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Abstract. A family of keystream generators, called the LILI keystream
generators, is proposed for use in stream cipher applications and the se-
curity of these generators is investigated with respect to currently known
attacks. The design is simple and scalable, based on two binary linear
feedback shift registers combined in a simple way, using both irregular
clocking and nonlinear functions. The design provides the basic security
requirements such as a long period and high linear complexity, and is
resistant to known cryptanalytic attacks.

1 Introduction

In this paper, a family of keystream generators based on irregularly clocked LF-
SRs, intended for use in stream cipher applications, is proposed. We call these
the LILI generators. The security of the LILI keystream generators is investi-
gated with respect to currently known attacks on stream ciphers. The keystreams
produced are shown to possess the basic security requirements for cryptographic
sequences, such as a long period and high linear complexity. It is shown that,
provided suitable parameters are selected, the generators are resistant to cur-
rently known cryptanalytic attacks. Security implications of parameter selection
are discussed.

The LILI family of keystream generators are based on two binary linear
feedback shift registers (LFSRs). Many keystream generator designs are based
on shift registers, both for the simplicity and speed of LFSR implementation
in hardware and for the long period and good statistical properties LFSR se-
quences possess. To make use of the good keystream properties while avoiding
the inherent linear predictability of LFSR sequences, many constructions intro-
duce nonlinearity, by applying a nonlinear function to the outputs of regularly
clocked LFSRs or by irregular clocking of the LFSRs [13]. However, keystream
generators using regularly clocked LFSRs are susceptible to correlation attacks,
including fast correlation attacks, a concept first introduced in [I1]. In a fast
correlation attack, the initial states of the component shift registers are recon-
structed from a known segment of the generator output sequence, without per-
forming a blind search over all possible shift register initial states. As a means of
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achieving immunity to these correlation attacks, keystream generators consist-
ing of irregularly clocked LFSRs were proposed. These keystream generators are
also susceptible to certain correlation attacks, such as the generalised correlation
attack proposed in [6]. However, no fast correlation attacks on these generators
have been published.

As correlation attacks have been successful against keystream generators
based on either a nonlinear function of regularly clocked LESR sequences [16/14]
or on irregular clocking of LFSRs [6l17], both approaches are combined for the
LILI keystream generators. The use of both nonlinear functions and irregular
clocking is not novel, having been employed in previous constructions such as
ORYX [19] and SOBER [12]. Both ORYX and SOBER are designs for single
generators, with fixed size LFSRs and fixed combining functions. In contrast,
this proposal is scalable and so describes a family of keystream generators. Also,
weaknesses in the design of ORYX resulted in the provision of a very low level
of cryptographic security [20]. Some attacks on the SOBER proposal have also
been identified [3]. Although the design for the LILI keystream generators de-
scribed in this paper is conceptually simple, it produces output sequences with
provable properties with respect to basic cryptographic security requirements
and also provides security against currently known cryptanalytic attacks.

2 Description of LILI Keystream Generators

The LILI keystream generators are simple and fast keystream generators that
use two binary LFSRs and two functions to generate a pseudorandom binary
keystream sequence, as illustrated in Figure[Il The components of the keystream
generator can be grouped into two subsystems based on the functions they per-
form: clock control and data generation. The LFSR for the clock-control sub-
system is regularly clocked. The output of this subsystem is an integer sequence
which controls the clocking of the LFSR within the data-generation subsystem.
If regularly clocked, the data-generation subsystem is a simple nonlinearly fil-
tered LFSR [13] (nonlinear filter generator). Hence the LILI generator may be
viewed as a clock-controlled nonlinear filter generator. Such a system, with the
clock control provided by a stop-and-go generator, was examined in [4]. How-
ever, the use of stop-and-go clocking produces repetition of the nonlinear filter
generator output in the keystream, which may permit attacks. This system is
an improvement on that proposal, as stop-and-go clocking is avoided.

The clock-control subsystem of the keystream generator uses a pseudorandom
binary sequence produced by a regularly clocked LFSR, LFSR,, of length L.
and a function, f., operating on the contents of k stages of LF'SR,. to produce
a pseudorandom integer sequence, ¢ = {c(t)}$2,. For practical applications, it is
assumed that the feedback polynomial of LF'S R, is primitive and that the initial
state of LF'SR, is not the all zero state. Then LF SR, produces a maximum-
length sequence of period P, = 2%c — 1. At time instant ¢, the contents of
a fixed set of k stages of LF SR, are input to f. and the output of f. is an
integer c(t), such that c(t) € {1,2,...,2*}. The function f. is a bijective mapping
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Fig. 1. LILI keystream generator

{0,1}* — {1,...,2*}, so that the distribution of integers c(t) is close to uniform.
Thus ¢ = {c(t)}{2, is a periodic integer sequence with period equal to P.. For
example, f.(z1,...,2x) = 1+ 21 + 229 + ... + 28~ 1z} is appropriate.

The variable parameters in the clock-control subsystem are L., the feedback
function of LF'SR,, k, the positions of k stages of LF'SR, used as inputs to the
clocking function f. and f, itself.

The data-generation subsystem of the keystream generator uses the integer
sequence ¢ produced by the clock-control subsystem to control the clocking of a
binary LFSR, LF SRy, of length Ly. At time instant ¢, LE'SR, is clocked c(t)
times. The contents of a fixed set of n stages of LE'SR, are input to a Boolean
function, fy. The binary output of fy forms the keystream bit z(¢). After z(t)
is produced, LF'SR, is clocked and the process repeated to form the keystream
z={z(t)}2;.

If LF SR, is regularly clocked, then the data-generation subsystem is simply a
nonlinear filter generator. It is assumed that the feedback polynomial of LF'SR,
is primitive and that the initial state of LF'SR, is not the all zero state. Then
LF SR, produces a maximum-length sequence of period P; = 2%¢—1. The output
of a regularly clocked nonlinear filter generator is a periodic binary sequence,
g = {g(¢)}$2,, with period dividing P;. The following basic result is proved in
[18].

Theorem 1. Let LF SR, have a primitive feedback polynomial and a nonzero
initial state. If fq is balanced, or if Py is a prime and fq is not a constant
function (zero or one), then the period of g is Py.

Now, considering the irregular clocking of LFSRy, the keystream z may be
viewed as an irregularly decimated version of the nonlinearly filtered LF SR,
sequence g, with the decimation under the control of LFSR,, so that z(t) =
Q(Z;:l c(4))-

The variable parameters in the data-generation subsystem are Lg4, the feed-
back function of LF'SR,4, n, the positions of n stages of LE'SR,; used as inputs
to the filter function fy and f, itself. The function f; should be balanced, highly
nonlinear and offer some order of correlation immunity relative to the positions
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of n stages used as inputs to fy (see [9]). The nonlinearity of a Boolean function
is defined to be the minimum Hamming distance between the function and any
affine function of the same inputs. The correlation-immunity order of a Boolean
function is defined to be the maximum nonnegative integer m such that the
output is statistically independent of any subset of m inputs, provided that the
inputs are uniformly distributed and statistically independent.

3 Keystream Properties

Several properties of pseudorandom binary sequences are considered basic se-
curity requirements: a sequence that does not possess these properties is gener-
ally considered unsuitable for cryptographic applications. Basic requirements for
pseudorandom binary sequences are a long period, high linear complexity and
good statistics regarding the distribution of zeroes and ones in the output. High
linear complexity avoids an attack using the Berlekamp-Massey [10] algorithm,
which requires a length of keystream only twice the linear complexity of the
sequence to produce the entire keystream. A bias in the distribution of zeroes
and ones in the keystream can be used to reduce the unpredictability of the
keystream sequence. These basic requirements are addressed with respect to the
LILI family of keystream generators in the remainder of this section.

3.1 Period

The maximum value for the period of z and the conditions under which this value
is obtained are given in the following theorem. The result is easily obtained from
Theorem [0 and the application of a result regarding the period of irregularly
decimated sequences from [2].

Theorem 2. Let both LFSR. and LF SRy have primitive feedback polynomials
and nonzero initial states. If 24 —1 is a prime and fq is not a constant function
or if fq is balanced and 2L==1(2% +-1) — 1 is relatively prime to 24 —1 (provided
that f.(0,...,0) = 1), then the period of the output sequence z is given by the
product P, = (2% —1)(2%4 —1).

Note that this period implies that each distinct initial state results in the
production of a distinct keystream, avoiding the reduction in keyspace which
commonly occurs in keystream generators using irregular clocking, where several
initial states produce the same keystream [17//12].

3.2 Linear Complexity

For the proposed keystream generator, the output of a nonlinear filter generator
with period P; = 254 —1 or a divisor of P; is nonuniformly decimated by means
of a sequence with period P, = 2% —1. In [5], the following upper bound on the
linear complexity of irregularly decimated maximum-length sequences is given.
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Table 1. Period and linear complexity of binary sequences produced by LILI keystream
generators

k=2 k=3
Le|La| P | L. |()  Pel[LelLa| P. | L. [(§) - P
3[4] 105 64| 42 [[4]4] 225 [150] 90
36| 441 [147| 105 || 4|6 945 |303| 225
37| 889 [196| 147 | 4|7|1905420| 315
3 [12[28665) 546 | 462 || 4 [12[61425[1170] 990
7]4[1905[1001] 762 [[6]4] 945 [503| 378
716 8001 |2667] 1905 || 7|6 | 8001 2373 1905
77 [16129[3556] 2667 || 7| 7 |16129]3556] 2667

When a maximum-length sequence of period P, is nonuniformly decimated by
means of a decimating sequence of period P, if the sum modulo P, of P, suc-
cessive values of the decimating sequence equals S, then the decimated sequence
has a maximum linear complexity of Ly - P, only if the multiplicative order of
2 modulo P;/ ged(Py, S) is equal to Ly. Note that this condition is satisfied if
ged(Py, S) = 1. In [5] it is also shown that if the decimating sequence is ran-
domly chosen, then the probability that maximum linear complexity is obtained
can be made arbitrarily close to one for appropriately chosen L, and P,.

For a nonuniformly decimated nonlinearly filtered LFSR sequence, the max-
imal attainable linear complexity is L/, - P., where L/, is the linear complexity of
the (regularly clocked) nonlinearly filtered LF SRy sequence. It is known (e.g.,
see [13]) that L/, depends on the filter function and on the positions of stages
used for its inputs and that L/, is very likely to be lower bounded by (LT d), where
r is the nonlinear algebraic order of the filter function. Accordingly, our con-
jecture is that the linear complexity of a nonuniformly decimated nonlinearly
filtered LEF'SR,4 sequence is very likely to be lower-bounded by (er) -P.. As a
consequence, it is also lower-bounded by L, - P..

To investigate this conjecture, computer simulations were performed for key-
stream generators as described in Section B for various small shift register
lengths. In each case, a nonlinear 3-input balanced nonlinear Boolean function,
with r = 2, was used as a nonlinear combining function, and the stages of LF'SR,
used for inputs to the filter function were selected to form a full positive differ-
ence set. That is, the distances between any two stages are distinct. For each
keystream generator, a keystream sequence of length greater than the maximum
period of the keystream was produced and the period, P,, and linear complexity,
L., of the sequence were determined. These values are recorded in Table [[] and
support both the theorem regarding the period and the conjecture regarding the
linear complexity.

3.3 Statistical Properties of Output Sequence

Under regular clocking, one period of the sequence d produced by LFSR; when
regularly clocked contains 24¢~1 — 1 zeroes and 2¢~! ones. For a balanced filter
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function such that f4(0,...,0) = 0, a segment of length 2%¢ — 1 of the regularly
clocked nonlinear filter generator output sequence g has the same distribution
of zeroes and ones as d. When the clocking of LF.SR, is under the control of
LFSR, and when the period of z is (2L< —1)(2L¢ — 1), then each pair of LFSR,
and LF SR, states occurs exactly once in a period of z. Therefore one period of
z contains (2F¢ —1)(2%¢~1 —1) zeroes and (2F< —1)2L4~1 ones, thus maintaining
the same proportion of zeroes and ones as in d.

At a more detailed level, the choice of filter function has an effect on the
keystream statistics. For a regularly clocked nonlinear filter generator the output
sequence may not possess good statistics as the inputs to the filter function are
correlated rather than independent. To guarantee good statistical properties, the
nonlinear filter function can be chosen to be linear in either the first or the last
variable [9].

3.4 Throughput Rate

In producing the keystream, LF SRy is clocked ¢(t) times before z(t) is produced.

Thus LF SR, is clocked at least once and at most 2* times before each keystream

bit is produced, with the distribution of values of ¢(t) almost uniform. Over

one period of ¢, LFSRy is clocked Ef;l c(t) = 2F<=1(2F 4+ 1) — 1 times so, on
Le— ¢ —

average, LF'SR, is clocked 2Tl @11 times per keystream symbol produced.

2Lc—1
For large L., this is approximately QkT'H Thus, for large L., the throughput

rate is approximately Q’RT of the rate at which LF'SR, is clocked, provided an
appropriate buffer is used. If not, then one must allow 2% clocks of LF SR, per
each keystream bit. However, the use of a buffer is very sensitive in high-speed
applications.

Alternatively, to achieve the the maximum throughput rate of 1, instead of
irregularly clocking the shift register a given number of steps, multiple copies of
the feedback function can be maintained, one for each possible value of ¢(t). The
irregular clocking can then be performed in one step only (both in hardware and
software). Thus there is a tradeoff between hardware space and timing regularity.
Note that the use of either a buffer or parallel-feedback method would provide
resistance against timing attacks.

4 Possible Attacks

A number of attacks should be considered with respect to the LILI family of
keystream generators. These are known-plaintext attacks conducted under the
assumption that the cryptanalyst knows the complete structure of the generator,
and the secret key is only the initial states of the component shift registers. For
all attacks, the given keystream is viewed as an irregularly decimated version of
a nonlinearly filtered LF'SRy sequence, with the decimation under the control
of LFSR,. For keystream generators based on more than one LFSR where the
key consists of the initial states of the LFSRs, such as the LILI generators,
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divide-and-conquer attacks on individual LFSRs should be considered. We deal
firstly with divide-and-conquer attacks that target LF'SR,, and then with those
attacks that target LE'SR..

4.1 Attacks on Irregularly Clocked LFSR,

Suppose a keystream segment of length N is known, say {z(t)}} ;. This is a
decimated version of a segment of length M of the underlying regularly clocked
nonlinearly filtered LF SR, sequence, g = {g(i)},, where M > N. The ob-
jective of correlation attacks targeting LF'SRy is to recover the initial state of
LFSR, by identifying the segment {g(i)}, that {z(¢)}}Y; was obtained from
through decimation, using the correlation between the regularly clocked sequence
and the keystream, without knowing the decimating sequence.

For clock-controlled shift registers with constrained clocking, correlation at-
tacks based on a constrained Levenshtein distance and on a probabilistic mea-
sure of correlation are proposed in [6] and [7], respectively, and further analysed
in [§]. These attacks could be adapted to be used as the first stage of a divide-
and-conquer attack on the LILI keystream generators.

For a candidate initial state of LF'S Ry, say {cf(z)}f:d17 use the known LFSRy
feedback function to generate a segment of the LF SRy sequence, {ci(z)}f\i 'fL a=1
for some M > L4. Then use the known filter function fy to generate a seg-
ment of length M of the output of the nonlinear filter generator when regularly
clocked, {§(i)}M,. A measure of correlation between {§(i)}M, and {z(¢)}¥,
is calculated, (either the Constrained Levenshtein Distance (CLD) [6], or the
Probabilistic Constrained Edit Distance (PCED) [7]) and the process repeated
for all LFSR, initial states.

In either case, the attack is considered successful if only a few initial states
are identified. As the correlation attack based on the PCED takes into account
the probability distribution of the decimating sequence, it is statistically optimal
and may be successful in cases where the embedding attack based on the CLD
is not, such as for larger values of k. The value of M is a function of N and k. If
M = 2F x N, then the probability of not identifying the correct LF SRy initial
state is zero.

The second stage of a divide-and-conquer attack on the generator is the
recovery of the initial state of the second shift register. This can be performed
as in [17]. From the calculation of the edit distance (either CLD or PCED)
between {g(i)}}, and {z(¢)}},, form the edit distance matrix, and use this to
find possible edit sequences. From each possible edit sequence, form a candidate
integer sequence {&(t)}X_,. From this, the underlying binary sequence {a(t)} ,
and hence the candidate initial state of LF'SR, can be recovered. To determine
whether the correct initial states of both LFSRs have been recovered, use both
candidate initial states to generate a candidate keystream and compare it with
the known keysteam segment.

To conduct either of these correlation attacks requires exhaustive search
of LFSR, initial states. For each LFSR, initial state, the attacks require
calculation of either the CLD or the PCED, with computational complexity



LILI Keystream Generator 255

O(N(M — N)). Finally, further computational complexity is added in finding
the corresponding LF SR, initial state. For either correlation attack, the min-
imum length of keystream required for a successful attack on LFSR, is linear
in Ly, but exponential or even superexponential in 2¢ (see [8]). For k = 1, the
required keystream length [22] is reasonably small, but a small increase in k will
render this length prohibitively large.

4.2 Attacks Targeting LFSR,.

A possible approach to attacking the proposed generator is by targeting the
clock-control sequence produced by LFSR.. Guess an initial state of LF'SR,,
say {a(t)}f<,. Use the known LFSR, feedback function and the function f. to
generate the decimating sequence {é(t)}Y; for some N > L.. Then position
the known keystream bits {z(¢)}; in the corresponding positions of {§(i)}2,,
the nonlinear filter generator output when regularly clocked. At this point we
have some (not all consecutive) terms in the nonlinear filter generator output
sequence and are trying to reconstruct a candidate initial state for LF'SRy. The
attack could then proceed in several ways.

Consistency Attack. One method is to use the known filter function fy to
write equations relating terms in the underlying LF SR, sequence to terms in
{3(1)}52, . Reject the guessed initial state {&(t)} <, when the equations are incon-
sistent. This is a generalisation of the linear consistency test [21]. The feasibility
of such an approach depends on the number, n, of inputs to fz, on the tap posi-
tions producing these inputs and on some properties of fg such as its nonlinearity
and order of correlation immunity.

Attacks on Regularly Clocked LFSR,. An alternative approach would be
to use a correlation attack on the nonlinear filter generator [14] to recover a linear
transform of the LF SR, sequence, and then recover the LFSR, initial state.
However, this is complicated by not having consecutive terms in the regularly
clocked nonlinear filter generator sequence. The feasibility of such an attack
primarily depends on the use of a feedback polynomial of LF SRy that is of low
weight or has low-weight polynomial multiples and on the nonlinearity of f;.

An alternative correlation attack on a (regularly clocked) nonlinear filter
generator which could be applied at this point is the conditional correlation
attack [1], with a difference that the known output bits are not consecutive. The
feasibility of such an attack depends on n and on the tap positions. The use of a
full positive difference set for the tap positions, as suggested in [9], and of filter
functions with correlation-immunity order greater than zero would render this
attack infeasible.

Finally, the inversion attack [9] can be adapted to deal with the case of non-
consecutive output bits, but the associated branching process is then supercriti-
cal, because more than one bits have to be guessed at a time. As a consequence,
the computational complexity may be prohibitively high even if the tap positions
are not spread across the LF'SR; length.
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Applying any of these approaches requires exhaustive search over the LF SR,
initial state space and additional computation for each candidate LF SR, state.
However, as only some (not all consecutive) terms in the nonlinear filter genera-
tor output sequence are available, the required additional computation appears
to be prohibitive, especially for highly nonlinear filter functions with a large
number of inputs and sufficiently high correlation-immunity order, for the tap
positions chosen according to a full positive difference set and for the feedback
polynomial of LF'SR,; not having low-weight polynomial multiples of relatively
small degrees.

5 Choice of Parameters

As an initial security consideration, we should choose the sizes of the shift reg-
isters so that exhaustive search of the initial states is prohibitive; at present we
recommend that L.+ Ly > 100. For a keysize in line with the AES specifications
for block ciphers, use L. + Lqg = 128. To prevent divide-and-conquer attacks,
neither Ly nor L. should be small. To ensure a large period and good statisti-
cal properties, the feedback polynomials of both LF'SR. and LF'SR, should be
primitive. In addition, as noted in Section B] for generator parameters satisfying
the conditions of Theorem [2 the period of the output sequence z attains a
maximum value of (2F¢ —1)(2%¢ — 1), implying that every initial state generates
a distinct keystream. Furthermore, the selection of parameters should reduce the
possibility of the attacks discussed in Section @l We address each subsystem of
the keystream generators in turn.

5.1 Clock Control

The number, k, of taps from LF SR, used to form the clocking sequence c affects
the period of the output sequence and the resistance against the correlation
attacks on irregularly clocked LEFSR,, described in Section [4.]] and is the sole
factor determining the output rate of the generator. To this end, we recommend
k> 1 (eg., k=2 or k = 3). The choice of the tap positions does not seem
to be important with respect to known attacks, but to be on the safe side, we
recommend the use of full positive difference sets.

Also, if the conditions of Theorem [2 are not satisfied, then the period of z is
upper-bounded by the product of the period of ¢ and any factors of the period
of the nonlinear filter generator output (if regularly clocked) which are relatively
prime to 2F<=1(2% 1) — 1. Thus, for any chosen value of k, ged(2L<=1(2% 4-1) —
1,2%¢ — 1) should be calculated, and the keystream period is maximised when
this is one.

5.2 Data Generation

Firstly, the feedback polynomial of LF'SR; should not have low-weight polyno-
mial multiples of relatively small degrees, in order to avoid the vulnerability to
fast correlation attacks on LF'SR; when regularly clocked.
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Secondly, the number, n, and positions of taps for the filter function, fy,
should be chosen so as to ensure the resistance to attacks discussed in Section
2. For example, we recommend that n > 10 and that the tap positions form a
full positive difference set if possible.

Thirdly, the filter function, fy, should be balanced in order to achieve good
statistical properties and a large period (Theorem [).

Fourthly, f; should be chosen so as to reduce the possibility of attacks dis-
cussed in Section (especially if k¥ = 1). To this end, fy should have high
correlation-immunity order and high nonlinearity. The proportion of balanced
Boolean functions which offer any nonzero order of correlation immunity is small,
making it unlikely that a randomly generated function will meet these criteria.
Instead, a filter function should be constructed to obtain the required properties.
Since there are tradeoffs between nonlinearity, correlation-immunity order and
algebraic order, we seek functions that optimise these bounds.

In [15], it was proven that balanced Boolean functions exist with 10 inputs,
correlation-immunity order 3, algebraic order 6 and nonlinearity 480. In the
same paper a function with CI(1), algebraic order 8 and nonlinearity 484 was
constructed. Both of these Boolean functions maximise the Siegenthaler tradeoff
and they have the highest possible nonlinearity for their given order of correlation
immunity, so either would be a good choice for the output function fy. For our
example, we choose a CI(3) function as we believe that gives a greater resistance
to conditional correlation attacks.

6 Example

For a 128-bit key, we select the lengths of LFSR, and LSF R, to be 39 and
89, respectively. The feedback polynomials of both LFSR, and LF SR, are the
primitive polynomials of degrees 39 and 89, respectively, listed in the Appendix.

For the clock-control subsystem, the length of LF SR, is L. = 39, from which
k = 2 bits are selected to determine the number of data clocks by the natural
mapping: fe(z1,22) =1+ x1 + 229.

For the data-generation subsystem, we let n = 10. Now, we have Ly > 80
and this permits the positions of inputs to f; to form a full positive difference
set, shown in the Appendix. Also, we select fy from [15] to be a balanced, CI(3)
function of 10 inputs, with nonlinearity 480 and algebraic order r = 6 (see the
Appendix for the truth table).

6.1 Properties

As the feedback polynomial of LF SR, is primitive, fy is balanced and in addition
289 _ 1 is a Mersenne prime, the conditions of Theorem [ are satisfied. Thus the
period of the keystream is P, = (23 — 1)(2%9 — 1). According to Section [3.2]
the linear complexity of the keystream sequence is conjectured to be at least
(l;d) - P, = (869) (2% — 1) ~ 2%, With regard to the security offered by this
value, we note that this means that about 2%° known plaintext bits must be
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intercepted in order to perform the Berlekamp-Massey [10] attack. As the key
will be changed well before even a fraction of this amount of data is generated,
LILI is considered to be secure from such an attack.

6.2 Possible Attacks

Both the period and the conjectured linear complexity of the keystream are too
large to be used in cryptanalytic attacks.

The choice of parameters for the data-generation subsystem, in particular the
Boolean function f;, make attacks targetting LF'SR,., outlined in Section [4.2]
infeasible. In [14], fast correlation attacks on regularly clocked nonlinear filter
generators with low-weight feedback polynomials and a known keystream seg-
ment of 20,000 bits were not successful when the probability of noise, p, exceeded
0.45. The computational complexity of these attacks is proportional to the length
of keystream used and the average number of parity checks used per keystream
bit. For the assumed function fy, the probability of noise is given as p = 0.46875,
so that the amount of keystream required would be much greater than 20,000
bits. This is likely to make the complexity of an attack on a regularly clocked
nonlinear filter generator prohibitive, even if enough low-weight polynomial mul-
tiples of the LF'S R, feedback polynomial, used to form parity checks, could be
obtained. Given that the keystream segment is from a clock-controlled nonlinear
filter generator and that the LFSRy feedback polynomial does not have low-
weight polynomial multiples of relatively small degrees, such an attack appears
infeasible.

The length of LFSR,; makes attacks targetting LFSR,, outlined in Sec-
tion ELT] infeasible as these attacks require exhaustive search of the initial states
of LF SRy, performing some calculation of the correlation for each state. The
complexity of such attacks is O((28 — 1)(3N?)), where the required length of
the known keystream, NN, is very likely to be very large even for k = 2. In
[T7], successful probabilistic correlation attacks were performed on the shrinking
generator for given keystream lengths of twenty times the length of the under-
lying LFSR. The deletion rate for this example is similar, so an estimate of the
complexity of these attacks is O(2!12).

7 Conclusion

In this paper, a family of keystream generators, intended for use in stream cipher
applications, is proposed. The design is both simple and scalable: the generators
are based on two binary LFSRs and use two combining functions. The security
of these keystream generators is investigated. For appropriately chosen compo-
nents, the generators are shown to provide the basic security requirements for
cryptographic sequences, such as a long period and high linear complexity. Also,
they are immune to current known-plaintext attacks, conducted under the as-
sumption that the cryptanalyst knows the entire structure of the generator and
the secret key is only the initial states of the two LFSRs.
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To select an instance from the proposed family, it is necessary to select ap-
propriate values for L., Lg, k and n, to have primitive feedback polynomials of
both LFSRs and a highly nonlinear balanced Boolean function of an appropriate
correlation-immunity order for the filter function. The selection of components
can maximise the period and minimise the chances of a successful cryptanalytic
attack. The use of both nonlinear combining functions and irregular clocking in
LFSR based stream ciphers is not a novel proposal, and has been employed in
previous constructions. However, in this proposal the two approaches are com-
bined in a manner that produces output sequences with provable properties with
respect to basic cryptographic security requirements and also provides security
against currently known cryptanalytic attacks.

Appendix

Full Details of Example LILI with 128 Bit Key
The LFSRs have these feedback polynomials:

LFSR,: 2% + 2% + 2% + 23 427 4 2P 4 2 422 +1
LFSRd:x89+x83+x80+x55—|—x53+x42+x39+x+1.

The two inputs z1,z2 to f. are taken from LFSR. positions 12 and 20, where
the range is [0, 38].

The 10 inputs to f; are taken from LF'SR, positions according to this full
positive difference set: (0, 1, 3, 7, 12, 20, 30, 44, 65, 80).

The truth table of the output function fy:

0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,
0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,
0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,
1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,
0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,
0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,
0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,
1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,
0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,
0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,
0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,
1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,
0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,
1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,
0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,
1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,
0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,



260

Leonie Ruth Simpson et al.

1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,
0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,
1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,
0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,
10,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,
0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,
1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,
0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,
1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,
0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,
1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,
0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,
1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0.

This Boolean Function has 10 inputs and these properties: balanced, CI(3),

algebraic order 6, nonlinearity 480, no linear structures.
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