
P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2658, pp. 316–323, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Common Data Format for Program Sharing and
Integration

Elda Rossi1, Andrew Emerson1, and Stefano Evangelisti2

1CINECA, via Magnanelli 6/3, 40033 Casalecchio di Reno (BO) – Italy
2Laboratoire de Physique Quantique, UMR 5626, Université Paul Sabatier, 118 Route de

Narbonne, F-41062 Toulouse CEDEX – France

Abstract. This paper describes the design and implementation of a common
data format within abiGrid, a grid-based project that connects different research
groups of Quantum Chemists. The research activity of the partners is focused
on orbital localization in a Multi-Reference context, since orbital localization is
a necessary step towards the development of efficient methods for the treatment
of large systems.The goal of abiGrid is to permit the use and interchange of
home-made programs, while maintaining the individuality of the different codes
that, as research tools, are subject to changes and evolution. Central points of
the project are the design of a Common Data format and an extensive use of the
Grid technology. In the present contribution the structure of the common data
format is described. The format is based on XML, which has already used for
chemical applications (CML). The problem of the large amount of data
produced by ab-initio calculations is also addressed.

Keywords: Grid Technology, Meta-systems, Globus, XML-CML, ab-initio
methods, Local Orbitals.

1 Introduction

The treatment of large systems is becoming a key issue in Quantum Chemistry (QC).
Indeed it is hoped that in the near future it will be possible to apply QC techniques to
fields involving macromolecules such as nano-sciences, biology, and so on. In this
context, Linear-Scaling (LS) methods (algorithms whose computational complexity
scales proportionally with the system size) are particularly interesting [1]. LS methods
take advantage of the locality of most physical interactions to neglect distant
contributions, thus achieving a linear growth. In order to use the locality of the
interaction, however, it is essential to work with local orbitals, and this is the reason
of a renewed interest on orbital-localization techniques in QC in the last years.

The applicability of local-orbital methods in a Multi-Reference (MR) context is
presently studied by a group of researchers working on different aspects of
Methodological and Applicative QC [2-8]. Since the different groups involved in the
project are working on ab-initio codes developed in each single laboratory, program
integration is a central point of this research, and a considerable effort is currently
being devoted to this task. In order to work in this direction, two working group
activities were proposed within COST in Chemistry [9].

Common Data Format for Program Sharing and Integration 317

In the present contribution, we will focus on one of these activities, “AbiGrid: a
meta-laboratory for code integration in ab-initio methods” [10], whose goal is to
design and implement a tool, based on grid technology, that will enhance scientific
cooperation by making easier the use and interchange of home-made programs, while
maintaining the individuality of the different codes that, as research tools, are
subjected to changes and evolutions dictated by the research activities of the different
groups. All the partners involved in the Meta-Laboratory activity have been
developing quantum chemistry codes for internal use for many years. These codes are
complementary and their combined use is very important for new collaborations. On
the other hand program sharing is difficult since the codes have not been written with
sharing considerations in mind and no standard format has been respected in input
and output planning.

The solution, in perspective, is the integration of all the codes into a single meta-
system for QC calculations. This meta-system is not expected to substitute the general
large packages for Quantum Chemistry available today on the market, like Gaussian
or MolCAS or others, which are obviously much more complete and reliable. This is
instead a collaborative environment for researchers that need to share their own
home-made codes for common interests.

At the moment, we are focusing our work on the communication between the
different codes. Two strategies can be adopted: one possibility is to write a series of
one-to-one interfaces, connecting pairs of codes. The other possibility is to adopt a
single data format, and to write interfaces from each code to this standard format. The
first solution can be in some cases more desirable, particularly when two programs
share already some data format. If the number of codes to be integrated becomes
larger, however, the number of one-to-one interfaces becomes unreasonably large,
and the use of a single data format is certainly preferable. Therefore, it was this
solution that was adopted in our project.

2 The XML Choice

The strategy therefore was to decide on a common data format and write a series of
“wrapper” codes in order to convert the input and output files from each application
to or from the common data format.

The design of file formats able to represent particular types of information is a
common problem but is particularly pertinent to the area of computational chemistry.
In general, no standard format has ever been adopted for any area of chemistry with
most software providers tending to use their own proprietary solutions. However, in
recent years developments in the evolution of the creation of documents destined for
the WEB has led to a new formalism termed XML (eXstensible Mark-up Language)
[11]. XML is not a new computer language but rather a “meta-language”, a set of
rules which can be used to generate a syntax and vocabulary appropriate to the data to
be described. In this way many “flavors” of XML have been created to represent
information from many diverse areas (e.g business, medicine, archaeology, etc.) as
well as the successor to HTML for web-page design. The main advantage of an XML-
based data format is that it is extensible, i.e. new types of data can be easily and
seamlessly added to the language definition if the need arises – something which is
not possible with the currently available file types. In addition, since XML documents

318 E. Rossi, A. Emerson, and S. Evangelisti

contain just freely formatted text they are human readable and can be easily
interpreted by text parsers and other programs and converting between them provides
a lossless mechanism of data transfer. There are also many readily available utilities
for processing XML documents which can be transferred over the internet using
existing and commonly used protocols (e.g. hypertext transfer protocol or http).

To our knowledge there is only one mature implementation of an XML for
chemistry; this has been named Chemical Mark-up Language or CML and has been
designed by Peter Murray-Rust and Henry Rzepa [12]. There has yet to be a
widespread adoption of CML by the computational chemistry community but interest
is growing and the need for a more unified approach to storing chemical information
is generally accepted. Although in principle any kind of data can be included in
CML, it has been primarily designed for representing molecular structures and
chemical reactions rather than for QC quantities. The authors of CML are also in the
process of formulating an XML definition called CCML, or Computational Chemistry
Mark-up language, which is expected to be able represent information relevant to
computer simulation such as algorithms, parameterizations (e.g. force-fields) and job
control. However, neither CML nor the forthcoming CCML was designed with
quantum chemistry properties in mind so we have therefore decided to construct our
own XML definition (or “XML schema”) appropriate for handling data in QC
calculations. We should point out that having our own XML (tentatively designated
QCML, for Quantum Chemistry Mark-Up Language), does not imply abandoning
CML or CCML completely because XML allows one to have multiple “namespaces”

(i.e. mark-up language definitions) within the same document. Thus, although we
expect to use mainly QCML in our files, we are free to use CML if it is more
appropriate for the data item in question (e.g. for molecular structures). The design of

<system title date program author>
<molecule nelec norb charge spin_mult>
 <symmetry> <irr_reps name n_orb nocc/>

 <geometry> <atom atomic_number symbol weight>
 <coords type unit/>
 <basis type ang_mom_max>
 <ang_mom value symbol n_orb>
 <orbital n_primitives>
 <exps/>
 <coeff/>

 <list title=“computed data”/>
 <float title=“scf_energy”/>
 <float title=“nuclear_repulsion_energy”/>
 <link title=“mo-int” format="Columbus-bin" url/>

Fig. 1. A preliminary schema of QCML. A QC computation can be described with a
limited number of “tags” and “attributes”

Common Data Format for Program Sharing and Integration 319

QCML is still at an early stage but there will be tags such as <symmetry>,
<geometry>, <coefficient>, etc together with appropriate attributes for describing the
quantities required or outputted by the QC applications. Eventually a schema will be
published which will allow the validation of any QCML document. In fig. 1 a
preliminary schema of QCML is shown.

We point out in particular the use of the general CML “list/float” tag to maintain
computed quantities like different types of energy and the “link” tag that will be
discussed in another section (XML and large data files).

3 XML Wrappers and Tools

All the data describing the chemical system of interest are kept in a “data repository”
as showed in fig. 2. The data repository is based on the XML format and is
somewhere on the network.

All the efforts for integration and conversion from/to the common format are
handled by “wrappers”, programs specifically designed for each single code that
generate the input files starting from the repository (INPUT wrapper) and that, at the
end, store important data from the output files into the repository (OUTPUT
wrapper).

Fig. 2. The input wrapper converts data from the repository to the input files (1), the code runs
as usual producing output files (2),at the end the output wrapper converts selected output data
to the repository (3)

IN-wrapper

OUT-wrapper

Program

IN-files

OUT-files

XML
Data
Repository 222

111

333

320 E. Rossi, A. Emerson, and S. Evangelisti

This strategy allows us to leave the program unchanged. If we modify the program
or we add a new one, we only have to modify or to write the specific wrappers. So in
theory the meta-system will not be affected by the change in any other way.One
important task therefore is to write the wrapper programs which will perform the
conversions to and from this common format which could also be used for
documentation purposes and with appropriate utilities for results analysis. To do this
we have adopted two strategies:
1. The writing of a number of PERL scripts to perform the conversions between the

application files and the QCML data format.
2. The construction of a FORTRAN library of low-level and high-level subroutines

designed to aid the reading and writing of XML documents.
PERL was chosen because it is one of the most powerful text processing languages

and there is already an extensive library of modules for parsing, writing and
validating XML documents [13]. In addition, PERL interpreters are generally found
on all UNIX systems and since it does not need to be explicitly compiled, transferring
the PERL wrappers between the different hardware and software architectures in a
grid environment is straightforward.

The FORTRAN library was written at the request of the application program
authors and maintainers to facilitate the integration of their codes into the meta-
system. FORTRAN in fact is well known and widely used throughout this
community.

Although FORTRAN is not usually recommended for text manipulation, it is
possible (particularly with FORTRAN 90) and the routines can be validated with their
PERL equivalents.

The routines in the library are organised in three levels: the top level doing macro
tasks, the intermediate levels that are used by the previous ones but can also be used
by the user

In fig.3 tag
searches th the
example). the
example) a will
be the sym lue
argument.
 and a low level that contains routines mainly of internal use.
an example of a top level routines is presented. The routine Search_
e repository (trough the file argument) for a given tag (atom in
It is possible to specify what atom (id3, that is the atom no. 3, in
nd what specific attribute we are interested in (symbol). The result
bol of that atom (Ca for example) stored as a string in the va
Fig. 3. The search_tag routine from the FORTRAN library

Search_tag
(file, ’system/molecule/geometry/atom’ , ’id3’ ,’symbol’ , value , ierr)

INPUT

OUTPUT

Common Data Format for Program Sharing and Integration 321

4 XML and Large Data Files

XML, as well as being text-based, is also rather verbose and requires more disk space
than other data formats in order to store the equivalent quantity of data. This is not
usually considered important bearing in mind the storage available on current
computer systems but QC codes very often produce and access huge quantities of
data, such as electron integrals or checkpoint files. For efficiency, both in terms of
disk space and CPU time, these files are usually written in a binary format.

Due to the size of the stored data (perhaps even hundreds of Gbytes for very large
calculations), it is unthinkable to keep these data in a formatted XML file. Although
large XML files can be compressed quite efficiently with standard compression
utilities at the end of a run, the increase in data access time during program execution
would severely affect program performance. Thus, when large binary files are
required it was decided to create an XML file containing a link to the location of the
binary file, together with information describing its format and contents. Although
not ideal there seems to be no other workaround without affecting program
performance.

5 The Implementation

A number of existing programs have been used as building blocks for the prototypal
meta-system. In most cases the codes are home-made, but sometimes they are general
use packages, distributed freely over the internet (as is the case for Dalton and
Columbus). The programs in question are as follows:
− COLUMBUS (General ab-initio electronic package) [14]
− DALTON (General ab-initio package) [15]
− CAS-DI (Multi-Reference Configuration Interaction) [16]
− EPCISO (Spin-orbit Configuration Interaction) [17]
− NEVPT (Multi-Reference Perturbation Theory, Perturbative-Variational

approaches) [18]
− LOCNAT (Localized Multireference algorithm) [3,4]
− FCI (Full Configuration Interaction): [19]
− PROP (Property Calculation) [20]

Some of these codes can be considered “zero level” programs, as they do not
require pre-computed structured data. On the other hand, a program like FCI needs
molecular orbital integrals to start. It has been designed to take those data from a
specific commercial program, but allowing the integrals to come from other sources
will increase flexibility.

Another problem we are facing is that of “multiple instances” of the same input
data. For example, all codes need information like “number of atoms”, “electrons”,
“basis set”, etc., each of them in a different input format. The solution is to collect all
data at the beginning and transfer them to each program in a suitable format.

The first prototype of this implementation, was the interface between the
COLUMBUS and FCI chains. This was because the FCI code requires a very limited

322 E. Rossi, A. Emerson, and S. Evangelisti

set of data (essentially, one- and two-electron integrals), and contains a rather limited
set of options. However, we notice that the strategy adopted will permit a future
integration of the other codes within the same XML scheme. Work has already started
on the PERL parsers needed to convert the various input and output files to their
QCML equivalents. The main problem being encountered is not so much the writing
or parsing of the XML code, the library routines make this a simple programming
task, but instead gathering together all the quantities present in the many files required
and generated by the applications.

6 Conclusion

We are well on the way to interfacing different ab-initio codes via an XML wrapper,
which permits the data transfer from one code to the other. The problem of the large
amount of data produced and/or needed by most of the QC codes (Orbital
Coefficients, Molecular Integrals, Configuration Coefficients, etc) and for which a
verbose solution like XML does not seem appropriate, was solved by writing in the
XML file the locations and descriptions of the binary files containing the data. We are
working on the extension of this approach to the different codes involved in the
abiGrid project. We believe that the proposed solution, in which the different codes
maintain their individuality, and are under the direct responsibility of the groups
which wrote them, can represent an efficient way to enhance the collaboration
between different researchers belonging to the Quantum Chemistry community.

References

[1.] S. Goedecker, Rev. Mod. Phys., 71 (1999) 1085
[2.] N. Guihéry, J.-P. Malrieu, S. Evangelisti, and D. Maynau, Chem. Phys. Lett. 349 (2001)

555
[3.] D. Maynau, S. Evangelisti, N. Guihéry, C.J. Calzado and J.-P. Malrieu, J. Chem. Phys.

116 (2002) 10060
[4.] C. Angeli, S. Evangelisti, R. Cimiraglia and D. Maynau, J. Chem. Phys. 117 (2002) 10525
[5.] C. Angeli, C.J. Calzado, R. Cimiraglia, S. Evangelisti, N. Guiéhry, J.-P. Malrieu, and D.

Maynau, J. Comp. Meth. Sci. and Engen. 3 (2002) 1.
[6.] C.J. Calzado, S. Evangelisti, D. Maynau, J. Mol. Struct. (THEOCHEM), in press.
[7.] C. Angeli, C.J. Calzado, R. Cimiraglia, S. Evangelisti, N. Guihéry, T. Leininger, J.-P.

Malrieu, D. Maynau, J.V. Pitarch, and M. Sparta, Mol. Phys. in press.
[8.] C. Angeli, C.J. Calzado, R. Cimiraglia, S. Evangelisti, and D. Maynau, Mol. Phys. in

press.
[9.] http://cost.cordis.lu/src/home.cfm
[10.] http://cost.cordis.lu/src/extranet/publish/D23WGP/d23-0006-01.htm
[11.] see for example http://www.w3.org/XML
[12.] Murray-Rust, Henry S. Rzepa and Michael Wright, New J. Chem., 2001, 618–634.

(http://www.xml-cml.org/
[13.] See, for example, the CPAN archive, http://www.cpan.org
[14.] http://www.itc.univie.ac.at/~hans/Columbus/columbus.html; H. Lischka, R. Shepard, R.

M. Pitzer, I. Shavitt, M. Dallos, Th. Müller, P. G. Szalay, M. Seth, G. S. Kedziora, S.
Yabushita and Z. Zhang, Phys. Chem. Chem. Phys. 3 (2001) 664.

http://cost.cordis.lu/src/home.cfm
http://cost.cordis.lu/src/extranet/publish/D23WGP/d23-0006-01.htm
http://www.xml-cml.org/
http://www.itc.univie.ac.at/~hans/Columbus/columbus.html

Common Data Format for Program Sharing and Integration 323

[15.] http://www.kjemi.uio.no/software/dalton/dalton.html
[16.] N.Ben Amor, D. Maynau Chem. Phys. Lett. 286 (1998) 211.
[17.] V. Vallet, L. Maron, C. Teichteil et J.P. Flament, J. Chem. Phys. 113 (2000) 1391.
[18.] C.Angeli, R.Cimiraglia, S.Evangelisti, T,Leininger, J.-P. Malrieu, J.Chem. Phys. 114

(2001) 10252.
[19.] G.L. Bendazzoli, S.Evangelisti, J.Chem. Phys. 98 (1993) 31.
[20.] J. Pitarch-Ruiz, J. Sánchez-Marín, D. Maynau. J. Chem. Phys. 112 (2000) 1655.

http://www.kjemi.uio.no/software/dalton/dalton.html

	Introduction
	The XML Choice
	XML Wrappers and Tools
	XML and Large Data Files
	The Implementation
	Conclusion
	References

