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Abstract. The exact enumeration of most interesting combinatorial
problems has exponential computational complexity. The finite-lattice
method reduces this complexity for most two-dimensional problems. The
basic idea is to enumerate the problem on small finite lattices using a
transfer-matrix formalism. Systematically grow the size of the lattices
and combine the results in order to obtain the desired series for the
infinite lattice limit. We have developed a parallel algorithm for the enu-
meration of polyominoes, which are connected sets of lattice cells joined
at an edge. The algorithm implements the finite-lattice method and as-
sociated transfer-matrix calculations in a very efficient parallel setup.
Test runs of the algorithm on a HP server cluster indicates that in this
environment the algorithm scales perfectly from 2 to 64 processors.

1 Introduction

The enumeration of polyominoes is a classical combinatorial problem [I]. A poly-
omino is a connected set of lattice cells joined at their edges. The fundamental
problem is the calculation (up to translation) of the number of fized polyominoes,
an, with n cells. If we also take into account rotation and reflection symmetries

we arrive at free polyominoes. Thus 00 and O count as different fixed polyomi-
noes, but they are the same free polyomino, while DD isn’t a polyomino because
the two cells don’t share an edge. The enumeration of polyominoes has tradi-
tionally served as a benchmark for computer performance and algorithm design
[PI3AR6I7IRA].

Polyominoes are closely related to lattice animals. A site animal can be
viewed as a finite set of lattice sites connected by a network of nearest neighbor
bonds. Polyominoes are thus identical to site animals on the dual lattice. In the
physics literature lattice animals are often called clusters due to their close rela-
tionship to percolation problems [I0]. Series expansions for various percolation
properties, such as the percolation probability or the average cluster size, can be
obtained as weighted sums over the number of lattice animals, gy, ,,,, enumerated
according to the number of sites n and perimeter m [L1].
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It has been proven [12] that the number of polyominoes grows exponentially

lim n'Ina, =supn 'Ina, = A (1)
n—o0 n>0

where )\ is the growth constant. The best numerical estimate, based on an analysis
of the series for the generating function up to order 46, is A = 4.062570(8)
[13], while rigorous lower and upper bounds shows that 3.903184... < A <
4.649551 ..., where the lower bound was derived in [13] from the aforementioned
series using a method developed by Rands and Welsh [14] and the upper bound
is due to Klarner and Riverst [T5]. It is generally believed, though not rigorously
proven, that there is a power-law correction to the exponential growth

an ~ AN'n Y, (2)

where 6 is called the entropic exponent. It is generally believed [16] from theo-
retical arguments that § = 1, a prediction, which is overwhelmingly supported
by the available numerical evidence [13].

As with most interesting unsolved combinatorial problems the enumeration of
polyominoes is of exponential computational complexity. That is the time T'(n)
required to calculate the first n terms grows like T'(n) o k™. The finite-lattice
method (FLM) reduces the value of k for two-dimensional problems. The basic
idea is to enumerate the problem on small finite lattices using a transfer-matrix
(TM) formalism. Systematically grow the size of the lattices and combine the
results in order to obtain the desired series for the infinite lattice limit.

Sykes and Glen [I1] calculated gy, ., up to n = 19 on the square lattice, and
thus obtained the number of polyominoes, a, = ), gn.m, to the same order.
Redelmeier [4] presented an improved algorithm for the enumeration of poly-
ominoes and extended the results to n = 24. This algorithm was later used by
Mertens [6] to devise an improved algorithm for the calculation of g, »,, and a
parallel version of the algorithm appeared a few years later [[7]. All of the above
algorithms were variations on direct counting and their computational complex-
ity thus grows as T'(n) = A\™. A major advance was obtained by Conway [8] who
used the FLM to calculate a,, and numerous other series up to n = 25 [17]. For
this algorithm the computational complexity was T'(n) = 37/2_ In unpublished
work Oliveira e Silva [I§] used the parallel version of the Redelmeier algorithm
to extend the enumeration to n = 28. In [0] we used an improved version of Con-
way’s algorithm to extend the enumeration to n = 46. This improved algorithm
has complexity T'(n) = x™/? with x ~ 2. Knuth [19] improved the algorithm
somewhat further and managed to obtain one further term.

In this paper we describe a parallel implementation of the TM algorithm
for the enumeration of polyominoes. The algorithm implements the finite-lattice
method and associated transfer-matrix calculations in a very efficient parallel
setup. Test runs of the algorithm on a HP server cluster indicates that in this
environment the algorithm scales perfectly from 2 to 64 processors.
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2 Enumeration of Polyominoes

The method we use to enumerate polyominoes on the square lattice is based on
the method used by Conway [§] for the calculation of series expansions for per-
colation problems, and is similar to methods devised by Enting for enumeration
of self-avoiding polygons [20]. In the following we give a brief description of the
algorithm used to count polyominoes. We then give some details of the parallel
version of the algorithm.

2.1 Transfer Matrix Algorithm

The number of fixed polyominoes that span rectangles of width W and length
L are counted using a transfer matrix algorithm. By combining the results for
all W x L rectangles with W < Wi and W + L < 2W,. + 1 we can count all
polyominoes up to Npax = 2Whax. Due to symmetry we only consider rectangles
with L > W while counting the contributions for rectangles with L > W twice.
The maximal size Npyax up to which one can count the number of polyominoes
is limited by the available computational resources.

The transfer matrix technique involves drawing an intersection through the
rectangle cutting through a set of W cells. Polyominoes in rectangles of a given
width are counted by moving the intersection so as to add one cell at a time,
as shown in Fig. [[l For each configuration of occupied or empty cells along the
intersection we maintain a truncated generating function for partially completed
polyominoes. Each configuration can be represented by a set of states S = {0},
where the value of the state o; at position ¢ must indicate first of all if the cell is
occupied or empty. An empty cell is simply indicated by o; = 0. Since we have
to ensure that we count only connected graphs more information is required if
a cell is occupied. We need a way of describing which occupied cells along the
intersection are connected to one another via a set of occupied cells to the left
of the intersection. The most compact encoding of this connectivity is [8]

0 empty cell,
1 occupied cell not connected to others,
o; =4 2 first among a set of connected cells, (3)
3 intermediate among a set of connected cells,
4 last among a set of connected cells.

Configurations are read from the bottom to the top. As an example the config-
uration along the intersection of the partially completed polyomino in Fig. [l is
S ={102023404}.

Pruning. In the original approach [§] polyominoes were required to span the
rectangle only length-wise and polyominoes of width < W and length L were
counted several times. It is however easy to obtain polyominoes of width exactly
W and length L from such data [20]. In our algorithm we directly enumerate
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Fig. 1. A snapshot of the intersection (solid line) during the transfer matrix calculation
on the square lattice. Polyominoes are enumerated by successive moves of the kink in
the intersection, as exemplified by the position given by the dashed line, so that one
cell at a time is added to the rectangle. To the left of the intersection we have drawn
using shaded squares an example of a partially completed polyomino. Numbers along
the intersection indicate the encoding of this particular configuration

polyominoes of width exactly W and length L. At first glance this would appear
to be inefficient since for many intersection configurations we now have to keep
4 distinct generating functions depending on which borders have been touched.
However, as demonstrated in practice [9] it actually leads to an algorithm which
is both exponentially faster and whose memory requirement is exponentially
smaller. Realizing the full savings in time and memory usage require enhance-
ments to the original algorithm. The most important is what we call pruning.
This procedure allows us to discard most of the possible configurations for large
W because they only contribute to polyominoes of size greater than Ny, ,x. Briefly
this works as follows. Firstly, for each configuration we keep track of the current
minimum number of cells N¢,, already inserted to the left of the intersection.
Secondly, we calculate the minimum number of additional cells N,qq required to
produce a valid polyomino. There are three contributions, namely the number
of cells required to connect all sections of the partially completed polyomino,
the number of cells needed (if any) to ensure that the polyomino touches both
the lower and upper border, and finally the number of steps needed (if any) to
extend at least W cells in the length-wise direction (remember we only need
rectangles with L > W). If the sum Neyr + Nadd > Nmax we can discard the
partial generating function for that configuration, and of course the configura-
tion itself, because it won’t make a contribution to the polyomino count up to
the size we are trying to obtain.



Counting Polyominoes: A Parallel Implementation for Cluster Computing 207

The Updating Rules. In Table[llwe have listed the possible local ‘input’ states
and the ‘output’ states which arise as the kink in the intersection is propagated by
one step. The most important cell on the intersection is the ‘lower’ one situated
at the bottom of the kink (the cell marked with the second ‘2’ (counting from the
bottom) in Fig. [[). This is the position in which the lattice is being extended.
Obviously the new cell can be either empty or occupied. The state of the upper
cell (the cell marked ‘3’ in Fig.[)) is likely to be changed as a result of the move.
In addition the state of a cell further afield may have to be changed if a branch of
a partially completed polyomino terminates at the new cell or if two independent
sections of a partially completed polyomino join at the new cell.

Details of how these updating rules are derived can be found in [9]. Here a
few comments will have to suffice.

10: The lower cell is an isolated occupied cell and the new cell can be empty
only if there are no other occupied cells on the intersection (otherwise we
generate graphs with separate components) and if both the lower and upper
borders have been touched. The result are valid polyominoes and the partial
generating function is added to the total polyomino generating function.

14: This situation never occurs. The upper cell is last among a set of occupied
cells, so the cell immediately to its left is also occupied, this in turn is con-
nected to the lower cell, which therefore cannot be an isolated cell.

20: The lower cell is first among a set of occupied cells, so if the new cell is
empty, another cell in the set changes its state. Either the first intermediate
cell becomes the new first cell, and its state is changed from 3 to 2, or, if
there are no intermediate cells, the last cell becomes an isolated cell, and its
state is changed from 4 to 1. This relabeling of a matching cell is indicated
in Table [Il by over-lining.

22: When the new cell is occupied two separate pieces of the polyomino are
joined. The new cell remains the first cell in the joined piece while the up-
per cell becomes an intermediate cell. The last cell in the innermost set of
connected cells also becomes an intermediate cell in the joined piece. We
indicate this type of transformation by putting a hat over the string.

Table 1. The various ‘input’ states and the ‘output’ states which arise as the inter-
section is moved in order to include one more cell of the lattice. Each panel contains
two ‘output’ states where the left (right) most is the configuration in which the new
cell is empty (occupied)

\Upper 0 1|2 | 3] 4
0 00 10|01 24|02 23|03 33(04 34
1 add 10|— 24|— 23|— 33
2 00 20|01 23|02 23|02 23|01 24
3 00 30|01 33|02 33|03 33(04 34
4 00 40(01 34|02 3303 33

Lower
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Computational Complexity. The algorithm has exponential complexity, that
is the time required to obtain the polyominoes up to size n grows exponentially
with n. Time and memory requirements are basically proportional to the maxi-
mum number of distinct configuration generated during a calculation. In [9] we
s showed that the maximal number of configurations, Nconf, grows with Wi ax
as Ncont o< £Vmaxand from the numerical data we estimated that x is a little
larger than 2. Note that this is much better than a direct enumeration in which
time requirements are proportional to the number of polyominoes and therefore
has the growth constant, A ~ 4.06. .., of polyominoes. The price we have to pay
is that the memory requirement also grows exponentially like Ncont, whereas in
direct enumerations the memory requirement grows like a polynomial in n.

Further Details. The integer coefficients occurring in the calculation become
very large so we used modular arithmetic [21]. This involves performing the
calculation modulo various integers p; and then reconstructing the full integer
coefficients at the end. The p; are called moduli and must be chosen so they are
mutually prime. The Chinese remainder theorem ensures that any integer has a
unique representation in terms of residues. Since we are using a heavily loaded
shared facility CPU time was more of a immediate limitation than memory and
secondly more memory was used for the data required to specify the configuration
and manage the storage than for storing the actual terms of the generating
functions. So we used the moduli py = 262 and p; = 252 — 1, which allowed us
to represent a,, correctly using just these two moduli.

2.2 Parallelization

In the past decade or so parallel computing has become the paradigm for high
performance computing. The early machines were largely dedicated MPP ma-
chines which more recently have been superceded by clusters. The transfer-
matrix algorithms used in the calculations of the finite lattice contributions are
eminently suited for parallel computations.

The most basic concerns in any efficient parallel algorithm is to minimise the
communication between processors and ensure that each processor does the same
amount of work and use the same amount of memory. In practice one naturally
has to strike some compromise and accept a certain degree of variation across
the processors.

One of the main ways of achieving a good parallel algorithm using data
decomposition is to try to find an invariant under the updating rules. That is
we seek to find some property about the configurations along the intersection
which does not alter in a single iteration. The algorithm for the enumeration of
polyominoes is quite complicated since not all possible configurations occur due
to pruning and an update at a given set of cells might change the state of a cell
far removed as explained above. However, there still is an invariant since any cell
not in the kink itself cannot change from being empty to being occupied and vice
versa. Only the kink cell can change its occupation status. This invariant allows
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us to parallelise the algorithm in such a way that we can do the calculation

completely independently on each processor with just two redistributions of the

data set each time an extra column is added to the lattice. It should be noted

that each redistribution results in a global synchronization of the processors.
The main points of the algorithm are summarized below:

1. With the intersection in an upright position distribute the data across pro-
cessors so that configurations with the same occupation pattern along the
lower half of the intersection are placed on the same processor.

2. Do the TM update inserting the top-half of a new column. This can be done
independently by each processor because the occupation pattern in the lower
half remains unchanged.

3. Upon reaching the half-way mark redistribute the data so that configurations
with the the same occupation pattern along the upper half of intersection
are placed on the same processor.

4. Do the TM update inserting the bottom-half of a new column.

5. Go back to 1.

The redistribution among processors is done as follows:

1. On each processor run through the configurations to establish the config-
uration pattern ¢ of each configuration and calculate, n(c), the number of
configurations with a given pattern.

2. Calculate the global sum of n(c) on say processor 0.

. Sort n(c) on processor 0.

4. On processor 0 assign each pattern to a processor p(c) such that:

a) Set p;q = 0.

b) Assign the most frequent unassigned pattern ¢ to processor p;q.

c¢) If the number of configurations assigned to p;q is less than the number
of configurations assigned to py then assign the least frequent unassigned
patterns to p;q until the desired inequality is achieved.

d) set pig = (pia +1) mod N, where N, is the number of processors.

e) Repeat from (b) until all patterns have been assigned.

5. Send p(c) to all processors.

6. On each processor run through the configurations sending each configuration
to its assigned processor.

w

The calculations were performed on the facilities of the Australian Partner-
ship for Advanced Computing (APAC) which is an HP Server Cluster with 125
ES45’s each with 4 1 Ghz Alpha chips for a total of 500 processors in the com-
pute partition. The cluster has a total peak speed of 1Tflop. Each server node
has at least 4 Gb of memory. Nodes are interconnected by a fat-tree low latency
(MPT < 5 usecs), high bandwidth (250 Mb/sec bidirectional) Quadrics network.

In Table [ we list the time and memory use of the algorithm for Ny ., =
48 at W = 20 using from 1 to 64 processors. The memory use of the single
processor job was about 2Gb. As can be seen the algorithm scales perfectly from
1 to 64 processors since the total CPU time (column 2) stays almost constant
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Table 2. Total CPU time, elapsed time, time cost of redistribution, and memory use
for the parallel algorithm for enumerating polyominoes of maximal size 48 at width 20

Proc CPU Elapsed Max Cost Min Cost Max Conf Min Conf Max Term Min Term
1 15:06 15:08:04 47586716 121194174
2 14:44 7:23:15 23:47 20:15 24773601 24248682 62848978 62119094
4 15:06 3:49:09 14:03 12:39 12438275 12247276 32034803 31180773

8 14:30 1:49:44 10:47 7:30 6291877 6070370 16270110 15592551
16 14:17  54:12 7:30 4:52 3298793 3024985 8472602 7541084
32 14:14 27:03 4:59 3:07 1753622 1570854 4513708 3834315
64 14:06 13:55 4:09 1:59 899144 851739 2464817 1923254

while the elapsed time is halved when the number of processors is doubled.
We expect that the drop in CPU time at 32 or 64 processors is caused by
better single processor optimization by the compiler. One would for example
expect that the average time taken to fetch elements from memory drops as the
problem size on individual processors drops from 2Gb for the computation using
a single processor to just under 40Mb for the 64 processor computation. Another
main issue in parallel computing is that of load balancing, that is, we wish to
ensure that the workload is shared almost equally among the processors. This
algorithm is quite well balanced. Even with 64 processors, where each processor
uses only about 40Mb of memory, the difference between the processor handling
the maximal and minimal number of configurations is less than 10%. For the total
number of terms retained in the generating functions the spread is less than 20%.
A simple timing of different sub-routines of the parallel algorithm shows that
the typical time to do a redistribution is about the same as the average time
taken in order to move the kink once. Further on this subject we have listed,
in columns 4 and 5, the maximal and minimal ‘redistribution cost’ (total time
spent in the redistribution sub-routine). Firstly we note that the typical overall
cost of parallel execution is smaller than 10%, when the per processor problem
size is large. As the number of processors is increased we are not surprised to see
that the relative cost of parallel execution increases and as the problem becomes
less well-balanced we also see an increase in the difference between the maximal
and minimal cost of redistribution.

Another way of examining the efficiency of the parallel algorithm is to look
at a fixed rectangle (in this case a 22 x 22 square) and grow the overall problem
size by increasing Np.x. This means that more and more configurations and
terms are retained. By increasing the number of processors we ensured that the
problem size handled by individual processors remained relatively stable (we
tried to make the number of configurations almost constant). In Table 3 we list
the time and memory use of the algorithm as Ny,.x is increased from 50 to 56
while using from 4 to 32 processors. Clearly we achieved the goal of keeping
the number of configurations fairly constant. The elapsed time also stays fairly
constant with changes largely reflecting the changes in workload as the number
of configurations and terms increase or decrease. One thing we do note is that
the difference between the maximum and minimum number of configurations
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Table 3. Elapsed time, redistribution cost, and memory use for the parallel algorithm
for enumerating polyominoes of maximal size Npmax on a 22 X 22 square

Nmax Proc Elapsed Max Cost Min Cost Max Conf Min Conf Max Term Min Term
50 4 6:30:25 0:21:58  0:21:09 19148131 18767145 31440647 30611130
51 8 5:51:45 0:26:23  0:19:19 17250302 17004054 33497276 31924532
52 12 6:14:21 0:34:23  0:22:17 18141158 17262224 40396483 39119225
53 16 6:43:25 0:44:00  0:28:02 18808580 17856432 48789794 46255379
54 20 7:09:07 0:49:34  0:27:49 19899189 18821333 59065745 56473260
55 28 6:37:14 0:58:35  0:30:58 18402937 16789846 59699548 56015367
56 32 T7:21:54 1:11:58  0:32:39 19525496 17883903 73484899 65934722

(and terms) increase significantly with problem size. In particular the difference
in the maximal and minimal redistribution costs is markedly increased from the
4 to the 32 processor problem. Obviously this would indicate that there is some
scope for further optimization of the parallel algorithm.

We have extended the series for square lattice polyominoes up to size 56.
The calculations requiring most resources were at widths 22-24. These cases
were done using 40 processors and took about 8-10 hours each. The total CPU
time required was about 1500 hours per prime. Calculations for each width and
prime are totally independent and several can be done simultaneously.

3 Results and Conclusion

We have presented a parallel algorithm for the enumeration of polyominoes on
the square lattice. The computational complexity of the algorithm is exponential
with time (and memory) growing as k"2, where k appears to be a little larger
than 2. Implementation on the APAC server cluster has allowed us to count
the number of polyominoes up size 56. In Table ] we have listed the new terms
obtained in this work for the number of polyominoes with perimeter 47-56.
The number of polyominoes of length < 46 can be found in [9]. Repeating the
analysis of [13] we obtain an improved numerical estimate for the growth constant
A = 4.0625696(5) and an improved lower bound A > 3.927378. ...

Table 4. The number, a,, of fixed n-cell polyominoes on the square lattice

n Gn n an
47 272680844424943840614538634 52 273126660016519143293320026256
48  1085035285182087705685323738 53  1088933685559350300820095990030
49 4319331509344565487555270660 54 4342997469623933155942753899000
50 17201460881287871798942420736 55 17326987021737904384935434351490

51 68530413174845561618160604928 56  69150714562532896936574425480218
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