agreed upon algebra defined for
XML, let alone a projection operator, so the development of procedures for
normalising XML documents is likely to be more complex than in the relational
case. Fourthly, it is necessary to consider the case where both XFDs and XMVDs
exist in a document. It is interesting to note that unlike the situation for the
relational case, 4XNF is not a straightforward generalisation of the normal form
for XFDs (XNF). This means that, in contrast to the relational case where 4NF
implies BCNF in the case where both MVDs and FDs are present, in XML a
different normal form from 4XNF is needed when the constraints on an XML
document contain both XFDs and XMVDs. The situation is further complicated
by the fact that XMVDs and XFDs interact, in the sense that there are XMVDs
and XFDs implied by a combined set of XMVDs and XFDs which are not implied
by either the XMVDs or XFDs considered alone. This situation parallels that of
relational databases [2].
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