
Efficient Reachability Analysis and Refinement
Checking of Timed Automata Using BDDs

Dirk Beyer

Software Systems Engineering Research Group
Technical University Cottbus, Germany
db@informatik.tu-cottbus.de

Keywords. Formal verification, Real-time systems, Timed Automata

1 Introduction

For the formal specification and verification of real-time systems we use the modu-
lar formalism Cottbus Timed Automata (CTA), which is an extension of timed au-
tomata [AD94]. Matrix-based algorithms for the reachability analysis of timed automata
are implemented in tools like Kronos, Uppaal, HyTech and Rabbit. A new BDD-based
version of Rabbit, which supports also refinement checking, is now available.

For the representation of the models we use an integer semantics for closed timed
automata. Using this discretization, we are able to use a unique representation of the
discrete state space (given by the locations) and the continuous state space (given by
the clocks). We use an estimate-based strategy for variable ordering which dramati-
cally compresses the BDD representation of the transition relation and the reachable
configurations and thus leads to much more efficient verification.

The restricted applicability of reachability analysis due to the high time complexity
of the analysis for large models leads to the need of refinement checking for verification.
We implemented an algorithm for checking the existence of a simulation relation to
investigate the opportunities of refinement checking for Cottbus Timed Automata.

Section 2 introduces our notation for modular modeling of real-time systems: we
recall the formal definition of timed automata and our integer semantics for closed timed
automata. In Sect. 3 we describe our implementation of reachability analysis and, in more
detail, in Sect. 4 we define the corresponding refinement checking. In Sects. 3 and 4, we
present performance results for some example models.

2 Cottbus Timed Automata

We start with an informal definition of Cottbus Timed Automata (CTA), which is a
modeling concept providing means for modular design [BR98]. A formal definition and
the complete semantics of CTA are given in [BR01]. A CTA system description consists
of a set of modules. One of them is the top module, which models the whole system. The
other modules are used as templates. They can be instantiated several times in different
modules. Thus, it is possible to express a hierarchical structure of the system, and to
define replicated components of a system just once.

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 86–91, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Efficient Reachability Analysis and Refinement Checking of Timed Automata 87

Each module is named by an identifier. (1) The interface contains the declarations of
clock variables and synchronization labels, each of them has a restriction type to control
the access to the component. We distinguish the restriction types INPUT, OUTPUT,
MULTIPLY RESTRICTED, and LOCAL. (2) A module contains a timed automaton
as defined below. (3) The initial condition is a predicate over the module’s variables
and locations. (4) A module may contain instances of previously defined modules.

We now define closed timed automata and their integer semantics. Clock constraints
are allowed as invariants and guards of a timed automaton. Let X be a set of clocks.
Atomic clock constraints over X are comparisons of a clock with a time constant from
N, the set of natural numbers (including 0). Clock constraints are conjunctions of atomic
clock constraints. Formally, the set Φ(X) of clock constraints over X for closed timed
automata is generated by ϕ := x ≤ c | x ≥ c | ϕ∧ϕ, with x ∈ X and c ∈ N. For closed
timed automata it is sufficient to use only integer clock values for the computation of
reachable locations.

The clock assignments ValI (X) of X are the total functions from X into the set
of natural numbers N. For a clock constraint ϕ ∈ Φ(X), [[ϕ]] denotes the set of all
clock assignments of X that satisfy ϕ. The clock assignment which assigns the value
0 to all clocks is denoted by v0. For a timed automaton A with a clock x, CA(x)
denotes the greatest constant to which x is compared within a clock constraint of A.
For v ∈ ValI (X) and δ ∈ N, v ⊕ δ is the clock assignment of X that assigns the value
min (v(x) + δ, CA(x) + 1) to each clock x. For v ∈ ValI (X) and Y ⊆ X , v[Y := 0]
denotes the clock assignment ofX that assigns the value 0 to each clock in Y and leaves
the other clocks as in v.

A closed timed automaton A is a tuple (L,L0, X,Σ, I, E), where L is a finite set
of locations, L0 ⊆ L is a set of initial locations, X is a finite set of clocks, Σ with
Σ ∩ N = ∅ is a finite set of synchronization labels, I is a total function that assigns an
invariant from Φ(X) to each location in L, E ⊆ L × Σ × Φ(X) × 2X × L is a set of
switches. A switch (l, a, ϕ, Y,m) represents a transition labeled with synchronization
label a from location l to locationm. The guardϕ has to be satisfied to enable the switch.
The switch resets all clocks in Y to the value 0.

The semantics of a timed automaton is defined by associating a transition system with
it. Let A = (L,L0, X,Σ, I, E) be a closed timed automaton. The integer semantics
[[A]]I of A is the transition system (L× V alI(X), L0 × {v0}, Σ ∪ N,→I) with the
following timed and discrete transitions:

– For (l, v), (m,w) ∈ L× ValI (X) and δ ∈ N, (l, v) δ→I (m,w) holds
iff l = m, w = v ⊕ δ, v ∈ [[I(l)]] and w ∈ [[I(l)]].

– For (l, v), (m,w) ∈ L× ValI (X) and a ∈ Σ, (l, v) a→I (m,w) holds
iff there exists an (l, a, ϕ, Y,m) ∈ E with v ∈ [[ϕ]] and w = v[Y := 0].

In the following we define runs and reachable configurations for a transition sys-
tem T = (S, S0, ΣT,→). Let (s0, s1, ..., sk) be a finite sequence of configurations,
a0, a1, ..., ak−1 ∈ ΣT , s0 ∈ S0, and si

ai−→ si+1 for all i ∈ {0, 1, ..., k − 1}. Then
(s0, s1, ..., sk) is a run of T. Run(T) denotes the set of runs of T. The configuration sk
is reachable. Reach(T) denotes the set of reachable configurations (shorter: reachable
set) of T.

88 D. Beyer

In our tool implementation we use the integer semantics for closed timed automata as
defined above. This integer semantics is equivalent to the usual, continuous one regarding
the set of reachable locations. More details and a formal proof are given in [Bey01]. To
verify safety properties of a CTA model we provide two techniques: reachability analysis
and refinement checking as described in the following two sections.

3 Reachability Analysis

For verification of a safety property, i.e. whether a configuration of a special set of invalid
configurations is reachable or not, we compute at first the set of reachable configurations.
Secondly, we intersect the reachable set with the set of invalid configurations. If the
intersection is empty, then the safety property is fulfilled. Variants of this algorithm
are possible for speed-up, e.g. on-the-fly analysis. We extended our existing matrix-
based model checker Rabbit by the BDD-based reachability analysis of closed timed
automata. Experience with finite automata shows that the efficiency critically depends
on the choice of several parameters. In this section we sketch how our implementation
determines these parameters.

Variable Ordering. We take the pre-order linearization of the CTA model as initial
variable ordering. This implies that we consider the modeler’s decision to encapsulate
some components together within one module, i.e. local components of a module are
assigned to neighboring positions within the variable ordering. Then we apply another
heuristic to optimize the ordering respecting a size estimate for the BDD of the set
of reachable configurations, which is derived from our upper bound for the transition
relation as described and proven in [Bey01].

Partial Transition Relations. Usually the transition relation → is represented as

implicit union of a timed transition relation
1→ and discrete transition relations

a→ for
each synchronization label a. Experiments have shown that applying such partial tran-
sition relations sequentially is more efficient than using the union of these relations as
monolithic transition relation.

Order ofTransitions. Using several partial transition relations, we have to determine
the order of their application. The intermediate sets of reached configurations in the
reachability algorithm depend on this ordering, and therefore the size of the intermediate
BDDs. A bad ordering of the partial transition relations can result in intermediate BDDs
that are much larger than the final BDD of all reachable configurations. To compute the
fixed point using only discrete transitions before applying time transitions is a successful
strategy to avoid this problem.

Examples. In the following we report some performance results.All the computation
times obtained using our tool are given in seconds of CPU time on a SUN Ultra-Sparc
1 with 200 MHz processor and 64 MB memory. The results of the BDD-based version
of Kronos are taken from [BMPY97] and also obtained using a SUN Ultra-Sparc-1.

The BDD-based version of Kronos is able to verify 14 processes of Fischer’s mutex
protocol. Rabbit needs 13.6 s computation time for the same model. The verification of
32 processes needs 208 s. We are able to verify even the model with 128 of Fischer’s
processes using 512 MB memory in 9168 s.

Efficient Reachability Analysis and Refinement Checking of Timed Automata 89

Rabbit needs 6 s to compute the whole set of reachable configurations of the AND
model with 4 inputs as mentioned in [BMPY97]. Kronos needs 324.7 s for this model.
Out tool is able to verify the AND model up to 16 inputs in 1209 s. Another example is
the little ’two state’ example from [BMPY97], for which they report to handle up to 9
automata. Rabbit computes all rechable configurations of 64 two state automata (having
2.2 · 1088 configurations) in 94 s. We used on-the-fly analysis for this example, which
increases dramatically the performance of models consisting of mostly independent
components. For more details about the on-the-fly algorithm see [BN01].

4 Refinement Checking

The intuition behind our refinement concept is an assumption/guarantee principle.
We describe it with respect to our formalism: A refinement relation (P refines Q) for
CTA modules P and Q has to fulfill the following properties (M denotes a module,
M.GI,M.GO,M.GMR denotes the module’s sets of synchronization labels declared
as INPUT, OUTPUT, MULTREST, respectively): (1) Q.GI ⊆ P.GI . The occurrence of
a synchronization label g as input in a module M means that M guarantees that g is not
restricted in M. This clearly is a guarantee. Thus each input label of the specification
should be an input label of the implementation. (2) P.GO ⊆ Q.GO. The occurrence of a
synchronization label g as output in a module M means that M assumes that g is not re-
stricted in the environment. The implementation should not make more assumptions than
the specification, thus each output label of the implementation should also be an output
label in the specification. (3) Q.G−Q.GL = P.G−P.GL. The synchronization labels of
a module M can be partitioned into a set of interface labels (M.GI∪M.GO∪M.GMR),
and a set of local labels (M.GL). Interface labels are those via which M can commu-
nicate with the environment. (4) EP ⊆ EQ. The external trace set EP (defined below)
of the labeled transition system generated by P is a subset of the external trace set EQ

of the labeled transition system generated by Q. The intuition is that the occurrence of
a trace t in EQ means that EQ allows the system behavior t, and the refinement should
not allow more behaviors than the specification.

Let [[M]]I = (S, S0,M.G ∪ N,→M) be the labeled transition system generated by
module M (integer semantics). M.G is the set of synchronization labels of module M,
N is used for the time values and M.G ∪ N is the set of transition labels of the labeled
transition system [[M]]I . For the exact definition we refer to [BR01]. Roughly spoken, it
is the integer semantics of the parallel composition AM of all the automata contained
by M regarding various compatibility constraints.

A trace of a given labeled transition system [[M]]I is an infinite sequence
(a0, a1, a2, . . .) of elements of M.G ∪ N. For each element ak of the trace the following
must hold: There exists a run (s0, s1, . . . , sk+1) ∈ Run([[M]]I) with si

ai−→M si+1 for
all i ∈ {0, 1, . . . , k}.

We use a simulation relation for the algorithmic analysis of refinement within our tool
implementation. To define timed simulation we need the notion of external transitions
and external traces. After this we can proceed with the algorithm for the simulation
check. We use the concept of safety simulation relation as described in [DHWT92].

90 D. Beyer

Let τ ∈ M.L be a local synchronization label. Then a τ -transition s
τ→M s′ is

called an internal transition. For some configurations s, s′ and ai ∈ M.G∪ N we define
s

a1a2...an−−−−−−→M s′ as: ∃s′′ with s
a1→M s′′ and s′′ a2...an−−−−→M s′. For a ∈ (M.G \

M.L) ∪ N, s
a−→M s

′ is an external transition and for τ̂ , τ̂ ′ ∈ (M.L)∗, s
τ̂aτ̂ ′

−−−→M s
′

is the sequence of an arbitrary number of internal transitions followed by one external
transition followed by another arbitrary number of internal transitions. In the sequel we

write s
a�M s

′ for s
τ̂aτ̂ ′

−−−→M s
′. Now we can define an external trace as follows: The

sequence (a0, a1, a2, . . .) of elements of (M.G \ M.L) ∪ N is an external trace, if for
each ak there exists a sequence (s0, s1, . . . , sk+1), s0 ∈ S0, sj ∈ S, 1 ≤ j ≤ k + 1
with si

a�M si+1 for all i ∈ {0, 1, . . . , k}. It hides synchronization labels of internal
discrete transitions.

A transition system Q simulates a transition system P if Q can match every step
of P by a step with the same label. We define timed simulation for labeled transition
systems as follows: The labeled transition system [[Q]]I = (SQ, S

0
Q, ΣQ,→Q) simulates

the labeled transition system [[P]]I = (SP, S
0
P, ΣP,→P), Σ = (P.G \ P.GL) ∪ N =

(Q.G \ Q.GL) ∪ N, ΣQ = Q.G ∪ N, ΣP = P.G ∪ N, if:

– there exists a simulation relation R ⊆ SP × SQ which fulfills
∀a ∈ Σ,∀(p, q) ∈ R,∀p′ ∈ SP :(
p

a�P p
′
)

=⇒
(
∃q′ : q

a�Q q
′ ∧ (p′, q′) ∈ R

)
, and

– all initial configurations of P are contained within the simulation relation: S0
P ⊆

{p ∈ SP|∃q : (p, q) ∈ R}.

The algorithm of the simulation check is shown in Fig. 1. For the composition of
P and Q we compute the set of reachable configurations. We consider this set of tuples
(p, q) as the initial relation for trying to build a simulation relation between P and Q.
Then, in each cycle of a fixed point iteration we assume that it is a simulation relation
and we check whether all configurations of the set fulfill the simulation condition from
the definition above. Differing from the definition, we use the transition relation of the
product P||Q, which is already computed in our approach. (The computation of the
reachable set needs more time than checking the simulation relation if using P||Q.) If
there are ’bad’ configurations we have to invalidate our assumption that it is already the
simulation relation and we eliminate them from the relation. If we reached the fixed point
(i.e. our assumption was true) we got the simulation relation. If the algorithm eliminates
some of the initial configurations of P from the relation there cannot exist a simulation
relation and the algorithm aborts. If we reached the fixed point (i.e. our assumption was
true) we got the simulation relation.

Note. Modules P and Q are not allowed to contain variables within their interfaces
(shared variables). The simulation check considers only synchronization labels regarding
external traces.

Production Cell Example. To validate the practical relevance of our tool using a
complex system, we developed a CTA model of a production cell, which is similar to the
Lewerentz/Lindner production cell from FZI. The system consists of 20 machines and
belts with 44 sensors and 28 motors. We modeled the system as modular composition
of several belts, turntables and machines, including 45 timed automata containing 22

Efficient Reachability Analysis and Refinement Checking of Timed Automata 91

Input: labeled transition system [[P]]I = (SP , S0
P , ΣP , →P)

as integer semantics of module P,
labeled transition system [[P||Q]]I = (SP||Q , S0

P||Q , ΣP||Q , →P||Q)
as integer semantics of the composition P||Q with Σ = (P.G \ P.GL) ∪ N.

Output: true, iff P simulates P||Q
RP||Q := Reach([[P||Q]]I)
do

R′
P||Q := RP||Q

forall a ∈ Σ
if S0

P �⊆ {p ∈ SP |∃q : (p, q) ∈ RP||Q} then return false

RP||Q := RP||Q ∩


 (p, q) ∈ RP||Q

∣∣∣∣∣∣∣∣
∀p′ :

(
p

a�P p′
)

⇒(
∃q′ : (p, q)

a�P||Q (p′, q′)
∧ (p′, q′) ∈ RP||Q

)



while RP||Q �= R′
P||Q

return true

Fig. 1. Algorithm for checking a simulation relation

clocks. For the measurement of the throughput, i.e. how long does a piece need to go
through the production cycle, we modeled each belt to be able to measure the time of
transportation using a clock. For the verification process we can fade out some details
of the machines. To verify a safety property, e.g. ’the drilling machine must be off if the
transport belt is not off’, we verify at first that the timed version of the transport belt
implements an untimed version by checking the existence of a simulation relation. Now
we can verify the safety property of the model using that smaller untimed version for
transport belts. The analysis of the safety property of the system using a timed model
for the sensor instances needs 1098 s. Using an untimed version for the transport belts,
the same task needs only 556 s. It shows that an abstraction within one small part of
the system has a big impact on the computation time. The computation time for the
simulation check is 0.5 s because the belt model is a small part of the whole system.

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[Bey01] Dirk Beyer. Improvements in BDD-based reachability analysis of timed automata.
In Proc. FME 2001, LNCS 2021, pages 318–343. Springer-Verlag, 2001.

[BMPY97] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress on the symbolic
verification of timed automata. In Proc. CAV’97, LNCS 1254, pages 179–190. 1997.

[BN01] Dirk Beyer andAndreas Noack. Efficient verification of timed automata using BDDs.
In Proc. Formal Methods for Industrial Critical Systems. to appear, 2001.

[BR98] Dirk Beyer and Heinrich Rust. Modeling a production cell as a distributed real-time
system with Cottbus Timed Automata. Proc. FBT’98, pages 148–159. Shaker, 1998.

[BR01] Dirk Beyer and Heinrich Rust. Cottbus Timed Automata: Formal definition and
semantics. In Proc. FSCBS 2001, pages 75–87, 2001.

[DHWT92] David L. Dill, Alan J. Hu, and Howard Wong-Toi. Checking for language inclusion
using simulation preorders. In Proc. CAV’91, LNCS 575, pages 255–265. 1992.

	Introduction
	Cottbus Timed Automata
	Reachability Analysis
	Refinement Checking

