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Abstract. The recent file storage applications built on top of peer-to-peer dis-
tributed hash tables lack search capabilities. We believe that search is an impor-
tant part of any document publication system. To that end, we have designed and
analyzed a distributed search engine based on a distributed hash table. Our simu-
lation results predict that our search engine can answer an average query in under
one second, using under one kilobyte of bandwidth.
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1 Introduction

Recent work on distributed hash tables (DHTs) such as Chord [19], CAN [16], and
Pastry [17] has addressed some of the scalability and reliability problems that plagued
earlier peer-to-peer overlay networks such as Napster [14] and Gnutella [8]. However,
the useful keyword searching present in Napster and Gnutella is absent in the DHTs that
endeavor to replace them. In this paper, we present a symmetrically distributed peer-
to-peer search engine based on a DHT and intended to serve DHT-based file storage
systems.

Fig. 1. Distributing an inverted index
across a peer-to-peer network.

Applications built using the current generation
of DHTs request documents using an opaque key.
The means for choosing the key is left for the ap-
plication built on top of the DHT to determine.
For example, the Chord File System, CFS [6],
uses hashes of content blocks as keys. Freenet [5,
9], which shares some characteristics of DHTs,
uses hashes of filenames as keys. In each case,
users must have a single, unique name to retrieve
content. No functionality is provided for keyword
searches.

The system described in this paper provides keyword search functionality for a
DHT-based file system or archival storage system, to map keyword queries to the unique
routing keys described above. It does so by mapping each keyword to a node in the DHT
that will store a list of documents containing that keyword. Figure 1 shows how key-
words in the index map into the hash range and, in turn, to nodes in the DHT.
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Fig. 2. Number of keywords per search op-
eration in the IRCache for a ten-day period
in January 2002.

We believe that end-user latency is the
most important performance metric for a
search engine. Most end-user latency in a dis-
tributed search engine comes from network
transfer times. Thus, minimizing the number
of bytes sent and the number of times they are
sent is crucial. Both bytes and hops are easy
to minimize for queries that can be answered
by a single host. Most queries, however, con-
tain several keywords and must be answered
by several cooperating hosts. Using a trace
of 99,405 queries sent through the IRCache
proxy system to Web search engines during a
ten-day period in January 2002, we determined that 71.5% of queries contain two or
more keywords. The entire distribution of keywords per query is shown in Figure 2.
Because multiple-keyword queries dominate the search workload, optimizing them is
important for end-user performance. This paper focuses on minimizing network traffic
for multiple-keyword queries.

1.1 Non-goals

One extremely useful feature of distributed hash tables is that they provide a simple ser-
vice model that hides request routing, churn costs, load balancing, and unavailability.
Most DHTs route requests to nodes that can serve them in expected O(lgn) steps, for
networks of n hosts. They keep churn costs [11] – the costs associated with managing
node joins and departures – logarithmic with the size of the network. Using consistent
hashing [10] they divide load roughly evenly among available hosts. Finally, they per-
form replication to ensure availability even when individual nodes fail. Our design uses
a DHT as its base; thus, it does not directly address these issues.

1.2 Overview

This paper describes our search model, design, and simulation experiments as follows.
In Section 2 we describe several aspects of the peer-to-peer search problem space, along
with the parts of the problem space we chose to explore. Section 3 describes our ap-
proach to performing peer-to-peer searches efficiently. Section 4 details our simulation
environment, and Section 5 describes the simulation results. We present related work in
Section 6 and conclude in Section 7.

2 System Model

Fundamentally, search is the task of associating keywords with document identifiers
and later retrieving document identifiers that match combinations of keywords. Most
text searching systems use inverted indices, which map each word found in any docu-
ment to a list of the documents in which the word appears. Beyond this simple descrip-
tion, many design trade-offs exist. How will the index be partitioned, if at all? Should
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Fig. 3. A horizontally partitioned index stores part of every keyword match-list on each node,
often divided by document identifiers. Here we divide the index into document identifiers 1-3,
4-6, and 7-9. A vertically partitioned index assigns each keyword to a single node.

it be distributed, or would a centralized index suffice? In what order will matching doc-
uments be listed? How are document changes reflected in the index? We address these
questions below.

2.1 Partitioning

Although a sufficiently small index need not be partitioned at all, our target application
is a data set large enough to overwhelm the storage and processing capacities of any
single node. Thus, some partitioning scheme is required. There are two straightforward
partitioning schemes: horizontal and vertical.

For each keyword an index stores, it must store a match-list of identifiers for all
of the documents containing the keyword. A horizontally partitioned index divides this
list among several nodes, either sequentially or by partitioning the document identi-
fier space. Google [3] operates in this manner. A vertically partitioned index assigns
each keyword, undivided, to a single node. Figure 3 shows a small sample index parti-
tioned horizontally and vertically, with K1 through K5 representing keywords and doc1
through doc9 representing documents that contain those keywords.

A vertically partitioned index minimizes the cost of searches by ensuring that no
more than k servers must participate in answering a query containing k keywords. A
horizontally partitioned index requires that all nodes be contacted, regardless of the
number of keywords in the query. However, horizontal indices partitioned by document
identifier can insert or update a document at a single node, while vertically partitioned
indices require that up to k servers participate to insert or update a document with k
keywords. As long as more servers participate in the overlay than there are keywords
associated with an average document, these costs favor vertical partitioning. Further-
more, in file systems, most files change rarely, and those that change often change in
bursts and may be removed shortly after creation, allowing us to optimize updates by
propagating changes lazily. In archival storage systems, files change rarely if at all.
Thus, we believe that queries will outnumber updates for our proposed uses, further
increasing the cost advantage for vertically partitioned systems.

Vertically partitioned indices send queries to a constant number of hosts, while hor-
izontally partitioned indices must broadcast queries to all nodes. Thus, the throughput
of a vertically partitioned index theoretically grows linearly as more nodes are added.
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Query throughput in a horizontally partitioned index does not benefit at all from addi-
tional nodes. Thus, we chose vertical partitioning for our search engine.

2.2 Centralized or Distributed Organization

Google has had great success providing centralized search services for the Web. How-
ever, we believe that for peer-to-peer file systems and archival storage networks, a dis-
tributed search service is better than a centralized one. First, centralized systems provide
a single point of failure. Failures may be network outages; denial-of-service attacks, as
plagued several Web sites in February of 2000; or censorship by domestic or foreign au-
thorities. In all such cases, a replicated distributed system may be more robust. Second,
many uses of peer-to-peer distributed systems depend on users voluntarily contribut-
ing computing resources. A centralized search engine would concentrate both load and
trust on a small number of hosts, which is impractical if those hosts are voluntarily
contributed by end users.

Both centralized and distributed search systems benefit from replication. Replica-
tion improves availability and throughput in exchange for additional hardware and up-
date costs. A distributed search engine benefits more from replication, however, because
replicas are less susceptible to correlated failures such as attacks or network outages.
Distributed replicas may also allow nodes closer to each other or to the client to respond
to queries, reducing latency and network traffic.

2.3 Ranking of Results

One important feature of search engines is the order in which results are presented to
the user. Many documents may match a given set of keywords, but some may be more
useful to the end user than others. Google’s PageRank algorithm [15] has successfully
exploited the hyperlinked nature of the Web to give high scores to pages linked to by
other pages with high scores. Several search engines have successfully used words’
proximity to each other or to the beginning of the page to rank results. Peer-to-peer
systems lack the linking structure necessary for PageRank but may be able to take ad-
vantage of word position or proximity heuristics. We will discuss specific interactions
between ranking techniques and our design in Section 3.5 after we have presented the
design.

2.4 Update Discovery

A search engine must discover new, removed, or modified documents. Web search en-
gines have traditionally relied on enumerating the entire Web using crawlers, which
results in either lag or inefficiency if the frequency of crawling differs from the fre-
quency of updates for a given page. Popular file-sharing systems use a “push” model
for updates instead: clients that have new or modified content notify servers directly.
Even with pushed updates, the process of determining keywords and reporting them to
server should occur automatically to ensure uniformity.

The Web could support either crawled or pushed updates. Crawled updates are cur-
rently the norm. Peer-to-peer services may lack hyperlinks or any other mechanism
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for enumeration, leaving them dependent on pushed updates. We believe that pushed
updates are superior because they promote both efficiency and currency of index infor-
mation.

2.5 Placement

All storage systems need techniques for placing and finding content. Distributed search
systems additionally need techniques for placing index partitions. We use a DHT to
map keywords to nodes for the index, and we claim that the placement of content is
an orthogonal problem. There is little or no benefit to placing documents and their
keywords in the same place. First, very few documents indicated as results for a search
are later retrieved; thus, most locality would be wasted. Second, there is no overlap
between an index entry and the document it indicates; both still must be retrieved and
sent over the network. A search engine is a layer of indirection. It is expected that
documents and their keywords may appear in unrelated locations.

3 Efficient Support for Peer-to-Peer Search

In the previous section, we discussed the architecture and potential benefits of a fully
distributed peer-to-peer search infrastructure. The primary contribution of this work is
to demonstrate the feasibility of this approach with respect to individual end user re-
quests. Conducting a search for a single keyword consists of looking up the keyword’s
mapping in the index to reveal all of the documents containing that keyword. This in-
volves contacting a single remote server, an operation with network costs comparable
to accessing a traditional search service. A boolean “AND” search consists of looking
up the sets for each keyword and returning the intersection. As with traditional search
engines, we return a small subset of the matching documents. This operation requires
contacting multiple peers across the wide area, and the requisite intersection operation
across the sets returned by each peer can become prohibitively expensive, both in terms
of consumed network bandwidth and the latency incurred from transmitting this data
across the wide area.

Consider the example in Figure 4(a), which shows a simple network with servers s A

and sB. Server sA contains the set of documents A for a given keyword k A, and server
sB contains the set of documents B for another keyword k B. |A| and |B| are the num-
ber of documents containing kA and kB, respectively. A∩B is the set of all documents
containing both kA and kB.

The primary challenge in performing efficient keyword searches in a distributed in-
verted index is limiting the amount of bandwidth used for multiple-keyword searches.
The naive approach, shown in Figure 4(a), consists of the first server, s A, sending its
entire set of matching document IDs, A, to the second server, s B, so that sB can calcu-
late A∩B and send the results to the client. This is wasteful because the intersection,
A∩B, is likely to be far smaller than A, resulting in most of the information in A getting
discarded at sB. Furthermore, the size of A (i.e., the number of occurrences of the key-
word kA) scales roughly with the number of documents in the system. Thus, the cost of
naive search operations grows linearly with the number of documents in the system. We
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(a) A simple approach to “AND” queries.
Each server stores a list of document IDs cor-
responding to one keyword.
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(b) Bloom filters help reduce the bandwidth
requirement of “AND” queries. The gray box
represents the Bloom filter F(A) of the set A.
Note the false positive in the set B∩F(A) that
server sB sends back to server sA.

Fig. 4. Network architecture and protocol overview.

propose three techniques to limit wasted bandwidth, to ensure scalability, and to reduce
end-client latency: Bloom filters, caches, and incremental results. We discuss each of
these approaches in turn and present analytical results showing the potential benefits of
each technique under a variety of conditions before exploring these tradeoffs in more
detail through simulation in Section 5.

3.1 Bloom Filters

A Bloom filter [2, 7, 13] is a hash-based data structure that summarizes membership
in a set. By sending a Bloom filter based on A instead of sending A itself, we reduce
the amount of communication required for s B to determine A∩B. The membership test
returns false positives with a tunable, predictable probability and never returns false
negatives. Thus, the intersection calculated by sB will contain all of the true intersection,
as well as a few hits that contain only kB and not kA. The number of false positives falls
exponentially as the size of the Bloom filter increases.

Given optimal choice of hash functions, the probability of a false positive is

p f p = .6185m/n, (1)

where m is the number of bits in the Bloom filter and n is the number of elements in the
set [7]. Thus, to maintain a fixed probability of false positives, the size of the Bloom
filter must be proportional to the number of elements represented.

Our method for using Bloom filters to determine remote set intersections is shown
in Figure 4(b) and proceeds as follows. A and B are the document sets to intersect, each
containing a large number of document IDs for the keywords k A and kB, respectively.
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The client wishes to retrieve the intersection A∩B. Server sA sends a Bloom filter F(A)
of set A to server sB. Server sB tests each member of set B for membership in F(A).
Server sB sends the matching elements, B∩F(A), back to server sA, along with some
textual context for each match. Server sA removes the false positives from sB’s results
by calculating A∩ (B∩F(A)), which is equivalent to A∩B.

False positives in B∩F(A) do not affect the correctness of the final intersection but
do waste bandwidth. They are eliminated in the final step, when s A intersects B∩F(A)
against A.

It is also possible to send B∩F(A) directly from sB to the client rather than first
sending it to sA and removing the false positives. Doing so eliminates the smaller trans-
fer and its associated latency at the expense of correctness. Given reasonable values
for |A|, |B|, the size of each document record, and the cache hit rate (see Section 3.2),
the false-positive rate may be as high as 0.05 or as low as 0.00003. This means that
B ∩ F(A) will have from 0.00003|B| to 0.05|B| extra elements that do not contain
kA. For example, if 5% of the elements of B actually contain k A, then returning the
rough intersection B∩F(A) to the client results in between 0.00003|B|

(0.05+0.00003)|B| = 0.06%

and 0.05|B|
(0.05+0.05)|B| = 50% of the results being incorrect and not actually containing k A,

where each expression represents the ratio of the number of false positives to the total
number of elements in B∩F(A). The decision to use this optimization is made at run
time, when the parameters are known and p f p can be predicted. Server sA may choose
an m value slightly larger than optimal to reduce p f p and improve the likelihood that sB

can return B∩F(A) directly to the client.
The total number of bits sent during the exchange shown in Figure 4(b) is m +

p f p|B| j + |A∩B| j, where j is the number of bits in each document identifier. For this
paper, we assume that document identifiers are 128-bit hashes of document contents;
thus, j is 128. The final term, |A∩B| j, is the size of the intersection itself. It can be
ignored in our optimization, because it represents the resulting intersection, which must
be sent regardless of our choice of algorithm.

The resulting total number of excess bits sent (i.e., excluding the intersection itself)
is

m+ p f p|B| j.
Substituting for p f p from Equation 1 yields the total number of excess bits as

m+ .6185m/|A||B| j. (2)

Taking the first derivative with respect to m and solving for zero yields an optimal
Bloom filter size of

m = |A| log.6185

(
2.081

|A|
|B| j

)
. (3)

Figure 5(a) shows the minimum number of excess bits sent for three sets of values
for |A|, |B|, and j. The optimal m for any given |A|, |B|, and j is unique and directly
determines the minimum number of excess bits sent. For example, when |A| and |B|
are 10,000 and j is 128, m is 85,734, and the minimum number of excess bits sent is
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Fig. 5. Effects of Bloom filter size and cache hit rate.

106,544, representing 12.01 : 1 compression when compared to the cost of sending all
1,280,000 bits (10,000 documents, each with a 128-bit ID) of either A or B.

As also shown in Figure 5(a), performance is not symmetric when A and B differ in
size. With j constant at 128, the minimum number of excess bits for |A| = 2,000 and
|B| = 10,000 is 28,008, lower than the minimum number for |A| = 10,000 and |B| =
2,000, which is 73,046. 28,008 bits represents 9.14 : 1 compression when compared
with the 256,000 bits needed to send all of A. The server with the smaller set should
always initiate the transfer.

Our Bloom filter intersection technique can be expanded to arbitrary numbers of
keywords. Server sA sends F(A) to server sB, which sends F(B∩F(A)) to sC, and so
on. The final server, sZ , sends its intersection back to sA. Each server that encoded its
transmission using a Bloom filter must process the intersection once more to remove
any false positives introduced by its filter. Thus, the intersection is sent to each server
except sZ a second time. As above, the expected number of excess bits is minimized
when |A| ≤ |B| ≤ |C| ≤ . . . ≤ |Z|.

3.2 Caches

Caching can eliminate the need for sA to send A or F(A) if server sB already has A
or F(A) stored locally. We derive more benefit from caching Bloom filters than from
caching entire document match lists because the smaller size of the Bloom represen-
tation means that a cache of fixed size can store data for more keywords. The benefit
of caching depends on the presence of locality in the list of words searched for by a
user population at any given time. To quantify this intuition, we use the same ten-day
IRCache trace described in Section 1 to determine word search popularity. There were a
total of 251,768 words searched for across the 99,405 searches, 45,344 of them unique.
Keyword popularity roughly followed a Zipf distribution, with the most common key-
word searched for 4,365 times. The dominance of popular keywords suggests that even
a small cache of either the Bloom filter or the actual document list on A is likely to
produce high hit rates.
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When server sB already has the Bloom filter F(A) in its cache, a search operation
for the keywords kA and kB may skip the first step, in which server sA sends its Bloom
filter to sB. On average, a Bloom filter will be in another server’s cache with probability
r equal to the cache hit rate.

The excess bits formula in Equation (2) can be adapted to consider cache hit rate, r,
as follows:

(1− r)m+ .6185m/|A||B| j (4)

Setting the derivative of this with respect to m to zero yields the optimal m as

m = |A| log.6185

[
(1− r)2.081

|A|
|B| j

]
. (5)

Figure 5(b) shows the effect of cache hit rates on the excess bits curves, assuming
|A| and |B| are both 10,000 and j is 128. Each curve still has a unique minimum. For
example, when the hit rate, r, is 0.5, the minimum excess number of bits sent is 60,486,
representing 21.16 : 1 compression when compared with sending A or B. Improvements
in the cache hit rate always reduce the minimum expected number of excess bits and
increase the optimal m. The reduction in the expected number of excess bits sent is
nearly linear with improvements in the hit rate. The optimal m increases because as we
become less likely to send the Bloom filter, we can increase its size slightly to reduce
the false-positive rate. Even with these increases in m, we can store hundreds of cache
entries per megabyte of available local storage. We expect such caching to yield high
hit rates given even moderate locality in the request stream.

Cache consistency is handled with a simple time-to-live field. Updates only occur
at a keyword’s primary location, and slightly stale match list information is accept-
able, especially given the current state of Internet search services, where some degree
of staleness is unavoidable. Thus, more complex consistency protocols should not be
necessary.

3.3 Incremental Results

Clients rarely need all of the results of a keyword search. By using streaming transfers
and returning only the desired number of results, we can greatly reduce the amount of
information that needs to be sent. This is, in fact, critical for scalability: the number
of results for any given query is roughly proportional to the number of documents in
the network. Thus, the bandwidth cost of returning all results to the client will grow
linearly with the size of the network. Bloom filters and caches can yield a substan-
tial constant-factor improvement, but neither technique eliminates the linear growth in
cost. Truncating the results is the only way to achieve constant cost independent of the
number of documents in the network.

When a client searches for a fixed number of results, servers sA and sB communicate
incrementally until that number is reached. Server sA sends its Bloom filter in chunks
and server sB sends a block of results (true intersections and false positives) for each
chunk until server sA has enough results to return to the client. Because a single Bloom
filter cannot be divided and still retain any meaning, we divide the set A into chunks
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and send a full Bloom filter of each chunk. The chunk size can be set adaptively based
on how many elements of A are likely to be needed to produce the desired number of
results. This protocol is shown in Figure 6. Note that sA and sB overlap their communi-
cation: sA sends F(A2) as sB sends B∩F(A1). This protocol can be extended logically to
more than two participants. Chunks are streamed in parallel from server s A to sB, from
sB to sC, and so on. The protocol is an incremental version of the multi-server protocol
described at the end of Section 3.1.

server sA server sB

client

request
A∩B

F(A1)
F(A2)
F(A3)

B∩F(A1)
B∩F(A2)
B∩F(A3)

A1

A2

A3 B

Fig. 6. Servers sA and sB send their data one
chunk at a time until the desired intersection
size is reached.

When the system streams data in chunks,
caches can store several fractional Bloom fil-
ters for each keyword rather than storing the
entire Bloom filter for each keyword. This al-
lows servers to retain or discard partial entries
in the cache. A server may get a partial cache
hit for a given keyword if it needs several
chunks but already has some of them stored
locally. Storing only a fraction of each key-
word’s Bloom filter also reduces the amount
of space in the cache that each keyword con-
sumes, which increases the expected hit rate.

Sending Bloom filters incrementally sub-
stantially increases the CPU costs involved in
processing a search. The cost for server sB

to calculate each intersection B∩F(Ai) is the
same as the cost to calculate the entire inter-
section B ∩ F(A) at once because each ele-
ment of B must be tested against each chunk.
This added cost can be avoided by sending
contiguous portions of the hash space in each chunk and indicating to s B which fraction
of B (described as a portion of the hash space) it needs to test against F(A).

3.4 Virtual Hosts

One key concern in a peer-to-peer system is the inherent heterogeneity of such sys-
tems. Randomly distributing functionality (e.g., keywords) across the system runs the
risk of assigning a popular keyword to a relatively under-provisioned machine in terms
of memory, CPU, or network capacity. Further, no hash function will uniformly dis-
tribute functionality across a hash range. Thus, individual machines may be assigned
disproportionate numbers of keywords (recall that keywords are assigned to the host
whose ID is closest to it in the hash range). Virtual hosts [6] are one technique to ad-
dress this potential limitation. Using this approach, a node participates in a peer-to-peer
system as several logical hosts, proportional to its request processing capacity. A node
that participates as several virtual hosts is assigned proportionally more load, address-
ing heterogeneous node capabilities. Thus, a node with ten times the capacity of some
baseline measure would be assigned ten virtual IDs (which means that it is mapped to
ten different IDs in the hash range). An optional system-wide scaling factor for each
node’s number of virtual hosts further reduces the probability that any single node is



Efficient Peer-to-Peer Keyword Searching 31

assigned a disproportionately large portion of the hash range. This effect is quantified
in Section 5, but consider the following example: with 100 hosts of equal power, it is
likely that one or more hosts will be assigned significantly more than 1% of the hash
range. However, with a scaling factor of 100, it is much less likely that any host will
be assigned much more than 1% of the range because an “unlucky” hash (large portion
of the hash region) for one virtual host is likely to be canceled out by a “lucky” hash
(small portion of the hash region) for another virtual host on the same physical node.

3.5 Discussion

Two of the techniques described here, Bloom filters and caching, yield constant-factor
improvements in terms of the number of bytes sent and the end-to-end query latency.
Bloom filters compress document ID sets by about one order of magnitude, in exchange
for either added latency or a configurable probability of false positives. Caching exploits
re-referencing and sharing in the query workload to reduce the probability that docu-
ment ID sets need to be sent. However, even together, these techniques leave both bytes
sent and end-to-end query time roughly proportional to the number of documents in the
system.

The third technique, incremental results, reduces the number of bytes sent and the
end-to-end query latency to a constant in most cases. As long as the user wants only
a constant number of results, only a constant amount of work will be done, regardless
of how many possible results exist in the system. Incremental results yield no improve-
ment in some unusual cases, however. If the user searches for several keywords that
are individually popular but mostly uncorrelated in the document space, there may be
a small but nonzero number of valid results1. If the number of results is nonzero but
smaller than the number that the client requests, the system must consider the entire
search space, rendering incremental results useless. In cases such as this, the entire
search space must be considered, and incremental results will increase, rather than de-
crease, the number of bytes sent and the end-to-end query latency. However, caching
may alleviate the problem if the words used are popular in search queries, and Bloom
filters still yield approximately a ten-to-one compression factor.

We expect that searches containing popular but uncorrelated keywords will be rare.
In our IRCache search trace, most of the queries with small numbers of results had
uncommon (often misspelled) keywords. Uncommon keywords—i.e., those with few
matching documents—are easy to handle, as discussed in Section 3.1. The system con-
siders the least common keyword first, bounding the maximum size of any intersection
set sent for the remainder of the query.

3.6 Ranking of Results

Two of our optimization techniques, Bloom filters and incremental results, complicate
problem of ranking results. Bloom filters roughly convey membership in a set, but they

1 One example of a difficult search is “OpenBSD birthday pony,” suggested by David Mazières
at New York University. In recent Google searches, these three keywords match two million,
eight million, and two million documents, respectively. Only fifteen documents contain all
three.
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do not provide the ability to order set members or to convey additional data with each
member, such as a word’s position in a document. The uncompressed response mes-
sage containing B∩F(A) can contain document-ranking or word-position information,
which would give server sA enough information to generate rankings based on both
keywords, kA and kB. However, in Section 3.1, we suggested eliminating this uncom-
pressed response message. Doing so eliminates the ability to consider k A in any ranking
techniques.

Incremental results can alleviate the problems with Bloom filters. If each chunk sent
contains document IDs with strictly lower rankings than in previous chunks, then the
first results returned to the client will be the best, though order within a chunk will not
be preserved. However, in Section 3.3 we suggested sending contiguous portions of the
hash space in each chunk to save processing time on server s B. These two techniques
are mutually exclusive.

We believe that ranking documents is more important than eliminating one addi-
tional message or saving processing time. However, this trade-off can be determined at
run time according to user preference.

3.7 Load Balancing

A vertically partitioned index distributes keywords randomly, resulting in a binomial
(roughly normal) distribution of the number of keywords on each node. However, key-
word appearance popularity (i.e., the size of the keyword’s match-list) and search pop-
ularity are both roughly Zipf-distributed. Keyword appearance popularity determines
the storage required, and keyword search popularity determines processing loads. Both
contribute to network loads. The resulting storage, processing, and network loads are
less evenly distributed than with a horizontally partitioned index. Virtual hosts alleviate
the problem by assigning larger loads to more capable nodes, but they do not make load
any more balanced. Increasing the size of the network and the number of documents
results in somewhat more balanced load. As long as the network is over-provisioned,
which many peer-to-peer networks are, we believe that load balancing will not be a
problem.

4 Simulation Infrastructure

The simple analysis described above in Section 3 provides some insight into the poten-
tial benefits of our three approaches toward efficiently supporting peer-to-peer search.
However, the actual benefits and tradeoffs depend heavily upon target system character-
istics and access patterns. To test the validity of our approach under a range of realistic
circumstances, we developed a simulation infrastructure implementing our three tech-
niques. In this section, we discuss the details of this simulation infrastructure before
presenting the results of our evaluation in Section 5.

4.1 Goals

Our goal in writing the simulator was to test the system with a realistic workload and
to test the effects of parameters and features that did not lend themselves to tractable
analysis. In particular, we tested the effects of the number of hosts in the network, the
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use of virtual hosts, the Bloom filter threshold, Bloom filter sizes, caching techniques,
and the use of incremental results. We also tested the system’s sensitivity to varying
network characteristics.

The Bloom filter threshold refers to the document set size below which a host trans-
mits a full list rather than a Bloom-compressed set. For small documents, the total
bandwidth consumed for transmission to a remote host (for set intersection) may be so
small that it may not be worth the CPU time required to compress the set. Eliminating
the Bloom step further eliminates the need to return to the transmitting host to elimi-
nate false positives from the intersection. Typically, we find that the extra CPU overhead
and network overhead of returning the result is worth the substantial saving in network
bandwidth realized by using Bloom filters. In Section 5, we quantify this effect for a
variety of Bloom thresholds.

Bloom filter sizes affect the number of false positives transmitted during the search
process. If the client is willing to accept some probability of false positives (a returned
document containing only a subset of the requested keywords), sufficiently large Bloom
filters can meet the client’s accepted false-positive rate and eliminate the need to revisit
nodes to remove false positives, as described in Section 3.1. That is, small Bloom filters
result in significant compression of a keyword-set size at the cost of either generating
more false positives in the result returned to the client or requiring the transmission of
the intersection back to the originating host for false positive elimination.

4.2 Design

The simulator runs as a single-threaded Java application. We implement the inverted
index, word-to-host mapping, and host measurement (in this case, random generation)
in separate classes so that much of the simulator could be reused in a full implemen-
tation of our protocol. Our simulations use a real document set and search trace. The
document set totals 1.85 GB of HTML data, comprising 1.17 million unique words in
105,593 documents, retrieved by crawling to a recursion depth of five from 100 seed
URLs [4]. The searches performed are read from a list of 95,409 searches containing
45,344 unique keywords. The search trace is the IRCache log file described in Sec-
tion 1. Note that the results presented in this paper are restricted to these particular
traces. However, we do not expect the benefits of our techniques to differ significantly
for other workloads.

Hosts in the network are generated at random based on configurable distributions
for upload speed, download speed, CPU speed, and local storage capacity. We use three
distributions for network speeds: one with all modems, one with all backbone links, and
one based on the measurements of the Gnutella network performed by Saroiu et al [18].
This last heterogeneous set contains a mixture of modems, broadband connections (ca-
ble/DSL) and high-speed LAN connections. Our CPU speed distribution is roughly a
bell curve, with a mean of 750 MIPS, and our local storage distribution is a heavy-
tailed piece-wise function ranging from 1 MB to 100 MB. We experimented with a
broad range of host characteristics and present the results for this representative subset
in this paper. To generate random latencies, we place hosts at random in a 2,500-mile
square grid and assume that network packets travel an average of 100,000 miles per
second.
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The time required to send a network message is the propagation time, as determined
by the distance between the hosts involved, plus the transmission time, as determined
by the minimum of the sender’s upload speed and the recipient’s download speed, and
the size of the packet. The total network time for a search is the sum of the latency
and transmission time for all packets sent among server nodes processing the query. We
ignore the time spent by the client sending the initial query and receiving the results
because these times are constant and independent of any search architecture, whether
centralized or distributed.

Document IDs are assumed to be 128 bits. The time required to look up words
in a local index or perform intersections or Bloom filter operations is based on the
CPU speed and the following assumptions for operation costs: 1,500 simple operations
per hit to look up words in an index, 500 simple operations per element to intersect
two result sets, and 10,000 simple operations per document ID inserted into a Bloom
filter or checked against a Bloom filter received from another host. We believe that in
general, these assumptions place an upper bound on the CPU cost of these operations.
Even with these assumptions, we find that network time typically dominates CPU time
for our target scenarios.

We determine the number of virtual hosts to assign each simulated node based on
its network and CPU speeds when compared to a baseline host. The baseline host has
a 57.5 MIPS CPU and 30 Kbit/s network links. These speeds were chosen as those
required to compute and transmit 5,000 Bloom operations per second. Each node is
compared to the baseline host in three categories: upload speed, download speed, and
CPU speed. The nodes’s minimum margin over the baseline host in these three cate-
gories is rounded down and taken to be its number of virtual hosts.

To perform each query, the simulator looks up each keyword in the inverted index,
obtaining up to M results for each, where M is the incremental result size. Each host
intersects its set with the data from the previous host and forwards it to the subsequent
host, as described in Section 3.1. Each node forwards its current intersected set as either
a Bloom filter or a full set, depending on whether or not the set is larger than the Bloom
threshold. After each peer performs its part of the intersection, any node that sent a
Bloom filter in the first pass is potentially revisited to remove false positives. If the
number of resulting documents is at least as large as the the desired number, the search
is over. Otherwise, M is increased adaptively to twice what appears to be needed to
produce the desired number of results, and the search is rerun.

At each step, a host checks its cache to see if it has data for the subsequent host’s
document list in its local cache. If so, it performs the subsequent host’s portion of the
intersection locally and skips that host in the sending sequence.

4.3 Validation

We validated our simulator in two ways. First, we calculated the behavior and perfor-
mance of short, artificial traces by hand and confirmed that the simulator returns the
same results. Second, we varied the Bloom filter size, m, in the simulator and compared
the results to the analytical results presented in Section 3.1. The analytical results shown
in Figure 5(b) closely resemble the simulated results shown in Figure 9(a).
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Fig. 7. Network scaling and virtual hosts.

5 Experimental Results

The goal of this section is to understand the performance effects of our proposed tech-
niques on a peer-to-peer search infrastructure. Ideally, we wish to demonstrate that
our proposed peer-to-peer search system scales with system size (total resource con-
sumption per search grows sub-linearly with the number of participating hosts) and that
techniques such as Bloom filters and caching improve the performance of individual
requests. Primarily, we focus on the metric of bytes sent per request. Techniques such
as caching and the use of Bloom filters largely serve to reduce this metric. Reducing
bytes per request has the added benefit of reducing total time spent in the network and
hence end-to-end client perceived latency. We also study the effects of the distribution
of network and CPU characteristics on overall system performance. One challenge with
peer-to-peer systems is addressing the subset of hosts that have significantly less com-
putation power and network bandwidth than is required to support a high-performance
search infrastructure.

Finally, although we implemented incremental results, we do not present results for
this technique here because our target document set is not large enough to return large
numbers of hits for most queries. For our workload, this optimization reduces network
utilization by at most 30% in the best case. However, we believe this technique will be
increasingly valuable as the document space increases in size.

5.1 Scalability and Virtual Hosts

A key goal of our work is to demonstrate that a peer-to-peer search infrastructure scales
with the number of participating hosts. Unless otherwise specified, the results presented
in this section all assume the heterogeneous distribution [18] of per-peer network con-
nectivity and the default distribution of CPU power described in Section 4. Caching and
Bloom filters are both initially turned off. As shown in Figure 7(a), increasing the num-
ber of hosts in the simulation has little effect on the total number of bytes sent. With
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very small networks, several keywords from a query may be located on a single host,
resulting in entirely local handling of parts of the query. However, beyond 100 hosts,
this probability becomes insignificant, and each n-keyword query must contact n hosts,
independent of the size of the system.

In addition to demonstrating the scalability of the system, Figures 7(a) and 7(b)
also quantify the benefits of the use of virtual hosts in the system. Recall that when vir-
tual hosts are turned on, each node is assigned a number of hosts based on its capacity
relative to the predefined baseline described in Section 4. The virtual host scaling fac-
tor further multiplies this number of hosts by some constant value to ensure that each
physical host is assigned a uniform portion of the overall hash range as discussed in
Section 4. Overall, virtual hosts have a small effect on the number of total bytes sent
per query. This is because enabling virtual hosts concentrates data mostly on powerful
hosts, increasing the probability that parts of a query can be handled entirely locally.
Virtual host scaling results in better expected load balancing, which very slightly de-
creases the amount of data that must be sent on average.

Although virtual hosts have little effect on how much data must be sent, they can
significantly decrease the amount of time spent sending the data, as shown in Fig-
ure 7(b). By assigning more load to more capable hosts, the virtual hosts technique can
cut network times by nearly 60%. Using virtual host scaling further decreases expected
network times by reducing the probability that a bottleneck host will be assigned a dis-
proportionate amount of load by mistake. Thus, while total bytes sent decreases only
slightly as a result of better load balancing, total network time decreases significantly
because more capable hosts (with faster network connections) become responsible for
a larger fraction of requests.

5.2 Bloom Filters and Caching
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Fig. 8. Using Bloom filters less often signifi-
cantly reduces the amount of data sent by elim-
inating the need to revisit nodes to eliminate
false positives.

Having established the scalability of our
general approach, we now turn our atten-
tion to the additional benefits available
from the use of Bloom filters to reduce
network utilization. In particular, we fo-
cus on how large the Bloom filter should
be and for what minimum data set size
it should be invoked. Using Bloom filters
for every transfer results in substantial un-
necessary data transmissions. Any time a
Bloom filter is used, the host using it must
later revisit the same query to eliminate
any false positives. Thus, Bloom filters
should only be used when the time saved
will outweigh the time spent sending the
clean-up message. Figure 8 shows the total bytes transmitted per query as a function
of the Bloom filter threshold, assuming the default value of 6 bits per Bloom entry. We
find that the optimal Bloom filter threshold for our trace was approximately 300. Any
set below this size should be sent in its entirety as the savings from using Bloom filters
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Fig. 9. Network costs as a function of Bloom filter size.

do not outweigh the network (not to mention latency) overhead of revisiting the host to
eliminate false positives.

Next, we consider the effects of varying the number of bits per entry in the Bloom
filter and of caching on total network traffic. Figure 9(a) plots the total number of bytes
transmitted as a function of the Bloom filter size. The two sets of curves represent the
case when we enable and disable caching. Within each set, we set a maximum rate of al-
lowable false positives in the set of documents returned to the user for a particular query,
at 0%, 1%, and 10%. When the client allows 1% or 10% false positives, false-positive
removal steps may sometimes be eliminated; increasing the Bloom filter size enhances
this effect. Figure 9(b) shows that allowing false positives has significantly more effect
on varying total network time than it does on bytes transferred as it eliminates a number
of required message transmissions.

The effects of caching shown in Figure 9(a) are similar to those derived analytically
in Figure 5(b). Caching decreases the total amount of data sent and increases the optimal
Bloom filter size: in this case, from 18 bits per entry to 24 bits per entry. For optimal
Bloom filter sizes of 18 and 24 bits per entry in the no-caching and caching cases
respectively, our caching technique introduces more than a 50% reduction in the total
number of bytes transmitted per query.

5.3 Putting It All Together

We now present the end-to-end average query times considering all of our optimiza-
tions under a variety of assumed network conditions. We break down this end-to-end
time into the three principal components that contribute to end-to-end latency: CPU
processing time, network transmission time (bytes transferred divided by the speed of
the slower network connection speed of the two communicating peers), and latency (de-
termined by the distance between communicating peers). Recall from Section 4 that we
do not measure the time associated with either the client request or the final response as
the size of these messages is independent of our optimization techniques.

Figure 10 shows three bar charts that break down total end-to-end search time un-
der the three network conditions described in Section 4: WAN, Heterogeneous, and
Modem. For each network setting there are four individual bars, representing the ef-
fects of virtual hosts on or off and of caching on or off. Each bar is further broken down
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into network transmission time, CPU processing time, and network latency. In the case
of an all-modem network, end-to-end query time is dominated by network transmis-
sion time. The use of virtual hosts has no effect on query times because the network
set is homogeneous. Caching does reduce the network transmission portion by roughly
30%. All queries still manage to complete in 1 second or less because, as shown in
Figure 9(a) the use of all our optimizations reduces the total bytes transferred per query
to less than 1,000 bytes for our target workload; a 56K modem can transfer 6 KB/sec
in the best case. However, our results are limited by the fact that our simulator does
not model network contention. In general, we expect the per-query average to be worse
than our reported results if any individual node’s network connection becomes satu-
rated. This limitation is significantly mitigated under different network conditions as
individual nodes are more likely to have additional bandwidth available and the use of
virtual hosts will spread the load to avoid underprovisioned hosts.

Fig. 10. Isolating the effects of caching, virtual
hosts, and different network characteristics for op-
timal Bloom threshold (300) and Bloom filter sizes
(18/24 for caching on or off).

In the homogeneous WAN case,
network time is negligible in all
cases given the very high transmission
speeds. The use of caching reduces la-
tency and CPU time by 48% and 30%,
respectively, by avoiding the need to
calculate and transmit Bloom filters in
the case of a cache hit. Enabling vir-
tual hosts reduces the CPU time by
concentrating requests on the subset
of WAN nodes with more CPU pro-
cessing power. Recall that although
the network is homogeneous in this
case we still have heterogeneity in
CPU processing power as described in
Section 4.

Finally, the use of virtual hosts
and caching together has the most pro-
nounced effect on the heterogeneous
network, together reducing average
per-query response times by 59%. In
particular, the use of virtual hosts re-
duces the network transmission portion of average query response times by 48% by
concentrating keywords on the subset of nodes with more network bandwidth. Caching
uniformly reduces all aspects of the average query time, in particular reducing the la-
tency components by 47% in each case by eliminating the need for a significant portion
of network communication.

6 Related Work

Work related to ours can be divided into four categories: the first generation of peer-
to-peer systems; the second-generation, based on distributed hash tables; Web search
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engines; and database semijoin reductions. We dealt with DHT-based systems in Sec-
tion 1. The others, we describe here.

The first generation of peer-to-peer systems consists of Napster [14], Gnutella [8],
and Freenet [5, 9]. Napster and Gnutella both use searches as their core location de-
termination technique. Napster performs searches centrally on well-known servers
that store the metadata, location, and keywords for each document. Gnutella broad-
casts search queries to all nodes and allows each node to perform the search in
an implementation-specific manner. Yang and Garcia-Molina suggest techniques to
reduce the number of nodes contacted in a Gnutella search while preserving the
implementation-specific search semantics and a satisfactory number of responses [20].
Freenet provides no search mechanism and depends instead on well-known names and
well-known directories of names.

Web search engines such as Google [3] operate in a centralized manner. A farm of
servers retrieves all reachable content on the Web and builds an inverted index. Another
farm of servers performs lookups in this inverted index. When the inverted index is
all in one location, multiple-keyword searches can be performed with entirely local-
area communication, and the optimizations presented here are not needed. Distributing
the index over a wide area provides greater availability than the centralized approach.
Because our system can take advantage of the explicit insert operations in peer-to-peer
systems, we also provide more up-to-date results than any crawler-based approach can.

The general problem of remotely intersecting two sets of document IDs is equivalent
to the database problem of performing a remote natural join. We are using two ideas
from the database literature. Sending only the data necessary for the intersection (i.e.,
join) comes from work on semijoin reductions [1]. Using a Bloom filter to summarize
the set of document IDs comes from work on Bloom joins [12, 13].

7 Conclusions

This paper presents the design and evaluation of a peer-to-peer search infrastructure. In
this context we make the following contributions. First, we show that our architecture
is scalable; global network state and message traffic grows sub-linearly with increas-
ing network size. Next, relative to a centralized search infrastructure, our approach can
maintain high performance and availability in the face of individual failures and perfor-
mance fluctuations through replication. Finally, through explicit document publishing,
our distributed keyword index delivers improved completeness and accuracy relative to
traditional spidering techniques.

One important consideration in our architecture is reducing the overhead of multi-
keyword conjunctive searches. We describe and evaluate a number of cooperating
techniques—Bloom filters, virtual hosts, caching, and incremental results—that, taken
together, reduce both consumed network resources and end-to-end perceived client
search latency by an order of magnitude for our target workload.
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