
Hierarchical State Machines

Mihalis Yannakakis

Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

Abstract. Hierarchical state machines are finite state machines whose
states themselves can be other state machines. Hierarchy is a useful con-
struct in many modeling formalisms and tools for software design, requi-
rements and testing. We summarize recent work on hierarchical state ma-
chines with or without concurrency. We discuss issues of expressiveness
and succinctness, the complexity of basic operations (such as emptiness,
equivalence etc.), and algorithmic problems in the analysis of hierarchical
machines to check for their properties.

1 Introduction

Finite state machines constitute one of the most fundamental modeling mecha-
nisms in Computer Science. They have been widely used to model systems in a
wide variety of areas, including sequential circuits, event-driven software, com-
munication protocols and many others. In its most basic form, a finite state
machine consists of a directed graph whose nodes represent system states and
edges correspond to system transitions. When equipped with an input (and/or
output) alphabet, FSM’s become language recognizers defining the regular lan-
guages (or transducers). A rich theory of FSM’s had been developed since the
50’s regarding their expressive power, their operations and the analysis of their
properties.

In practice, several extensions are useful to enhance the expressive power and
to describe more complex systems more efficiently. Two popular extensions that
are fairly well understood are the addition of variables to form so-called extended
finite state machines, and the addition of concurrency (communication) to form
communicating finite state machines. A third useful extension that has been
less well studied is the addition of a hierachical (nesting) capability, to form
hierarchical state machines, i.e., machines whose nodes can be ordinary states
or superstates which are FSM’s themselves. This is a very useful construct to
structure and represent large systems.

The notion of hierarchical FSMs was popularized by the introduction of Sta-
techarts [Har87], and exists in many related specification formalisms such as
Modecharts [JM87] and Rsml [LHHR94]. It is a central component of va-
rious object-oriented software development methodologies developed in recent
years, such as Omt [RBPE91], Room [SGW94], and the Unified Modeling Lan-
guage (Uml [BJR97]). This capability is commonly available also in commer-
cial computer-aided software engineering tools that are coming out, such as

J. van Leeuwen et al. (Eds.): IFIP TCS2000, LNCS 1872, pp. 315–330, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

316 M. Yannakakis

Statemate (by i-Logix), ObjecTime Developer (by ObjecTime), and Ra-
tionalRose (by Rational) (the last two are now combined into RationalRose-
RealTime).

The nesting capability is useful also in formalisms and tools for the require-
ments and testing phases of the software development cycle. On the requirements
side, it is used to specify scenarios (or use cases [Jac92]) in a structured man-
ner. For instance, the new ITU standard Z.120 (MSC’96) for message sequence
charts [RGG96] formalizes scenarios of distributed systems in terms of hierar-
chical graphs built from basic MSC’s. The Lucent uBET toolset for behavioral
requirements engineering uses a similar formalism and models requirements by
hierarchical message sequence charts (uBET stands for Lucent Behavioral En-
gineering Toolset and is based on the MSC/POGA prototype tools [AHP96,
HPR97]).

On the testing side, FSMs are used often to model systems for the purpose of
test generation, and again the nesting capability is useful to model large systems.
For example, Teradyne’s commercial tool TestMaster [Apf95] is based on an
extended hierarchical FSM model, i.e. it employs hierarchy and variables (but
not concurrency).

In this paper we will summarize recent work on the impact of adding hierar-
chy to FSM, when added alone or in conjunction with concurrency. Most of the
results come from the papers [AY98,AKY99,AY99] to which we refer for more
details. In Section 2 we discuss hierarchical state machines: their expressive po-
wer and succinctness as compared to ordinary FSM’s, the effect of nondetermi-
nism vs. determinism in this context, the complexity of basic operations such as
checking for emptiness, universality, equivalence etc, and the model checking of
properties on hierarchical state machines. In Section 3 we discuss the effect of
combining concurrency with hierarchy and address similar questions. In Section
4 we discuss hierarchical message sequence charts. In Section 5 we comment
briefly on issues of testing, and we conclude in Section 6.

2 Hierarchical FSMs

There are many variants in definitions of finite state machines, depending on
whether one views them as language acceptors/generators (automata), or ma-
chines that react with their environment and produce output (eg. Mealy and
Moore machines, I/O automata), or logical models (Kripke structures) etc. For
concreteness, let’s settle with the automata definition. An ordinary basic finite
state machine M consists of a finite set Q of states, an initial (or entry) state
q0, a set of final (or exit states) F , a finite input alphabet Σ, and a set E of
transitions, E ⊆ Q × Σ × Q. Finite state machines are usually drawn as direc-
ted graphs with the states as nodes and the transitions as edges labeled by the
inputs. The language L(M) accepted by M is the set of strings over Σ that label
paths from the initial state to a final state.

Hierarchical machines (HSM) are finite state machines whose states are them-
selves other basic FSM’s or previously defined hierarchical machines. For sim-

Hierarchical State Machines 317

plicity we just give the formal definition for the single entry-single exit case.
Formally, HSM’s are defined inductively as follows. In the base case, a basic
FSM is a hierarchical machine. Inductively, suppose that M is a set of HSM’s.
If N is a FSM with set of states Q and µ is a labeling function µ : Q 7→ M that
associates each state q ∈ Q with a HSM in M then the triple (N, M, µ) is a
HSM.

A hierarchical machine H represents in a compact notation a corresponding
ordinary FSM flat(H), the flattened version of H. The flat FSM can be con-
structed inductively as follows. In the base case, flat(H) = H. For the inductive
step, if H = (N, M, µ), then replace in the FSM N each state q by a copy of the
flat version flat(µ(q)) of its corresponding machine; note: if several states map
to the same machine of M then we replace them by distinct copies of the flat
machines with distinct states. Transitions of N coming into state q are directed
to the entry state of the copy of flat(µ(q)) and transitions of N coming out of
q are now coming out of the exit state of flat(µ(q)). If the entry state of N is
q0 and the exit state is qf , then the entry state of flat(H) is the entry state of
flat(µ(q0)) and the exit state of flat(H) is the exit state of flat(µ(qf)).

The definition of hierachical machines for the multiple entry - multiple exit
case is similar, except that one has to specify in this case the set of entry and
exit states, and to specify for every transition (q, a, q′) of the top level FSM N
in addition an associated exit state of µ(q) and an entry state of µ(q′). We omit
here the formalization.

An HSM H can be represented by a rooted DAG, whose leaves are basic
FSM’s and each internal node u has an associated FSM Mu and a mapping µu

from the states of Mu to the children of u. The size of the (representation of
the) HSM H is the sum of the sizes (numbers of states and transitions) of all
the machines Mu at the nodes of the DAG.

Note that the same machine Mj may be used by many other machines Mi

and by many of their states. This reuse permits exponential succinctness as
compared to the flattened machine. Consider for example the HSM depicted in
Figure 1, over a unary alphabet Σ = {a}. At each level, each Mi has two states
that are mapped to the machine Mi−1 at the previous level. The size of the HSM
in this example is O(n). However, the flattened machine in this case is simply
a path of length 2n − 1. Thus, the machine is a counter that accepts just one
string, the string of length 2n − 1.

2.1 Expressibility

Hierarchical state machines are essentially pushdown machines with a pushdown
stack that is bounded by the input. They capture of course the same languages
as ordinary FSM (regular languages), they gain only in succinctness. If a HSM
H is defined by a DAG D of r machines {Mi}, each with at most n states,
and if the nesting depth is m (i.e. the maximum length of a path in the DAG),
then the flattened FSM has at most O(nm) states: every state of flat(H) can
be represented as a tuple (q1, q2, ...qt), t ≤ m, of states of the given machines
Mi, where q1 is a state of the top-level machine, q2 is a state of µ(q1), and so

318 M. Yannakakis

a

1

n-1

n

M

a

a

M

M

Fig. 1. An exponential counter

forth, i.e. every other state qj of the tuple is a state of the machine to which the
previous state qj−1 of the tuple is mapped. Thus, hierarchical machines can be
translated to ordinary FSM’s at an exponential cost. This is in general inherent.

We can consider the impact of hierarchy on the relation between determinism
and nondeterminism. Recall that a FSM is deterministic if for every state q and
every input symbol a there is at most one transition out of q labeled a. We say
that a HSM is deterministic if its flat FSM is deterministic.

In the case of ordinary FSM’s there is of course an exponential gap in suc-
cinctness between deterministic and nondeterministic FSM’s. For hierarchical
machines the gap becomes doubly exponential. That is, there are (nondeter-
ministic) HSM’s of size n such that the smallest equivalent deterministic HSM
has size doubly exponential in n. An example of such a family of languages is
the set Ln of strings w of length 2 · 2n such that there is an index i for which
wi = wi+2n . A nondeterministic HSM of linear size can guess i, record wi, count
2n as in Figure 1, and check that wi = wi+2n . On the other hand, deterministic
HSM’s need doubly exponential size for this language [AKY99].

Of course, the gap between nondeterministic HSM’s and deterministic HMS
or even basic FSM’s is no worse than doubly exponential: one exponential suffices
to translate from HSM to nondeterministic basic FSM, and another exponential
to deterministic FSM.

Comparing deterministic hierarchical machines with nondeterministic basic
FSM’s, there is an exponential gap in both directions. That is, one the one hand,
there is a family of languages that is accepted by linear size nondeterministic

Hierarchical State Machines 319

FSM’s but needs exponential size for deterministic HSM’s; one such language is
the set of strings w of length 2n such that wi = wi+n for some i. On the other
hand, there is a language that can be accepted by a linear size deterministic
HSM but needs exponential size for nondeterministic FSM’s; one such language
is the set of strings of the form w#wR, i.e. the second half wR is the reverse of
the first half w of the input string.

2.2 Operations

Usual operations of interest for a state machine and its language L are emptiness
(is L = ∅?), universality (is L = Σ∗), and complementation (construct a machine
that accepts the complement). For pairs of state machines M1, M2, operations
of interest include intersection (is L(M1)∩L(M2) = ∅?, and compute a machine
that accepts the intersection), and comparison of the two machines: equivalence
(is L(M1) = L(M2)?) and containment or inclusion (is L(M1) ⊆ L(M2)?) We
discuss the complexity of these operations for hierarchical machines.

Emptiness. This is equivalent to a reachability problem in the flattened ma-
chine: can the initial state reach a final state? This problem can be solved in
linear time in the size of the HSM by a simple dynamic programming search algo-
rithm. In the case of flat FSM’s the problem is in NL (nondeterministic logspace).
In the case of hierarchical machines, the problem becomes P-complete.

Universality. As in the case of basic FSM’s, this is a harder problem. As is
well-known, for basic FSM’s universality is PSPACE-complete. Hierarchy costs
an additional exponential in this case: universality for HSM’s is EXPSPACE-
complete. Note that universality is emptiness for the complement, and emptin-
ess is easy (hence complementation is hard). For deterministic HSM’s we can
complement them easily, and hence we can solve universality in linear time.

Intersection. For basic FSM’s intersection is a polynomial operation. This
holds also for intersection of a HSM with a FSM: that is, given a HSM H and
a (basic) FSM M , we can define their product, which is another HSM H ′ such
that L(H ′) = L(H) ∩ L(M). The size of H ′ is bounded by |H||M |2; basically,
the product involves at worst pairing every machine in the representation of H
with a copy of M initialized at each state of M . However there is no such simple
product construction for two HSM’s: determining whether the intersection of the
languages of two HSM’s is empty turns out to be PSPACE-complete.

Equivalence and Inclusion. Since universality is EXPSPACE-hard, it follows
that equivalence and containment are at least as hard. Indeed they are both in
EXPSPACE, by flattening and complementing one of the machines, and forming
the product with the other machine. In the case of deterministic HSM’s (for
which universality as well as complementation is easy), inclusion turns out to be
PSPACE-complete. As for equivalence of deterministic HSM’s, it can be done in
PSPACE but the precise complexity is open.

320 M. Yannakakis

2.3 Verification

A hierarchical state machine H is considered now as modeling a system. The
model checking problem asks whether a given system model satisfies a given pro-
perty P . The model checking problem has been studied for a variety of classes
of properties, and there are several software tools to automatically perform the
verification for finite state systems (eg. SPIN [Hol97], COSPAN [Kur94], SMV
[McM93]). Typically, properties are defined either using automata, or some form
of logic (linear time or branching time). Usually models are finite state struc-
tures that have labelled nodes instead of edges; specifically, there is a finite set
of propositions, and the nodes (states) are labelled by the propositions satis-
fied at the state. We defined above hierarchical machines using edge labels (to
conform with language generation), but one can equally well define them using
node labels; there is not a significant difference between edge-labelled and node-
labelled machines. We say that the hierarchical machine H satisfies a property
P if flat(H) does.

The simplest kind of property is a state invariant, i.e., the property that
starting from the initial state, the system stays within a specified subset of
states. This amounts to a simple reachability problem and can be solved in
linear time in the size of the HSM. So-called ‘safety’ properties that depend on
finite computations can be also reduced to a reachability problem.

A much richer class of properties is the class of linear time properties ex-
pressed by linear temporal logic (LTL) [Pnu77] or by Buchi automata. These
are properties on the infinite computations of the system (i.e. paths of the state
machine). The model satisfies a given property if all of its paths starting from
the initial state satisfy the property. A Buchi automaton A is like a usual finite
string automaton (i.e. a basic FSM); the only difference is that its language is
defined to be a set of infinite strings, namely the strings that label infinite paths
(starting from the initial state) which go infinitely often through one of the ac-
cepting states. We will not define LTL here, but suffice it to say that every LTL
formula φ can be translated to an equivalent Buchi automaton A of size O(2|φ|)
[VW86]; and in the automata theoretic approach (and in tools like SPIN) this is
the way that LTL properties are checked, i.e. by conversion to automata. This
does not hurt the complexity, because the exponential dependence on the size
of the formula is unavoidable (but formulas are typically quite small, so this is
tolerable). It is more convenient to use a Buchi automaton to specify the bad
computations, those that signify an error, rather than the correct computations.
Then the model checking problem for a model M amounts to the question of no-
nemptiness of the intersection L(M) ∩ L(A), where the model M is now viewed
as generating a set of infinite strings.

The core algorithmic problem in this case is not just reachability, but the
following Cycle Detection problem: Given a directed graph (a basic FSM) with
an initial node and a set of specified ‘special’ nodes, can the initial node reach a
cycle that contains one of the special nodes? The model checking problem for a
flat FSM M and a Buchi automaton A is reduced to this cycle detection problem,
by simply taking the product of M and A and letting the special nodes be those

Hierarchical State Machines 321

that correspond to accepting nodes of A. The cycle detection problem can be
solved in linear time, either by computing the strongly connected components
of the graph, or by an alternative “nested depth-first search” algorithm that is
useful for on-the-fly verification [CVWY92].

The model checking problem for hierarchical machines H can be similarly
reduced to the cycle detection problem for HSM’s: As we mentioned earlier, we
can form the product of the HSM H with the automaton A, which is another
HSM H ′. Then H and A have a nonempty intersection iff flat(H ′) has a reach-
able cycle that contains a special node. Finding strong components of flat(H ′)
is not convenient (there is too many of them), but the cycle detection problem
can still be solved in linear time in the size of H ′ by suitable adaptation of the
nested depth first search algorithm, see [AY98]. This yields an algorithm for mo-
del checking of an HSM H with a Buchi automaton A that is linear in the size
of the HSM and quadratic in the size of A (usually the system is much larger
than the property, so the dependence on the system size is the more critical
measure). Thus, we can verify a herarchical machine without flattening it, i.e.,
there is essentially no penalty for the exponential succinctness of hierarchy in
this case.

The other major brand of temporal logic is branching temporal logic. In the
case of basic FSM’s, checking a model M for a formula φ in branching time logic
CTL is easier than LTL: it can be done in time O(|M ||φ|), i.e. linear in both
the size of the model and the specification. In the case of hierarchical systems,
if we flatten the hierarchical machine and apply the pure FSM algorithm, the
complexity of the algorithm will be exponential in the size of the hierarchical
model and linear in the size of the formula |φ|. Typically, formulas are small
and models are large, so this is not a good trade off. There is an alternative
better algorithm, which makes the trade off in the other way, and has complexity
exponential in the size of the formula. The dependence on the model size is
affected by the number d of exit nodes allowed in the nested machines. Namely,
the model checking problem for a HSM H and a CTL formula φ can be solved
in time O(|H|2|φ|d), and also in polynomial space. Thus, in general we can again
avoid flattening the HSM. In the single exit case, the time complexity is linear
in the size of the HSM, though in the multiple exit case it grows exponentially
with the number of exit states. These dependencies are probably inherent: In the
single-exit case, if the formula is part of the input then the problem is PSPACE-
complete, so the complexity presumably has to be exponential in either the model
size or the formula size, and of course we are better off having the exponential
dependence on the formula rather than the model. In the multiple exit case, there
is a fixed formula for which the problem is PSPACE-complete (so the model size
has to enter exponentially somehow). We summarize in the table of Figure 2
the complexity of the various analysis problems in the checking of properties for
HSM’s, as compared to FSM’s.

322 M. Yannakakis

Ordinary FSM’s Hierarchical FSM’s
Reachability O(|M |) O(|M |)
Automata-checking O(|M | · |A|) O(|M | · |A|2)
Ltl model checking O(|M | · 2|φ|) O(|M | · 4|φ|)
Ctl model checking O(|M | · |φ|) O(|M | · 2|φ|d)

Fig. 2. Summary of FSM and HSM model checking

3 Concurrency and Hierarchy

A concurrent (or communicating) hierarchical state machine, CHM, combines
concurrency and hierarchy in an arbitrarily nested manner. We define it formally
here for the single entry -single exit case; the definition for the multiple entry/exit
case is similar.

A CHM is defined again inductively. In the base case, every ordinary FSM is
a CHM. For the induction step, a CHM H is either a hierarchical combination
of previously defined CHM’s exactly as before, or it is a concurrent (parallel)
combination M1 ‖ M2 ‖ · · · ‖ Mk.

The flat basic FSM, flat(H) is defined again inductively. It is the same
as before in the basis case and in the case of a hierarchical combination. In
the concurrent combination, flat(H) is the product of the FSM’s flat(Mi),
defined as follows. Assume that flat(Mi) has set of states Qi, alphabet Σi,
initial state qi

0, final state qi
f , and transition relation Ei. Then the state space of

H is Q1 ×· · ·×Qk, the alphabet is Σ1 ∪ · · · ∪Σk, the initial state is (q1
0 , · · · , qk

0),
the final state is (q1

f , · · · , qk
f), and the transition relation has a transition labelled

a from state (u1, · · · , uk) to state (v1, · · · , vk) if every component machine Mi,
whose alphabet Σi contains the symbol a, has a transition from ui to vi labelled
a. The language L(H) of a CHM H is the language of its corresponding FSM
flat(H).

A concurrent hierarchical machine H can be represented by a rooted DAG
(directed acyclic graph) corresponding to the way it is built from basic FSM’s.
The leaves are basic FSM’s and each internal node is either labelled by the
concurrent combinator ‖, or corresponds to a hierarchical combination and is
labelled by a machine N and a mapping µ from the states of N to the children
of the node. Since ‖ is an associative operator, we can assume that the children
of ‖ nodes are not themselves ‖ nodes (otherwise we can combine them). The
size of the CHM M is the size of its DAG representation and all the machines in
it. Two important parameters for a CHM is the depth m of the DAG (length of
the longest path) and the width w which is the maximum number of components
of a concurrent node of the DAG (i.e. node labelled ‖).

3.1 Expressiveness

Concurrent hierarchical state machines still define of course only regular langu-
ages. If a CHM H has width w and depth m, and every FSM in its definition

Hierarchical State Machines 323

has n states, then flat(H) has O(nwm

) states, that is, flattening causes now in
general a double exponential blow up.

This is in general unavoidable. In fact concurrency adds two exponentials
even compared to hierarchical state machines: There is a family of languages
that can be recognized by linear size CHM’s but which require HSM’s (and
hence also basic FSM’s) of double exponential size. Furthermore, there is a triple
exponential gap in the worst case between CHM’s and deterministic hierarchical
state machines (and hence also deterministic FSM’s). An example of such a
language family is L = {w0#w1# · · ·#wk||wi| = 2n for each i and wi = wj for
some i, j }.

The following figure summarizes the expressibility relationships between the
different kinds of machines.

1exp

1exp

2exp
CHM

1exp
2exp

1exp

Det FSM

3exp

1exp

FSMDet HSM

HSM

Fig. 3. Summary of succinctness relations

3.2 Operations

Emptiness (Reachability). This cannot be done efficiently any more. Even for
a simple concurrent combination (intersection) of basic deterministic FSM’s we
know that the problem is PSPACE-complete [Koz77], and we saw in the previous
section that the same is true for the concurrent combination of just two HSM’s.
Mixing concurrency with hierarchy adds another exponential: The reachability
(and emptiness) problem for CHM’s is EXPSPACE-complete.

There are two exponential contributions to this complexity, one due to con-
currency and one due to hierarchy. For certain classes of machines, we can avoid
one of the exponentials, reducing the complexity to ‘only’ PSPACE. For exam-
ple, one case is when all the concurrency is at the top. That is, we have a set
of concurrent interacting components, where each component is represented by
a hierarchical state machine. Reachability is in this case in PSPACE (and is of
course PSPACE-complete). Another case is when the hierarchical construction
at a level does not expose the internals of the submachines to higher levels.
Note that in the concurrent composition the alphabets of the components are
critical. Informally, call a CHM H “well-structured” if the hierarchical nesting
always hides the alphabet of the nested machines as far as further concurrent

324 M. Yannakakis

Emptiness Intersection Universality Inclusion Equivalence
FSM NL NL Pspace Pspace Pspace

Det FSM NL NL NL NL NL
HSM P Pspace Expspace Expspace Expspace

Det HSM P Pspace P Pspace ∈ Pspace
CHM Expspace Expspace 2Expspace 2Expspace 2Expspace

Fig. 4. Summary of complexity of operations

combinations with other machines are concerned, that is, in every concurrent
combination M1 ‖ · · · ‖ Mt in the definition of H (where Mi are without loss
of generality hierachical nodes), only the alphabets of the top level components
Mi enter in the composition; i.e., the alphabet of the nested submachines are
hidden. Then reachability can be solved in PSPACE and in time O(knw), where
k is the number of operators (internal nodes of the DAG), w is the width, and
n is the maximum number of nodes of a FSM in the definition of H.

Universality. The universality problem turns out to be again harder, and is
as bad as it can get: It is complete for double exponential space.

Intersection. The intersection of two CHM’s H1, H2 is itself another CHM
H1 ‖ H2. Emptiness can be done in EXPSPACE (and is complete).

Equivalence, Inclusion. Since universality is hard, the same is true of equi-
valence and inclusion, which are also complete for double exponential space.

Finally, model checking for a CHM and a Buchi automaton is, as in the case
of simple reachability, complete for exponential space (with respect to the size of
the model), i.e., if we nest arbitrarily concurrency and hierarchy we have to pay
in general for both the concurrency and the hierarchy. It is worth noting howe-
ver, that these lower bound constructions that give this pessimistic complexity,
take advantage of the fact that one can define succinctly (because of the reuse)
systems with exponentially many parallel components; this may be unrealistic
for significant sizes, and hence the lower bounds may be unduly pessimistic.

The table of Figure 4 summarizes the complexity results of basic operations
for the different kinds of machines.

4 Hierarchical Message Sequence Charts

These represent the extreme case where all the concurrency is at the bottom
of the hierarchy. A basic message sequence chart (MSC) represents the partial
order of the message exchanges in a concurrent execution of a set of processes,
see Figure 5. The vertical lines represent the processes, time proceeds down
vertically for each process, and the arrows represent the messages. Send and
receive events are labelled from some alphabet Σ (for example, the messages
sent or received, or any other labels). An MSC M represents a set of linear
executions, namely all the linearizations of the partial order, and thus it has a
corresponding finite language L(M), the strings that label these linearizations.

Hierarchical State Machines 325

ba

RQP

c b

cd

d c

Fig. 5. A basic message sequence chart

Using simple MSC’s as basic building blocks, one can combine them in a
hierarchical fashion, the same way as with hierarchical state machines. We give
for simplicity the definition for the single entry - single exit case (which can
be extended to the multiple entries and exits). An MSC-graph is a directed
graph, with a distinguished initial (entry) node and a final (exit) node, along
with a mapping µ that associates with every node a basic MSC (labelled from
an alphabet Σ). More generally, we can define inductively a hierarchical MSC
graph (HMSC) to be a hierarchical combination of previously defined HMSC’s.
An HMSC can be represented by a rooted DAG, where each leaf is labelled by a
basic MSC’s, and each internal node u is labelled by a graph Gu and a mapping
µu from the nodes of Gu to the children of u. A hierachical MSC H can be of
course flattened to a simple MSC-graph flat(H) (at an exponential blow up),
the same way that a hierarchical machine is flattened to an FSM.

The executions of a system modeled by an MSC-graph (or HMSC) correspond
to the paths of the graph starting at the initial node. There are two interpreta-
tions for the concatenation of the MSC’s of the different nodes along the path.
In the synchronous interpretation, the concatenation of two nodes u, v is viewed
as consisting of executing all actions of the MSC of u followed by the actions of
the MSC of v; that is, when executing a path, every node represents a block of
activity that completes before going on to the next block. In the asynchronous
interpretation, the MSC’s of the nodes along the path are pasted together, sepa-
rately process by process, i.e. by identifying for each process the end of its line
in one node with the beginning of its line in the next node, thus forming a long
MSC spanning all the actions of all the nodes. The synchronous concatenation is
probably closer to the way system engineers and designers think when they draw
HMSC’s partitioning the activities into blocks. The asynchronous interpretation
is however closer to what one would get if one was to implement directly the
HMSC, i.e. without any other coordination or constraints than what is depicted
explicitly in the HMSC.

326 M. Yannakakis

For each of the interpretations, we can define the language of an HMSC, by
considering all the paths starting at the initial node and taking the labelings
of all the corresponding linear executions. (We can either define a language of
finite strings, if we require that the paths terminate at a final node, or define a
language of potentially infinite strings).

In the synchronous interpretation, the language of an HMSC H is regular.
A hierarchical state machine H ′ can be constructed from H by replacing in the
representation of the HMSC each basic MSC (ie. leaf of the DAG) by a FSM
that recognizes the language of the MSC. Then L(H) = L(H ′). This is a very
benign and convenient case, because we can use directly the results for hierarchi-
cal state machines; it means in particular that the graphs and the hierarchy of
the HMSC’s do not add anything to the complexity of problems like reachability,
model checking etc. beyond what’s in the simple basic MSC’s. If an individual
basic MSC is a ‘large’ one, then the translation to an automaton, as well as
answering basic questions about the MSC can be expensive because of the con-
currency. Namely, if an MSC M has k processes with l events in each process,
then the equivalent FSM can have lk states, and in fact answering a simple que-
stion such as, ‘does a given string x belong to L(M)’ is NP-complete. However,
in many cases in hierarchical MSC’s most of the size of the HMSC is in the use
case graph; the individual MSC’s are not large and the number of processes is
often small (for example in telephony, processes correspond to entities such as
originating and terminating switches and users).

The hierarchy does not introduce any additional complications beyond the
basic MSC’s under the synchronous interpretation. Thus, for example reachabi-
lity, or membership, or the model checking problem for a hierarchical HMSC H
of size n and a Buchi automaton A of size a is still “only” NP-complete, and can
be solved in time O(a2nlk), where k and l are as above the number of processes
and number of events per process in a basic MSC. Thus, hierarchical MSC’s can
be analyzed under the synchronous interpretation without paying a penalty for
the hierarchy, and if the basic MSC’s are small or do not have too much con-
currency (which is often the case) then the complexity is low. Furthermore, for
properties that are linearization-independent (i.e., if the property is such that one
linearization of an ordinary MSC satisfies the property iff any other one does),
then the HMSC H can be checked in linear time in its size: substitute each basic
MSC in the definition of H by an automaton (just a path) that accepts just one
linearization (instead of all of them); the resulting hierarchical machine satisfies
the property iff the given hierarchical MSC does (for linearization-independent
properties, there is no difference between synchronous and asynchronous inter-
pretation as far as satisfaction of the properties is concerned, so this holds also
for the asynchronous case).

In the asynchronous interpretation, the language of an HMSC is in general
not regular, and in fact model checking an MSC-graph for a property given by a
Buchi automaton is undecidable. There is a syntactic condition that ensures that
the language is regular, and which leads to decidability. Given a set S of basic
MSC’s, we can construct a corresponding communication graph CG(S) among

Hierarchical State Machines 327

the processes: this is a directed graph with the processes as nodes and with an
arc Pi → Pj if process Pi sends a message to process Pj in some MSC of S. Given
an MSC-graph G (respectively, a hierarchical HMCS H) we say that it is boun-
ded if for every cycle K of G (resp. of flat(H)) that is reachable from the initial
state, the corresponding communication graph CG(K) consists of one strongly
connected component and possibly some isolated nodes. If an HMCS is bounded
then its language is regular [AY99]. Conversely, it is shown in [HMNT00] that
every regular MSC language that is definable by an MSG graph (or equivalently,
is finitely generated) then it can be defined by a bounded MSC graph. Boun-
dedness of an HMSC can be determined without flattening the hierarchy in time
O(nl2k) where n is the size of the HMSC, k is the number of processes and l is the
number of events per process in a basic MSC (this mild exponential dependence
on k is unavoidable, as the boundedness problem is coNP-complete). We can
analyze algorithmically bounded HMSC’s by constructing an equivalent FSM.
The complexity is higher in this case: model checking a Buchi automaton pro-
perty is PSPACE-complete for bounded MSC graphs and EXPSPACE-complete
for HMSC’s (the problem is hard even for a fixed property, a fixed number of
processes k, and fixed number of events l per basic MSC).

5 Testing

In testing, we have a design model M (eg., a finite state machine) and the
actual system S (the implementation under test) and we wish to generate a
suitable set of test cases based on the model, which will be applied to the system
S to test its correctness, i.e., whether it conforms with the model. There is
extensive theoretical and practical work on test generation for FSM’s, see for
instance [LY96] for a survey. There is a variety of testing criteria that can be
used depending on the extent of testing that can be afforded; it can range from
checking sequences that provide certain guarrantees on the relation between M
and S (usually at a rather high cost), to a more commonly applied simpler set
of coverage criteria, such as covering all the states and transitions of the model.

Suppose that we have a hierarchical finite state machine model and let’s
consider the most common criterion of ‘transition coverage’, i.e. finding a set of
test sequences (paths from the initial state) that cover all the transitions. There
are two interpretations of this requirement: in the first interpretation we seek to
cover all transitions of M and its nested submachines in all possible contexts, i.e.
if a submachine is reused several times, we want to cover all its transitions in all
the uses; this is equivalent to covering all the transitions of the flattened machine
flat(M). A covering test set can be computed in time polynomial in the size of
the flat FSM using flow techniques to minimize the number of test sequences
and the total length of the tests. Such an algorithm has been implemented in
Lucent’s uBET toolset; after flattening the hierarchical MSC graph, an optimal
test set is generated, and for each test path, the basic MSC’s of the nodes along
the path are combined to form a test scenario in the form of an MSC.

328 M. Yannakakis

An alternative (and more economical) interpretation of the transition cover-
age requirement is to cover each transition of the hierarchical state machine and
each nested submachine at least once overall, i.e., if a submachine is used several
times, we only need to cover each transition in only one occurrence (and different
transitions could be covered in different copies). One justification for this could
be for example if the same implementation of the submachine is used in the
different copies, in which case testing a transition in one instance suggests that
it will likely work properly in the other instances as well (although that is not
necessarily guarranteed). Of course, the number of tests needed under this wea-
ker requirement is generally much smaller than the full coverage requirement;
for example, the number of test cases needed is certainly bounded by the size
of the hierarchical machine, as opposed to the potentially exponentially larger
size of the flattened machine. Computing an optimal (minimum cardinality) test
set for the weaker coverage is much harder than for simple FSM’s. For example,
even in the 2-level case the problem is at least as hard as Set Cover (hence it
is hard to compute or to approximate the smallest test set within a constant
factor).

Generally, very little systematic work has been done on test generation for
hierarchical state machines.

6 Conclusions

Hierarchy is a useful construct in enhancing the expressive power of finite state
machines and facilitating the modeling of large systems. We summarized recent
work on the theory of hierarchical finite state machines and related specification
mechanisms (HMSC’s). We discussed the effect of concurrency and nondetermi-
nism, the classification of their expressive power, and the complexity of various
algorithmic problems. The picture that emerged is rather comprehensive. One
specific problem that remains open is the equivalence of deterministic HSM’s.
More broadly, we did not touch on the interaction with variables (extended
HSM’s). Also, as we mentioned more work remains to be done on the testing of
hierarchical FSM’s.

Another issue concerns design problems, such as the structuring and modu-
larization of the behavioral aspects of systems, to form a suitable hierarchical
model. For example, suppose that we have a legacy system which we want to
capture formally in a requirement model like uBET. We have available or can
generate a large number of executions of the system to obtain a library of MSC
scenarios. How do we go from this collection of MSC’s to a more higher level,
structured view of the system, in the form of a hierarchical use case graph built
from basic MSC’s?

Similarly, suppose that we have a test model of a system in the form of a
large FSM; for example, we produced recently automatically such a model for a
large Lucent enterprise switch from the test platform in use for the testing of the
switch [EY00]; the FSM model has hundreds of thousands of states. The model
can be used for targeted test generation to meet a variety of criteria. However, the

Hierarchical State Machines 329

machine is obviously too large for a person to look at, or to manipulate directly,
for example to modify as the system evolves, to add new features etc. Can
we structure such an FSM and obtain an equivalent (hopefully much smaller)
hierarchical FSM? There is an elegant classical decomposition theory of FSM’s
[HS66] which may be useful in this context.

References

[AHP96] R. Alur, G.J. Holzmann, and D. Peled. An analyzer for message sequence
charts. Software Concepts and Tools, 17(2):70–77, 1996.

[AKY99] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state
machines. Proc. 26th Intl. Coll. on Automata, Languages and Programming, 1999.

[AY98] R. Alur, and M. Yannakakis. Model checking of hierarchical state machines.
In Proc. Sixth Symp. on Foundations of Software Engineering, pp. 175–188. 1998.

[AY99] R. Alur, and M. Yannakakis. Model checking of message sequence charts. In
Proc. 10th CONCUR, Springer Verlag, 1999.

[Apf95] L. Apfelbaum. Automated functional test genera-
tion. In Proc. IEEE Autotestcon Conference, 1995. See also,
www.teradyne.com/prods/sst/product center/t main.html.

[BVW94] O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach
to branching-time model checking. In Computer Aided Verification, Proc. 6th Int.
Conference, LNCS 818, pages 142–155, 1994.

[BJR97] G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language User
Guide. Addison Wesley, 1997.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model checking. Proc. CONCUR’97, LNCS 1243, 1997.

[BS92] O. Burkart and B. Steffen. Model checking for context-free processes. Proc.
CONCUR’92, LNCS 630, pp. 123-137, 1992.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Proc. Workshop on Logic of Programs,
LNCS 131, pages 52–71. Springer-Verlag, 1981.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory
efficient algorithms for the verification of temporal properties. Formal Methods in
System Design, 1:275–288, 1992.

[DH94] D. Drusinsky and D. Harel. On the power of bounded concurrency I: finite
automata. JACM 41(3), 1994.

[EY00] K. Etessami, and M. Yannakakis. From rule-based to automata-based testing.
submitted, 2000.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231–274, 1987.

[HMNT00] J. G. Henriksen, M. Mukund, K. Narayan Kumar, P. S. Thiagarajan. On
message sequence graphs and finitely generated regular MSC languages. 27th Intl.
Coll. on Automata, Languages and Programming, 2000.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software Enginee-
ring, 23(5):279–295, 1997.

[HPR97] G.J. Holzmann, D. A. Peled, M. H. Redberg. Design tools for requirements
engineering. Bell Labs Technical Journal, 2(1):86–95, 1997.

[HS66] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential
Machines, Prentice-Hall, 1966.

330 M. Yannakakis

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages
and computation. Addison-Wesley, 1979.

[Jac92] I. Jacobson. Object-oriented software engineering: a use case driven approach.
Addison-Wesley, 1992.

[JM87] F. Jahanian and A.K. Mok. A graph-theoretic approach for timing analysis
and its implementation. IEEE Trans. on Computers, C-36(8):961–975, 1987.

[Koz77] D. Kozen. Lower bounds for natural proof systems. Proc. 18th Annual IEEE
Symp. on Foundations of Computer Science, pp. 254-266, 1977.

[Kur94] R.P. Kurshan. Computer-aided verification of coordinating processes: the
automata-theoretic approach. Princeton University Press, 1994.

[LHHR94] N.G. Leveson, M. Heimdahl, H. Hildreth, and J.D. Reese. Requirements
specification for process control systems. IEEE Trans. on Software Engineering,
20(9), 1994.

[LY96] D. Lee and M. Yannakakis. Principles and Methods of Testing Finite State
Machines - A Survey. Proceedings of the IEEE, 84 (8), pp. 1090-1126, 1996.

[McM93] K. McMillan. Symbolic model checking: An approach to the sate explosion
problem. Kluwer Academic, 1993.

[MSC96] ITU-T Recommendation Z.120. Message Sequence Chart (MSC). 1996.
[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. of the 18th IEEE Sym-

posium on Foundations of Computer Science, pages 46–77, 1977.
[QS82] J.P. Queille and J. Sifakis. Specification and verification of concurrent programs

in CESAR. Proc. of the 5th Intl. Symp. on Programming, LNCS 137, pp. 195–220,
1982.

[RBPE91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen. Object-
oriented modeling and design. Prentice-Hall, 1991.

[RGG96] E. Rudolph, J. Grabowski, P. Graubmann. Tutorial on Message Sequence
Charts (MSC’96). FORTE/PSTV’96, 1996.

[SGW94] B. Selic, G. Gullekson, and P. T. Ward. Real-time object oriented modeling
and design. J. Wiley, 1994.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. Proc. of the First IEEE Symp. on Logic in Computer Science,
pp. 332–344, 1986.

	Introduction
	Hierarchical FSMs
	Expressibility
	Operations
	Verification

	Concurrency and Hierarchy
	Expressiveness
	Operations

	Hierarchical Message Sequence Charts
	Testing
	Conclusions
	References

