
Rapid Prototyping Methodology and Environments for
Fuzzy Applications

Chantana Chantrapornchai

Faculty of Science, Silpakorn University, Nakorn Pathom 73000, Thailand
ctana@su.ac.th

Abstract. In this paper, we present an integrated design environment and method-
ology for fuzzy applications. The framework integrates the concept of rapid sys-
tem design where the given system specification is broken into two components:
conceptual and parameter specifications. The conceptual specification contains
the system core, which is unchanged throughout the simulation phase and can be
implemented in hardware at an early stage to create partial prototype. The param-
eter specification includes variables that are adjustable for system performance
tuning. We develop a design environment to facilitate fuzzy system designers to
verify the correctness of the system behavior by varying their parameters. A de-
sign example using our framework is demonstrated.

1 Introduction

In the design of application specific systems, the iterative process of detailing specifications, de-
signing a possible solution, and testing and verifying the solution is repeatedly performed until
the solution meets user requirements. However, such a repeated cycle prolongs the system de-
velopment time. The system life cycle is likely to be short due to rapid pace of improvements
in current technology. It is likely that the system will be out of date by the time it is ready to be
shipped unless the development time is improved. The need for early prototyping, therefore, be-
comes critical to implement a system specification and provide customers with feedback during
the design process.

Embedding all system design components into hardware is not a good approach due to lack
of flexibility during reconfiguration. In fuzzy systems, by partitioning the system components
properly, an early prototype can be established [1]. In this paper, our methodology and design
environment integrate hardware and software capability and provides flexibility in exploring sev-
eral design solutions. Given a set of user requirements, a system specification which describes
what system functions are needed to satisfy the requirements is developed. Such a specification
can be abstractly divided into two parts: a conceptual specification and a parameter specification.
The conceptual specification contains a specification core that is rarely changed during various
system adjustment while the parameter specification includes specific details which can be easily
modified during the design phase. We are developing an integrated design environment which
facilitate designers to design fuzzy systems based on the above concept. The framework enables
designers to test many possibilities of selecting parameters. The built-in simulation feature allows
designers to verify the system behavior for the tested parameters.

Considerable work has been done on developing hardware implementations for general pur-
posed fuzzy control systems. In [2], special hardware chips have been invented to speedup the
fuzzy inference engine. Other work has concentrated on design and implementation of fuzzy

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 940−949, 2003.
 Springer-Verlag Berlin Heidelberg 2003

architectures and processors [3, 10]. Software fuzzy systems are flexible but fail to provide high-
speed result [7]. Although general-purposed fuzzy hardware can yield high-speed output, they
may be able to neither meet stringent real-time requirement of specific applications nor specific
needs of the applications. Kan and Shragowitz presented presented a generic development tool
for fuzzy systems [4]. Their tools provide flexibility in defining membership functions, rules,
and fuzzy logic operations. Nevertheless, they do not focus on constructing hardware modules
from the derived system. In [5], a computer-aided design tool for implementation of fuzzy con-
trollers on FPGAs was proposed. However, they do not provide flexibility during a prototyping
phase,.e.g., membership functions are implemented as a boolean circuit. Also, none of these
works provide a flexible framework and tools which support designing systems with many input
variables and various shapes of membership functions as well as testing environments for both
crisp and fuzzy inputs. Unlike the others, our research provides rapid prototyping framework for
application specific fuzzy systems as well as flexible implementation.

Since one of the goals of using fuzzy logic is to reduce computational complexity of de-
signing systems, e.g., fuzzy control systems, fuzzy logic rule bases consist of human knowledge
expressed in rule format. In our approach, the conceptual specification consists of the rule base
portion since it defines system functionality and is seldom changed or required only a few mod-
ification. In some classical fuzzy systems which have practical applications such as temperature
controller, and inverted pendulum, the rules can commonly be found [9]. For detailed fuzzy sys-
tem tuning, varying parameters are considered such as the range of system operation, the shape
of membership functions, type of fuzzy logic operations, defuzzification methods, etc. We col-
lectively include these portions in the parameter specification. Such a specification can be imple-
mented in software for flexible tuning.

The details of our method will be discussed in the remainder of this paper. The model and
synthesis methodology are discussed in Section 3. Section 4 presents an example of prototyping
a fuzzy control system. Finally, Section 5 draws conclusion from this work.

2 Backgrounds

In this section, we provide some background knowledge related to fuzzy system characteristics.
Fuzzy set originated by Zadeh [11] differs from the traditional crisp set. For crisp sets, the set
boundary is crisp. For example, let

ÿ
be the set of real numbers ranges in þ ý ü û ý ú . We can deter-

mine whether or not a given number is a member of the set or not. We may define a membership
function called ù ø ÷ ö õ which maps from a real number ö to a value in þ ý ü û ú . Given a set ô ó ò ,
where ô ñ þ ð ü ï ú . The membership value of î ! ô for ù $ ÷ î õ is 1 for all î .

For fuzzy sets, the boundary of the set is uncertain. Thus the fuzzy set is used to represent
another kind of uncertainty. For example, let the universe of the age of people be þ û)) , ý ú . Let -
be a set of “young” people. Since young is a linguistic variable, the meaning of “young” varies
depending on the interpretation of experts. Once people is 20 years old, will he definitely not a
young people anymore? This cannot be determined precisely. Therefore, a set of young people
may represent a set with fuzzy boundary. For example, for a people whose age is 25 may be
considered as a young people with the degree of 25.

For simplicity, we assume that inputs are fuzzy sets and a given set of rules is in a canonical
form and each rule yields only a single consequence.

Given any two inputs . and / , applying the Max-Min inference, we compute the cut of the
output membership degree as shown in Figure 2(a) and Figure 2(b). After a cut is computed for
each output membership function, all of them are unioned together as shown in Figure 2(c). Then,
a defuzzification method is employed to change the output to crisp a value.

941Rapid Prototyping Methodology and Environments for Fuzzy Applications

A general form of a rule comprising two or more linguistic variables conjunctive (ÿ) to each
other is in the following form:

þ ý
: IF ÿ

ý
is þ

ý ý ÿ))) ÿ ÿ ü is þ
ý ü , THEN ý is ü

ý
þ û

: IF ÿ
ý

is þ
û ý ÿ))) ÿ ÿ ü is þ

û ü , THEN ý is ü
û

...þ ý
: IF ÿ

ý
is þ ú ý ÿ))) ÿ ÿ ü is þ ú ü , THEN ý is ü ú

The above system will require ù non-interactive fuzzy set inputs, ø þ ÷ý
û þ ÷û

û))) þ ÷ü ö and produce
a single fuzzy set output ü ÷ . þ õ ô is a fuzzy subset of corresponding universe of discourse ó ô and

ü ô is a fuzzy subset of the universe of discourse ò . An element ÿ ô denotes a fuzzy element in the
related set þ õ ô and ú $ ñ " ù ÿ ô ø represents its corresponding membership value.

(a)

(b)

(c)

Fig. 1. Graphical Max-Min inference for two rules.

3 Design Methodology

In our methodology, we divide the specification into two parts: Conceptual and Parameter speci-
fications.

3.1 Conceptual Specification

For the conceptual specification, it is the core component which represent the main behavior of
the system. In fuzzy systems, we regard a rule base as a conceptual specification. The rule-base
specification is modeled as a Conceptual State Graph which presents state-oriented behaviors of
the rules.

Definition 1. A Conceptual State Graph (CSG) % ÷ ù SSS û III û OOO û EEE û & ø is a connected directed
edge-weighted graph where SSS is a set of nodes (õ !) û ö + . + - , representing states of the
graph, III is the set of inputs, OOO is the set of outputs including / , EEE 0) 1) is a set of edges,
denoted by (õ 4 (ô or 6 7 ñ 9 7 " , (õ ! SSS û (ô ! SSS, and & is a function from EEE to III 1 OOO, representing
the set of edge weights, denoted by ÿ < ý , where ÿ ! III and ý ! OOO.

942 C. Chantrapornchai

For the edge weight ÿ < þ of an edge 6 ÿ 9 þ or ý 4 ü , if þ ý / , then no output is given
for the edge from ý to ü with the input ÿ . As an example, III contains all combinations of val-
ues for ÿ and þ according to the rules, that is III ý ÿ ü ÿ û

û
ú û ü ÿ û ú ú û ü ÿ û ù ú û ü þ û ù ú þ . Similarly,

OOO ý ÿ ü ø û
û

ú û ü ø û ù ú û / þ , SSS ý ÿ (÷ û (ý
û (ü

û (ö þ and EEE ý ÿ 6 7 õ 9 7 ô û 6 7 õ 9 7 ó û 6 7 õ 9 7 ò û 6 7 ô 9 7 ò þ Edges
to states (ü

and (ö have output labels ü þ û
û

ú and ü þ û ù ú respectively. The output label for the
intermediate edge ü (÷ û (ý

ú is / . The edge weights are: & ü (÷ û (ý
ú ý ü ÿ û ú ú < / û & ü (÷ û (ü

ú ý
ü ÿ û

û
ú < ü ø û

û
ú û & ü (÷ û (ö ú ý ü ÿ û ù ú < ü ø û ù ú û & ü (ý

û (ö ú ý ü þ û ù ú < ü ø û ù ú
Using this model, one can easily implement a system with multiple input variables. This can

be advantageous since many current fuzzy processors allow only limited number of input vari-
ables. The CSG model can be transformed to an incompletely specified FSM and therefore, trans-
formed to a completely specified FSM to which traditional FSM synthesis can be applied.The
CSG is similar to the incompletely specified FSM, based on an assumption that no unspecified
next state is encountered. All unspecified outputs, / , convey “don’t care” outputs and the set of
final states are the set of states where outputs are given.

Based on the model, assume that the rule is in the canonical form, the number of bits used to
represent output variables are ñ ð ï î ü

ü í ì ù ú ! where í is the number of distinct output linguistic
variables. The number of bits used to represent input variables is ñ ð ï î ü

ü " $û & ý ú û ì ù ú ! where
ú û is the number of distinct input linguistic variables of input / and (is the number of inputs.
Further the number of bits used to represent states equals to ñ ð ï î ü

ü ù ì í ì " $,
ý

û & ý ú ûû ú ! .

3.2 Parameter Specification

A parameter specification includes membership functions for input and output linguistic variables
as well as defuzzification methods. For a membership function, a designer may vary the shape of
membership functions and boundary. Figure 2 shows possible membership function shapes for
a linguistic variable. A designer may specify different defuzzification methods such as centroid,
weighted-average, Mean-Max etc. After a membership function shape and boundary are selected
for each linguistic variable, a membership value is converted to discrete values ranged [0,255].
It is then mapped to a memory mapped table. The number of entries of this lookup table for
each linguistic variable is . where . is the number of possible input values of each membership
function that is greater than 0. Hence, totally we require the space / ü " $û & ý " 0 "

ú & ý 3 ú ì " 5ú & ý 6 ú ú
where 3 ú is the number of distinct values for each linguistic variable for input / and 6 ú is the
number of distinct values for each output linguistic variable, í is the number of output linguistic
variables.

Fig. 2. Different shapes of membership functions (a) Triangular (b) Trapezoid

943Rapid Prototyping Methodology and Environments for Fuzzy Applications

3.3 Component Integration

According to the fuzzy inference process, a special calculation is required to determine the out-
put strength of each rule given the associated input strengths. We assume ÿ þ ý

operation is used
for computing fuzzy rule strength. Let ÿ $ ÿ " þ ý þ ü denote a membership function correspond-
ing to the linguistic variable û ý þ and the current input instance ý þ for rule . . Let ÿ ü ÿ þ ú ü be a
membership function corresponding to the linguistic variable ù and output instance ú for rule

. . Suppose a rule requires ü inputs. Given input instance ý û ø))) ø ý ú , for each rule . , we de-
termine a modified output function ÿ ù ü ÿ þ ú ü that is used in the defuzzification process, where
ÿ ù ü ÿ þ ú ü ÷ ÿ ü ÿ þ ú ü if ÿ ü ÿ þ ú ü û ú ý and ÿ ù ü ÿ þ ú ü ÷ ú ý , otherwise. where the rule strength ú ý , cal-
culated by ú ý ÷ ù ø ÷ úþ & û ÿ $ ÿ " þ ý þ ü which is the limit of the output strength ù ý . If more than one
rules give the same linguistic variable output ù ý and therefore generates a new function ÿ ù ü ÿ þ ú ü ,
each ÿ ù ü ÿ þ ú ü is combined by using the max operation. ÿ ù ùü ÿ þ ú ü ÷ ù ö õ ô ü ó & ü ÿ þ ÿ ù ü ó þ ú ü ü Based on
these and the given CSG, the following algorithm presents the overall inference process.

Algorithm 1 (InferenceCSG)
Input: CrispInput ø ò þ ÷
Output: CrispOutput

1 begin
2 set 1 to all rows of Cut
3 foreach row . of

ö
do

4 clear Reg to 0
5 foreach column / of

ö
do

6 read CrispInput ò þ and compute Degree using InputLinguistic
7 send

ö õ . ø / ô to Rule CSG and get OutIndex
8 Reg ÷ Compute MIN(Reg,Degree) od
9 Cut[OutIndex] ÷ MAX(Cut[OutIndex],Reg) od

10 CrispOutput ÷ DEFUZZIFY(Cut,OutputLinguistic);
11 end

Algorithm 1 is based on the max-min inference. In particular, it presents the function of the
control unit in Figure 3. When the inputs to the system are fuzzy rather crisp values, we add the
component to compute the minimum cut between each fuzzy input and linguistic variable before
computing the ÿ þ ý

operator. Memory
ö

temporarily stores all combinations of input sequence
to be fed to the Rule CSG. The size of memory

ö
is ñ ð $ý & û ÿ ý bits where ñ is the number of bits

used to represent all states and (is the number of input variables and ÿ ý is the number of input
linguistic variables for each input . .

For each row . of
ö

, each input variable / is fed to CSG. Reg is used to keep minimum values
for each rule (Line 8). This is then used to be input to MAX component to compute the maximum
value of each output linguistic variable (Line 9). Note that Line 6 and Line 7 can be done at the
same time, i.e, computing input degree and computing degree of output linguistic variable. At
Line 10, the defuzzification method is then invoked using the stored Cut and output member-
ship function for each output linguistic variable. The following summarizes the size needed for
memory used to store each part.

InputLinguistic OutputLinguistic InputGenerator
ï " $þ & û " 0 "

ý & û 3 ý ï " 5ý & û 3 ý ñ ð $ý & û ÿ ý

944 C. Chantrapornchai

Unit

A

MIN

Register

Input
RULE
CSG

CLK

MAX

Memory for
Cut Output

D
E

F
U

Z
Z

YDegree

1

OutIndex

Cut[OutIndex]

CrispOutput
R

o
w

se
le

ct
o

r
C

o
lu

m
n

se
le

ct
o

r

CrispInput

RD/WR
RD/WR

Start
SEL

InputGenerator

Memory for
Input Linguistic
Variables

Memory for
Output Linguistic
Variables

Control

Fig. 3. Abstract connection of conceptual and parameter specification integration.

4 Design Example

In this section, we show our design framework mapped to an example of a temperature control
system for the oven found in [8]. We first create an initial design for a common rule base for
the controller easily. In a meantime, we can test various parameters for the system based on our
design environment.

4.1 Conceptual Specification

In the electric oven, the interior temperature is controlled by varying the heat input ÿ to the
jacket. Here two input variables are defined as the excess of temperature over the exterior, ÿ

ÿ

,
and ÿ

þ

. Thus, the control system has two temperature input variables ÿ
ÿ

and ÿ
þ

and outputs a
new temperature ÿ so that the oven temperature is adjusted properly. Figure 4(a) uses our IDE to
represent the following set of rules. In the figure, Temp1 is variable ÿ

ÿ

and Temp2 is variable ÿ
þ

while Output is ÿ .

1. IF ÿ
ÿ

þ low ý ÿ
ÿ

ü
þ

û and ÿ
þ

þ low ý ÿ
þ

ü
þ

û THEN
ÿ þ high ý ÿ ü ý û

2. IF ÿ
ÿ

þ low ý ÿ
ÿ

ü
þ

û and ÿ
þ

þ medium ý ÿ
þ

ü ü û THEN
ÿ þ medium ý ÿ ü ü û

3. IF ÿ
ÿ

þ low ý ÿ
ÿ

ü
þ

û and ÿ
þ

þ high ý ÿ
þ

ü ý û THEN ÿ þ low ý ÿ ü
þ

û
4. IF ÿ

ÿ

þ medium ý ÿ
ÿ

ü ü û and ÿ
þ

þ low ý ÿ
þ

ü
þ

û THEN ÿ þ high ý ÿ ü ý û
5. IF ÿ

ÿ

þ medium ý ÿ
ÿ

ü ü û and ÿ
þ

þ high ý ÿ
þ

ü ý û THEN
ÿ þ low ý ÿ ü

þ
û

6. IF ÿ
ÿ

þ high ý ÿ
ÿ

ü ý û and ÿ
þ

þ low ý ÿ
þ

ü
þ

û THEN ÿ þ high ý ÿ ü ý û
7. IF ÿ

ÿ

þ high ý ÿ
ÿ

ü ý û and ÿ
þ

þ medium d ý ÿ
þ

ü ü û THEN ÿ þ medium ý ÿ ü ü û
8. IF ÿ

ÿ

þ high ý ÿ
ÿ

ü ý û and ÿ
þ

þ high ý ÿ
þ

ü ý û THEN ÿ þ low ý ÿ ü
þ

û

The tuple next to each clause is a shorthand notation of the clause’s linguistic variable. Fig-
ure 4(b) presents the CSG for this set of rules where the system inputs are temperatures ÿ

ÿ

and
ÿ

þ

and the temperature output is ÿ . An edge label is a tuple ý ÿ ü û û where ÿ is either variable ÿ
ÿ

,
ÿ

þ

, or ÿ and û is a linguistic variables with respect to domain ý ÿ
ÿ

û , domain ý ÿ
þ

û , or domain ý ÿ û
respectively.

945Rapid Prototyping Methodology and Environments for Fuzzy Applications

(a)

s1

s0

(x2,M)/(u,M)

(x2,M)/(u,M)

(x2,L)/(u,H)
s_(u,H)

s_(u,M)

s_(u,L)s2

s3

(x2,H)/(u,L)
(x2,H

)/(u,L)

(x
2,

L)
/(u

,H
)(x
2,

L)/(
u,

H)

(x2,H)/(u,L)

(x1,L)/

(x1,M)/

(x1,H)/ φ

φ

φ

(b)

Fig. 4. (a) Rule specification based on our IDE. (b) CSG.

package input_output_type is
type data_3 is array (2 downto 0) of bit;
type data_2 is array (1 downto 0) of bit;
constant zero_2 : data_2 := "00";
constant zero_3 : data_3 := "000";
end input_output_type;
use work.input_output_type.all;
entity csg is

port (input: in data_3;clk : in bit; s : out data_2; output : out data_2);
end csg;
architecture behavior of csg is

SIGNAL state : data_2 := zero_2;
SIGNAL statenext : data_2 := zero_2;

begin
rule: PROCESS (input,state, clk)
BEGIN
WAIT UNTIL (clk'event and clk = '1');
IF state = "00" and input = "000" THEN

statenext <= "00";
output <= "11";

elsif state = "00" and input = "001" THEN
statenext <= "10";
output <= "11";

elsif state = "00" and input = "010" THEN
statenext <= "01";
output <= "11";

elsif state = "01" and input = "011" THEN
statenext <= "00";
output <= "00";

:
:
:
else

statenext <= "00";
output <= "11";

end if;
state <= statenext;
END process rule;
end behavior;

Fig. 5. CSG VHDL implementation.

Figure 4(b) shows the CSG where) is ÿ (ÿ ÿ (þ
ÿ (ý

ÿ (þ ÿ (ÿ ý 9 0
þ ÿ (ÿ ý 9 ý þ ÿ (ÿ ý 9 ü þ ü . The transi-

tions to states (ÿ ý 9 0
þ ÿ (ÿ ý 9 ý þ , and (ÿ ý 9 ü þ output temperature values medium, low, and high re-

spectively. Figure 5 shows the VHDL representation of this CSG. In this implementation, linguis-
tic variables þ ý

þ
ÿ

ü
ü ÿ þ ý

þ
ÿ û ü ÿ þ ý

þ
ÿ ú ü ÿ þ ý

ý
ÿ

ü
ü ÿ þ ý

ý
ÿ û ü ÿ þ ý

ý
ÿ ú ü are represented by 000, 001,

010, 011, 100 and 101 while output variables þ ù ÿ ú ü ÿ þ ù ÿ û ü ÿ þ ù ÿ
ü

ü ÿ / are encoded as û û ÿ û ú ÿ ú û
and ú ú respectively. The initial state (ÿ is encoded as 0. States (þ

ÿ (ý
ÿ and (þ are encoded as ú ÿ , ÿ

and û respectively. After optimization, states (ÿ ý 9 ü þ ÿ (ÿ ý 9 0
þ and (ÿ ý 9 ý þ can be merged with the

946 C. Chantrapornchai

initial state to save one control step and be ready to accept the next input. Thus, we only use 2
bits to encode existing states in this design. Any sequence of inputs that does not fire any rule
will lead to the initial state.

4.2 Parameter Specification

The parameter specification includes membership functions and defuzzification approaches. Since
all input and output variables are temperatures, the same membership functions for all variables
are used. The temperature domain is restricted to between -100 and 500 degrees centigrade us-
ing our IDE. Then we may adjust the boundary of each input and output functions as shown in
Figure 6.

Fig. 6. Adjusting the boundary of membership functions.

For defuzzification method, we may have a choice of using centroid method, weighted aver-
age method, or Mean-Max method [8]. We may try to select each choice using our tool. In this
example, we use the following equation. ÿ ÿ þ ÿ ÿ ý ü û þ , ÿ ÿ þ ÿ ü ÿ ÿ þ þ ÿ ü ÿ þ þ ý ü ú ÿ þ þ ÿ ÿ ý ü û

ÿ ÿ þ ÿ ü þ ÿ þ þ ÿ ü to compute the feedback function. where initial ÿ ÿ û ü ù and ÿ þ û ý ù ù . Assume
that membership function in Figure 6 is used and the centroid is used as a defuzzification method.

Using our IDE, the case when inputs are fuzzy values can also be simulated. Designers may
test the system again fuzzy input cases when the shapes are varied as shown in Figure 8. Based
on our framework, one can easily adjust the parameter parts to investigate design choices and
re-simulate the system. Once the parameter is finalized, the prototype can be set-up rapidly.

Figure 9 shows the connection of the components and the size of each memory. For easy im-
plementation, the membership values are scaled from real values ranging in ø ù ú ý ÷ to integer values
between ø ù ú , ö û ÷ . Input generator computes combinations of input linguistic variables which will
be given to CSG rules (whose implementation is shown in Figure 5). The component Feedback
this picture represents the feedback calculation where control action þ together with inputs are
used to calculate the new inputs for the next cycle. Here we use 16-bit address and data buses.
The number of entries for input linguistic variables is 1806 and for output linguistic variable is
813. Input sequence generator

õ
has 9 combinations, each of which is of three bits since we use

3 bits to represent all input linguistic variables. The size of OutIndex is 2 bits since only two bits
is used to represents 4 possible output linguistic variables.

947Rapid Prototyping Methodology and Environments for Fuzzy Applications

Fig. 7. Simulation for ÿ
ÿ

þ ÿ ý and ÿ
þ

þ ü ý ý

x2

x1

Fig. 8. Simulation for fuzzy inputs ÿ
ÿ

ÿ
þ

16

MIN

Register

Input
RULE
CSG

CLK

MAX

Memory for
Cut Output

DE
FU

ZZ
YDegree

1

OutIndex

Cut[OutIndex]

CrispOutput

Ro
w

se
le

ct
or

Co
lu

m
ns

el
ec

to
r

CrispInput

RD/WR
RD/WR

Start
SEL

Output Linguistic
Variables

Control
Unit

9x3bits

A
InputGenerator

Input Linguistic
Variables

813x18bit

1806x18bit

16−bit address bus
16−bit data bus

2
3

8
8

8

8

8

16
8

8

clear

Feedback

SE
L

16

16

16

16

Fig. 9. Integration of all components.

948 C. Chantrapornchai

and

5 Conclusion

We present a design methodology and environments for designing fuzzy controllers.Our method-
ology partitions system components into conceptual and parameterized specifications. The con-
ceptual specification defines the core of system specification which is rarely changed and may be
implemented as a hardware prototype to create a fast prototype. Parameterized components are
specified in software in order to be easily edited for system modification. This method actually in-
tegrates hardware and software capability, yielding flexibility in re-specification and shorten pro-
totyping time. We provide the IDE which gives flexibility for designers to explore fuzzy design
parameters rapidly. By varying membership functions including shape and universe boundary as
well as defuzzification methods, a designer performs various simulations to select the best pos-
sible parameters for the system. Altogether our framework enables rapid prototyping for fuzzy
systems.

References

1. C. Chantrapornchai, S. Tongsima, and E. H. Sha. Rapid prototyping techniques for fuzzy
controllers. In Lecture Notes in Computer Science–ASIAN’99, pages 37–49, 1999.

2. J. W. Fattaruso, S. S. Mahant-Shetti, and J. B. Barton. A fuzzy logic inference processor.
In Proc. of 3rd Intl. Conf. on Industrial Fuzzy Control and Intelligent Systems, pages 210–
214,1993.

3. A. Jaramillo-Botero and Y. Miyaka. A high-speed parallel architecture for fuzzy inference
and fuzzy control of multiple processes. In Proc. of theInternational Conference on Fuzzy
Systems, pages 1765–1770, 1994.

4. M. S. Khan and E. E. Swartzland Jr. Rapid prototyping fault-tolerant heterogeneous digital
signal processing systems. In Proc. of 6th Intl. Workshop on Rapid System Prototyping,
pages 187–193, 1995.

5. M. A. Manzoul. CAD tool for implementation of fuzzy controllers on FPGAs. Cybernetics
and Systems, pages 599–609, 1994.

6. G. D. Micheli. Synthesis and optimization of digital circuits. McGraw-Hill, Inc, 1994.
7. J. Moore and M. A. Manzoul. An interactive fuzzy CAD tool. IEEE Micro , pages 68–74,

April 1996.
8. T. J. Ross. Fuzzy Logic with Engineering Applications. McGrawHill, 1st edition, 1995.
9. M. H. Smith. Tuning membership functions, tuning and and or operations, tuning defuzzi-

cation: which is the best? In Proc. of the North American Fuzzy Information Processing
Society Biannual Conference, pages 347–351, 1994.

10. H. Watanabe. Risc approach to design fuzzy processor architecture. In Proc. of the Intl.
Conf. on Fuzzy Systems, vol. 3, pages 1809–1814, 1994.

11. L. A. Zadeh. The concept of a linguistic variable and its application to approximate reason-
ing, Part I. Information Science, 8:199–249, 1975.

949Rapid Prototyping Methodology and Environments for Fuzzy Applications

	1 Introduction
	2 Backgrounds
	3 Design Methodology
	3.1 Conceptual Specification
	3.2 Parameter Specification
	3.3 Component Integration

	4 Design Example
	4.1 Conceptual Specification
	4.2 Parameter Specification

	5 Conclusion
	References

