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Abstract. This paper presents the derivation of a denotational semantics from
an operational semantics for a subset of the widely used hardware description
language Verilog. Our aim is to build an equivalence between the operational
and denotational semantics. We propose a discrete time semantic model for Ver-
ilog. Algebraic laws are also investigated in this paper, with the ultimate aim of
providing a unified set of semantic views for Verilog.

1 Introduction

Modern hardware design typically uses a hardware description language (HDL) to ex-
press designs at various levels of abstraction. An HDL is a high level programming
language, with usual programming constructs such as assignments, conditionals and
iterations and appropriate extensions for real-time, concurrency and data structures suit-
able for modelling hardware. Verilog is an HDL that has been standardized and widely
used in industry [6]. Verilog programs can exhibit a rich variety of behaviours, including
event-driven computation and shared-variable concurrency.

The semantics for Verilog is very important. At UNU/IIST, the operational seman-
tics has been explored in [1,3,4,7]. Verilog’s denotational semantics [9] has also been
explored based on the operational semantics using Duration Calculus [8]. The two se-
mantics can be considered equivalent informally. The question is how the two semantics
can be proved equivalent formally.

The aim of this paper is to derive the denotational semantics forVerilog from its oper-
ational semantics. This ensures the consistency of the two semantics, making it possible
to demonstrate their equivalence formally. The similar problem was also investigated in
[5] for Dijkstra’s sequential language. In our paper we define a transitional condition
and the phase semantics for each type of transition. The denotational semantics can be
treated as the sequential composition of those phase semantics.

This paper is organized as follows. Section 2 introduces the language and presents
a discrete denotational semantic model. We also design a refinement calculus for the
discrete model. Section 3 is devoted to deriving the denotational semantics from its
operational semantics. We introduce the operational semantics, and define a function
that maps any program text to a logic formula representing its denotational semantics.

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 449–464, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

http://www.cafm.sbu.ac.uk/
http://www.iist.unu.edu/


450 Z. Huibiao, J.P. Bowen, and H. Jifeng

We derive the denotational semantics for each statement from the function by a formal
proof in Sect. 4. We also discuss the algebraic laws that are well suited for symbolic
calculation. The three semantics form a unifying model, proving different views useful
for varying purposes when reasoning about Verilog.

2 The Discrete Denotational Model

2.1 The Syntax for Verilog

The language discussed in this paper is a subset of Verilog. It contains the following
categories of syntactic elements introduced in [2].

1. Sequential Process (Thread):
S ::= PC | S ; S | if b then S else S | c S
where PC ranges over primitive commands.

PC ::= (x := e) | skip | chaos
and c S denotes timing controlled statement, and c is a time control used for

scheduling.
c ::= #(∆) | @(η), where η ::= v |↑ v |↓ v

Time delay #∆ suspends the execution for exactly ∆ time units. ∆ is treated as the
integer in this paper. Event guard @(↑ v) is fired by the increase of the value of v,
whereas @(↓ v) is triggered by a decrease in v. Any change of v awakes the guard @(v).

2. Parallel Process (Module):
P ::= S | P ‖ P

To accommodate the expansion laws of parallel construct, the language is equipped with
a hybrid control event hc:

hc ::= @(x := e) | @(g) | #(∆)
g ::= η | g or g | g and g | g and ¬g

and the guarded choice (hc1 P1)[] . . . [](hcn Pn)

2.2 Denotational Semantic Model

Verilog processes are allowed to share program variables. In order to deal with this
shared-variable feature, we describe the behaviour of a process in terms of a trace of
snapshots, which records the sequence of atomic actions in which that process has
engaged to some moment in time. Our semantic model contains a variable tr to denote
that trace.

If a trace tr is not empty, the function “last” yields its last snapshot. Let tr1, tr2
be two traces. The notation tr1̂tr2 denotes the concatenation of tr1 and tr2. tr1 �
tr2 indicates that tr1 is a prefix of tr2. Suppose tr1 � tr2, the notation tr2 − tr1
denotes the result of subtracting those snapshots in tr1 from tr2. We use the notation
tr1 in tr2 to indicate that tr1 is contained in tr2, i.e., there are sequences s and t such
that tr2 = ŝtr1̂t.

A snapshot is used to specify the behaviour of an atomic action, and expressed by a
triple (t, σ, µ) where:
(1) t indicates the time when the atomic action happens;
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(2) σ denotes the final values of program variables at the termination of an atomic action;
(3) µ is the control flag indicating which process is in control: µ = 1 states the atomic
action is engaged by the process, whereas µ = 0 implies it is performed by the environ-
ment.

We select the components of a snapshot using the projections:

π1((t, σ, µ)) =df t π2((t, σ, µ)) =df σ π3((t, σ, µ)) =df µ
Once a Verilog process is activated, it continues its execution until the completion

of an atomic action; namely either it encounters a timing controlled statement, or it ter-
minates successfully. An atomic action usually consists of a sequence of assignments as
shown below.

Example 2.1: Consider the parallel program P‖Q where P =df (x := 1; y :=
x + 1; z := x + 2) and Q =df x := 2. Three assignments of P form an atomic
action, and their execution is uninterrupted. The process Q can only be started at the
beginning or at the end of the execution of P . ✷

The execution of an atomic action is represented by a single snapshot. In order to de-
scribe the behaviour of individual assignment, we introduce a variable ttr to model the
accumulated change made by the statements of the atomic action. On the completion of
an atomic action, the corresponding snapshot is attached to the end of the trace to record
its behaviour.

Example 2.2: Let P =df x := x + 1 ; y := y − 1 ; @(g). Assume that program
variables x and y are 0 and 1 respectively when P is activated, and the activated time
of P is at 0. The execution of x := x + 1 produces ttr = {x 	→ 1, y 	→ 1} on its
termination that specifies the change made by the assignment to variable x. The state-
ment y := y − 1 in turn yields ttr = {x 	→ 1, y 	→ 0} as the final value of ttr, which
reflects the change incurred by the atomic action (x := x+1; y := y−1). The snapshot
(0, {x 	→ 1, y 	→ 0}, 1) will be added to the end of the trace variable tr when @(g) is
encountered. After this adding, ttr will be assigned an empty value null. ✷

Example 2.3: Let P =df x := 1 ; @(x := 2) ; x := 3. The contribution of (x := 1)
is added to the end of the trace when assignment guard @(x := 2) is encountered. This
means x := 1 in this particular case is an atomic action. Although @(x := 2) is an
atomic action, it also stores its result in ttr. In order to distinguish assignment guard
from assignment, we assign a control flag with 0 to identify this case. The result of the
assignment guard will be added when its sequential statement is encountered (not only
guards). ✷

We are now ready to represent the observation by a tuple

(←−−time, −−→time, ←−tr , −→tr , ttr, ttr′, f lag, flag′ )
where
• ←−−time and

−−→
time are the start point and the end point of a time interval over which the

observation is recorded. We use δ(time) to represent the length of the time interval.
δ(time) =df (−−→time−←−−time)

• ←−tr stands for the initial trace of a program over the interval which is passed by its
predecessor. −→tr stands for the final trace of a program over the interval.−→
tr −←−tr stands for the sequence of snapshots contributed by the program itself and its
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environment during the interval.
• ttr and ttr′ stand for the initial and final value of the variable ttr which are used to
store the contribution of an atomic action over the interval.
•flag andflag′ stand for the initial and final value of the control flag. There are two cases
to indicate the end of its prior atomic action(“ttr = null” or “ttr �= null∧ flag = 0”).

Example 2.4: Let P =df x := 1 ; #1, Q =df #1 ; x := 2, R =df x := 3.
Consider the trace of program (P ‖ Q) ; R.

The trace of P is < (←−−time, σ1, 1) , (←−−time+ 1, σ2, 0) >.

The trace of Q is < (←−−time, σ1, 0) , (←−−time+ 1, σ2, 1) >.

Hence, the trace of P ‖ Q is < (←−−time, σ1, 1) , (←−−time+ 1, σ2, 1) >.

R’s trace is < (←−−time, σ3, 1) >. Then the trace of (P ‖ Q) ; R is

< (←−−time, σ1, 1) , (←−−time+ 1, σ2, 1) , (←−−time+ 1, σ3, 1) >.

where σ1 = {x 	→ 1}, σ2 = {x 	→ 2}, σ3 = {x 	→ 3}. ✷

We use the following diagram to indicate the trace behaviour of a process (and its environ-
ment). Here, “•” stands for the process’s atomic action. “◦” stands for the environment’s
atomic action. The numbers on the vertical line stand for the snapshot sequences in the
process’s trace, whereas the number on the horizontal line represents the time when the
atomic actions take place.

✻

0

(
←−−
time)

� 1

❝ 2

❝ 3

✻

1

❝ 4

� 5

✻

2

❝ 6 . . .

❝ 7 . . .

✻

t

(
−−→
time)

❝ n-2

❝ n-1

� n

✲
time

As in Temporal Logic, we introduce a binary “chop” operator to describe the composite
behaviour of sequential composition.

Definition 2.5
P �Q =df ∃t, s, tt, f • P [s/−→tr , t/−−→time, tt/ttr′, f/flag′]

∧ Q[s/←−tr , t/←−−time, tt/ttr, f/flag] ✷

The “chop” operator is associative, and distributes over disjunction. It has I has its unit
and false as its zero, where

I =df δ(time) = 0 ∧ −→tr =←−tr ∧ ttr′ = ttr ∧ flag′ = flag.

A Verilog process may perform an infinite computation and enter a divergent state.
To distinguish its chaotic behaviour from the stable ones we introduce the variables
ok, ok′ : Bool into the semantic model, where ok = true indicates the process has
been started, and ok′ = true states the process has become stable.

A timing controlled statement can not start its execution before its guard is triggered.
To distinguish its waiting behaviour from terminating one, we introduce another pair
of variables wait, wait′ : Bool. wait = true indicates that the process starts in an
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intermediate state, and wait′ = true means the process is waiting. The introduction of
intermediate waiting state has implications for sequential composition “P ;Q”: if Q is
asked to start in a waiting state of P , it leaves the state unchanged, i.e., it satisfies the
healthiness condition.

(H) Q = II ✁ wait✄Q,
where II =df true � (δ(time) = 0) ∧ (−→tr =←−tr) ∧ (

∧
s∈{ok,wait,ttr,flag} s

′ = s)
P ✁Q✄R =df (P ∧Q) ∨ (¬Q ∧R)
P � R =df (ok ∧ P )⇒ (ok′ ∧R)

Definition 2.6: Let P and Q be formulae. Define

P ; Q =df ∃w, o • ( P [w/wait′, o/ok′]�Q[w/wait, o/ok] )
Definition 2.7: A formula is called a healthy formula if it has the following form.

H(Q �W ✁ wait′ ✄ T )
where, H(X) = II ✁ wait✄X

Theorem 2.8: H(P ) satisfies healthiness condition (H).

Theorem 2.9: IfD1,D2 are healthy formulae, so areD1∨D2,D1✁b✄D2 andD1 ; D2,
where

H(Q1 �W1 ✁ wait′ ✄ T1) ; H(Q2 �W2 ✁ wait′ ✄ T2)
= H(¬(¬Q1

�true) ∧ ¬(T1
�¬Q2) � (W1 ∨ (T1

�W2)) ✁ wait′ ✄ (T1
�T2))

Corollary 2.10: If P is a healthy formula then

(1) II ; P = P (2) ⊥ ; P = ⊥ ✷

The union and intersection of arbitrary healthy formulae set are also healthy formu-
lae. This implies that healthy formulae form a complete lattice under the implication
order, which has a bottom element ⊥ =df H(false � true) and a top element
� =df H(true � false).

3 From Operational Semantics to Denotational Semantics

3.1 Transitional Condition and Phase Semantics

In order to derive Verilog’s denotational semantics from its operational semantics we
define a transitional condition and the phase semantics for each type of transition. The
standard way to give an operational semantics is to define a set of transition rules based
on configurations, such that any computation of a program can be generated from the
transition rules.A configuration usually consists of four components (or five components
in some cases):

(1) a program text P representing the rest of the program that remains to be executed;
(2) a data state σ (the second element of a configuration) denoting the initial data state
of an atomic action;
(3) another data state σ′ (the third element) representing the current data state during the
execution of an atomic action (σ′ = ∅ represents the previous atomic action ends and
the new atomic action has not been scheduled);
(4) a control flag k (the fourth element) indicating which process is selected to execute:
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k = 0 states the program P is waiting to be executed and its environment may perform
triggering action or let time make advance, whereas k = 1 implies that P is being
executed and neither time advance step nor triggering action can take place;
(5) a thread number i (in some configurations) denoting the i-th thread of process P is
being executed (i.e., this thread obtains the control flag).

The relationship between a transition and the variables in the denotational model can be
described by the following diagram of an example transition.

✻

π2(last(
←−
tr))

✻

ttr

✻

flag

✻

π2(last(
−→
tr))

✻

ttr′

✻

flag′

< P, σ, σ′, 0 >
<σ,σ′>−→ c < P ′, σ′, ∅, 0 >

Let O(α1, α2, α3, α4) stands for the observation of ttr and flag.

O(α1, α2, α3, α4) =df ttr = α1 ∧ ttr′ = α2 ∧ flag = α3 ∧ flag′ = α4

We use “ttr = notnull” to indicate “ttr �= null”.
The transition rules can be grouped into the following types [7]. We define a tran-

sitional condition Condi,j and its corresponding phase semantics for each type of
transition. Our map from operational semantics to denotational semantics is based on
the phase semantics. Here, Condi,j stands for the transitional condition of the j-th tran-
sition of type Ti.

• Instantaneous transition

T1: The i-th thread of process P can perform an instantaneous action, and P enters the
instantaneous section by its i-th thread being activated.

< P, σ, ∅, 0 > −→ < P, σ, σ, 1, i >, i ∈ {1, 2}
Cond1,1 =df

−→
tr =←−tr ∧O(null, π2(last(

←−
tr)), 0, 1)

< P, σ, σ′, 1 > −→ < P, σ, σ′, 1, i >, i ∈ {1, 2}
Cond1,2 =df

−→
tr =←−tr ∧O(notnull, ttr, 1, 1)

T2: Within the instantaneous section, the i-th thread of the process P performs a tran-
sition, and remains in the section or terminates. This transition assigns the successor of
P an active status.

< P, σ0, σ, 1, i > −→ < P ′,σ0, σ
′, 1, i >, i ∈ {1, 2}

< P, σ0, σ, 1, i > −→ < P ′,σ0, σ
′, 1 >, i ∈ {1, 2}

For a specific program P , σ′ should be of the form f(σ). The two transitional conditions
are the same.

Cond2,1 =df
−→
tr =←−tr ∧O(notnull, f(ttr), 1, 1)

T3: Within the instantaneous section, the i-th thread of a process may leave the instan-
taneous section. If the process is breakable, it can also leave the instantaneous section.

< P, σ0, σ
′, 1, i > −→ < P, σ0, σ

′, 0 >, i ∈ {1, 2}
< P, σ0, σ

′, 1 > −→ < P, σ0, σ
′, 0 >

The two transitional conditions are the same.
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Cond3,1 =df
−→
tr =←−tr ∧O(notnull, ttr, 1, 0)

T4: A transition represents that the program executes an assignment guard (i.e., assign-
ment guard is regarded as an atomic action).

< P, σ, ∅, 0 > −→ < P ′, σ, σ′, 0 >
For a specific process P , σ′ should be of the form f(σ).

Cond4,1 =df
−→
tr =←−tr ∧O(null, f(π2(last(

←−
tr))), 0, 0)

The above four types of transitions have the instantaneous feature. The correspond-
ing phase semantics of each transition can be expressed as Inst(Condi,j).

where, Condi,j can be the above seven transitional conditions.
Inst(X) =df H(true � ¬wait′ ∧ δ(time) = 0 ∧X )
“δ(time) = 0” indicates those transitions consume zero time.

• Triggered transition

T5: (1) A transition can be triggered by its sequential predecessor. This kind of transition
is called the self-triggered transition.

< P, σ, σ′, 0 >
<σ,σ′>−→ c < P

′, σ′, ∅, 0 >
Here, c in notation

<σ,σ′>−→ c represents the condition which triggers the transition.
It has the form c(σ, σ′) based on a pair of states < σ, σ′ >. If there is no this kind of
condition, it can be understood as true. If σ and σ′ (i.e., π2(last(

←−
tr)) and ttr) are the

same, σ′ will not be attached to the end of the trace.

Cond5,1 =df c(π2(last(
←−
tr)), ttr) ∧O(notnull, null, 0, 0)

∧ (−→tr =←−tr ✁ π2(last(
←−
tr)) = ttr ✄

−→
tr =←−tr̂ < (←−−time, ttr, 1) >)

This transition also lasts zero time. Its phase semantics is also Inst(Cond5,1).

(2) A transition can be triggered by its parallel partner.

< P, σ, ∅, 0 > <σ,σ′>−→ c < P
′, σ′, ∅, 0 >

A process can also record the contribution of its environment’s atomic action. But
the control flag µ in the snapshot is 0. If σ and σ′ are the same, the environment will not
attach σ′ to the end of the trace. Therefore, the process’s trace remains unchanged (i.e.,−→
tr =←−tr ) in this case.

Cond5,2 =df O(null, null, 0, 0) ∧ c(π2(last(
←−
tr)), π2(last(

−→
tr)))

∧
(
−→
tr =←−tr ∨

(
π1(
−→
tr −←−tr) =←−−time∧
π3(
−→
tr −←−tr) = 0

))
Its phase semantics is also Inst(Cond5,2). It means its environment’s corresponding
atomic action also lasts zero time.
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• Time advancing transition

T6: < P, σ, ∅, 0 > 1−→ < P ′, σ, ∅, 0 >
Cond6,1 =df

−→
tr =←−tr ∧O(null, null, 0, 0)

If process P can not do any other transitions at the moment, time will advance. We
regard the unit of time advancing is 1. During this period, there are no atomic actions
contributed by the process P itself and its environment. Hence, time advancing keeps
the trace unchanged. Its phase semantics is:

H(true � Cond6,1 ∧ (δ(time) < 1 ✁ wait′ ✄ δ(time) = 1) )

3.2 Map from Operational Semantics to Denotational Semantics

Definition 3.1: A configuration< P, σ, σ′, 1 > (or< P, σ, ∅, 0 > ) is called a divergent
state if P can perform an infinite sequence of instantaneous transitions or self-triggered
transitions; i.e., there exists an infinite set{Di | i ∈ Nat} of configurations such that
D0 =< P, σ, σ′, 1 > (or < P, σ, ∅, 0 > ), and for all i,

• either Di −→ Di+1

• or Di =< Pi, σi, σ
′
i, 0 >, σ

′
i �= ∅, Di

<σi,σ
′
i>−→ ci

Di+1
where, Nat is the set containing all non-negative integers. ✷

Definition 3.2: A computational sequence of program P is an empty sequence or any
finite sequence leading P to the other state, that is:

D0
δ1−→ D1 . . . . . .

δn−→ Dn

where D0 =< P, σ0, ∅, 0 > or D0 =< P, σ0, σ
′
0, 1 > or D0 =< P, σ0, σ

′
0, 0 >

and Di =< Pi, σi, ∅, 0 > or Di =< Pi, σi, σ
′
i, 1 > or Di =< Pi, σi, σ

′
i, 0 >

or Di =< Pi, σi, σ
′
i, 1, j > (i = 1, . . . , n and j ∈ {1, 2})

and
δi−→ (i = 1, . . . , n) can be an instantaneous transition (−→), a triggered transition

(
<σ,σ′>−→ c), or a time advancing transition (

1−→). ✷

If computational sequence seq is not empty, seq[i] is the i-th transition (Di−1
δi−→

Di) of seq.
We write cp[P ] representing the set which contains all the computational sequences

leading program P to terminating state or divergent state. cp[P ]ter and cp[P ]div stand
for the sets which contain all the sequences leading program P to the terminating and
divergent states correspondingly. Therefore, we have cp[P ] = cp[P ]ter ∪ cp[P ]div .

From the operational semantics we know the initial state of process P can be one of the
following states before it is executed.

• < P, σ, ∅, 0 > (represented as ttr = null in the denotational model).
• < P, σ, σ′, 1 > (represented as ttr �= null ∧ flag = 1).
• < P, σ, σ′, 0 > (represented as ttr �= null ∧ flag = 0).

Example 3.3: Let P =df x := 1; @(↑ y). Consider the computational sequences of
process P under the state < P, σ, σ′, 1 > (operational semantics in the appendix):
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seq1 : < P, σ, σ′, 1 > seq2 : < P, σ, σ′, 1 >
−→ < P, σ, σ′, 1, 1 > −→ < P, σ, σ′, 1, 1 >
−→ < @(↑ y), σ, σ′[1/x], 1 > −→ < @(↑ y), σ, σ′[1/x], 1 >
−→ < @(↑ y), σ, σ1, 0 > −→ < @(↑ y), σ, σ1, 0 >
<σ,σ1>−→ ¬c < @(↑ y), σ1, ∅, 0 > <σ,σ1>−→ ¬c < @(↑ y), σ1, ∅, 0 >

<σ1,σ2>−→ ¬c < @(↑ y), σ2, ∅, 0 >
<σ2,σ3>−→ ¬c < @(↑ y), σ3, ∅, 0 >
<σ3,σ4>−→ c < ε, σ4, ∅, 0 >

where c = fire(↑ y) (definition in Sect. 4.4) which means two consecutive states can
trigger this guard. Also, σ1 = σ′[1/x]. σ′[1/x] is the same as σ′ except mapping x to 1.

Here, we find the computational sequence seq2 will lead the program to the terminating
state (ε). ✷

Example 3.4: LetQ =df @(↑ y);x := 1; chaos. Consider the computational sequences
of process Q under the state < Q, σ, ∅, 0 >:

seq3 : < Q, σ, ∅, 0 > seq4 : < Q, σ, ∅, 0 >
<σ,σ1>−→ ¬c < Q, σ1, ∅, 0 > <σ,σ1>−→ ¬c < Q, σ1, ∅, 0 >
<σ1,σ2>−→ ¬c < Q, σ2, ∅, 0 > <σ1,σ2>−→ ¬c < Q, σ2, ∅, 0 >

<σ2,σ3>−→ c < x := 1; chaos, σ3, ∅, 0 >
Here c = fire(↑ y). chaos can perform an infinite sequence of instantaneous transi-
tions under any state < chaos, σ, σ′, 1 > [7]. If “x := 1; chaos” takes control at the
state< x := 1; chaos, σ3, ∅, 0 >, it will execute an infinite sequence of instantaneous
transitions. Therefore, seq4 is the computational sequence leading the programQ to the
divergent state. ✷

cp[P ]ter(0) and cp[P ]div(0) stand for the sets leading the program to the terminating
and divergent states under< P, σ, ∅, 0 > respectively. cp[P ]ter(1) and cp[P ]div(1) are
the sets leading the program to the terminating and divergent states under < P, σ, σ′

, 1 > correspondingly. cp[P ]ter(2) and cp[P ]div(2) stand for the sets leading the pro-
gram to the terminating and divergent states under < P, σ, σ′, 0 > correspondingly.
This means:

cp[P ]ter = cp[P ]ter(0) ∪ cp[P ]ter(1) ∪ cp[P ]ter(2) and
cp[P ]div = cp[P ]div(0) ∪ cp[P ]div(1) ∪ cp[P ]div(2).

Definition 3.5: Let seq stands for a computational sequence of program P . Suppose
len(seq) = n, sem(seq) is the semantics of the computational sequence seq which can
be defined as:
If len(seq) = 0 then sem(seq) =df II .
If len(seq) = 1 then sem(seq) =df sem1.
Otherwise sem(seq) =df sem1 ; . . . ; semn.
semi is the phase semantics of the i-th transition (seq[i]) of the computational sequence
seq. ✷

Example 3.6: Let P =df x := 1 ; x := 2. There is only one computational sequence
seq of P under < P, σ, σ′, 1 >:
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seq : < P, σ, σ′, 1 > −→ < P, σ, σ′, 1, 1 > −→ < x := 2, σ, σ′[1/x], 1 >
−→ < x := 2, σ, σ′[1/x], 1, 1 > −→ < ε, σ, σ′[2/x], 1 >

The semantics of computational sequence seq is:

sem(seq) {Def of 3.5}
= sem1 ; sem2 ; sem3 ; sem4 {Phase semantics, Th 2.9}
= Inst(−→tr =←−tr ∧O(notnull, ttr[2/x], 1, 1)) ✷

The denotational semantics of program P can be defined as:

Definition 3.7: (Map from operational to denotational)

P =df P [0] ✁ ttr = null ✄ (P [1] ✁ flag = 1 ✄ P [2])

where
P [i] =df

∨
seq∈cp[P ]div(i)(sem(seq) ; ⊥) ∨ ∨

seq∈cp[P ]ter(i)(sem(seq)),

i = 0, 1, 2

Here P [0], P [1] and P [2] stand for the semantics of program P under the states
< P, σ, ∅, 0 >, < P, σ, σ′, 1 > and < P, σ, σ′, 0 > respectively. ✷

The following definitions and theorems are useful for calculating the denotational se-
mantics for Verilog statements.

Definition 3.8: < P, σ0, ∅, 0 > ( e−→c)i < P, σi, ∅, 0 >
means there exist i steps environment transitions,

< P, σ0, ∅, 0 > <σ0, σ1>−→c < P, σ1, ∅, 0 > . . . <σk−1, σk>−→c < P, σk, ∅, 0 >
. . .

<σi−1, σi>−→c < P, σi, ∅, 0 > ✷

Definition 3.9: L1(i) stands for the following computational sequence:

< P, σ0, ∅, 0 > ( e−→)i < P, σi, ∅, 0 > ✷

Theorem 3.10:
∨

i≥0 sem(L1(i)) = (ttr = null)∧ (flag = 0)∧ hold(0), where

hold(n) =df H(true � idle∧ ttr′ = ttr∧flag′ = flag∧ (δ < n✁wait′ ✄δ = n) ),

idle =df π3(
−→
tr −←−tr) ∈ 0∗ ∧ incr(π1(

−→
tr −←−tr)),

incr(s) =df ∀ < t1, t2 > in s • (t2 − t1) ∈ Nat ✷

Definition 3.11: < P, σ, ∅, 0 > ( et−→c)j0,...,jδ < P, σ′, ∅, 0 >
means the following detailed computational sequence:

< P, σ, ∅, 0 > ( e−→c)j0 < P, σ1, ∅, 0 > 1−→ < P, σ1, ∅, 0 >
. . . . . . . . . . . .

( e−→c)jδ−1 < P, σn, ∅, 0 > 1−→ < P, σn, ∅, 0 >
( e−→c)jδ < P, σ′, ∅, 0 > ✷

where δ is the interval length (
−−→
time−←−−time).
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Definition 3.12: L2(c, j0, . . . , jδ) stands for the following computational sequence.

< P, σ, ∅, 0 > ( et−→c)j0,...,jδ < P, σ′, ∅, 0 >
Theorem 3.13:

∨
sem(L2(c, j0, . . . , jδ)) =df silence(c)

where, the disjuction “
∨

” is for all j0 ≥ 0, . . . , jδ ≥ 0.

silence(c) =df H

(
true �

(
idle ∧O(null, null, 0, 0)∧

∀ < σ1, σ2 > in π2(
−→
tr −←−tr) • c(σ1, σ2)

))
silence(c) means during this period, the environment can do any atomic actions, but
can not fire the condition ¬c.

4 Deriving the Semantics for Statements of Verilog

In this section we will derive the denotational semantics for the Verilog statements
by strict proof. Therefore our denotational semantics is equivalent with its operational
semantics.

The main purpose of the mathematical definition of Verilog operators is to deduce
their interesting properties. These are most elegantly expressed as algebraic laws (equa-
tions usually). As our denotational map is based on the transition system of a program,
we have two ways to prove the algebraic laws, one using the denotational semantics and
the other using the transition system.

4.1 Sequential Composition

The notation (P ; Q) represents the process which behaves like P before P terminates,
and then behaves like Q afterwards.

Theorem 4.1: (P ; Q) = (P ) ; (Q)
The “;” in the left side is the sequential composition of programs, whereas “;” in

the right side is the semantic sequential composition of logic formulae. This theorem
indicates the denotational semantics of program P ;Q is the sequential composition of
their denotational semantics.

4.2 Skip

The role of skip is the same as x := x (see operational semantics in the appendix).

Theorem 4.2: skip = flash✁ (ttr �= null ∧ flag = 0) ✄ II

; (hold(0) ; init) ✁ ttr = null ✄ II
where, init =df Inst(

−→
tr =←−tr ∧O(null, π2(last(

←−
tr)), 0, 1) )

flash =df Inst

(
ttr′ = null ∧ flag′ = 0 ∧ ( −→tr =←−tr ✁ (ttr = null ∨
π2(last(

←−
tr)) = ttr) ✄

−→
tr =←−tr̂ < (←−−time, ttr, 1) > )

)
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4.3 Assignment

The execution of x := e assigns the value of e to x. Assignment x := e can be in either
of the three states before its execution: < x := e, σ, ∅, 0 >, < x := e, σ, σ′, 1 > and
< x := e, σ, σ′, 0 >.

Case 1: If ttr = null, the corresponding computational sequence is :

< x := e, σ, ∅, 0 > ( e−→)i < x := e, σi, ∅, 0 > −→ < x := e, σi, σi, 1, 1 >
−→ < ε, σi, σi[e/x], 1 >

The transitional conditions of the last two instantaneous transitions are: Cond1,1 and
Cond2,2.
Let assign(x := e) =df Inst(

−→
tr =←−tr ∧ ttr′ = ttr[e/x] ∧ flag′ = flag )

By proof, Inst(Cond1,1 ; Cond2,2) = init ; assign(x, e). Using theorem 3.10, the
semantics of x := e in this case is: hold(0) ; init ; assign(x, e).

Case 2: If ttr �= null ∧ flag = 1, the corresponding computational sequence is

< x := e, σ, σ′, 1 > −→ < x := e, σ, σ, 1, 1 > −→ < ε, σ, σ[e/x], 1 >
The semantics of assignment in this case can be proved as assign(x, e).

Case 3: If ttr �= null ∧ flag = 0, the corresponding computational sequence is:

< x := e, σ, σ′, 0 >
<σ,σ′>−→ < x := e, σ′, ∅, 0 > ( e−→)i < x := e, σi, ∅, 0 >
−→ < x := e, σi, σi, 1, 1 > −→ < ε, σi, σi[e/x], 1 >

The semantics of x := e under this case is: flash ; hold(0) ; init ; assign(x, e).

Using the semantic map and predicate calculus, we obtain the semantics of assignment.

Theorem 4.3: x := e = skip ; assign(x := e)

Verilog assignment statements obey the same set of algebraic laws as its counterpart in
the conventional programming languages.

4.4 Event Guard

The guard event is denoted by @(g). A primitive guard g can be of the following forms:
• ↑ v waits for an increase of the value of v.
• ↓ v waits for a decrease of the value of v.
• v waits for a change of v.

There are also three types of compound guards.
• g1 or g2 becomes enabled when either g1 or g2 is fired.
• g1 and g2 becomes enabled if both g1 and g2 are awaken simultaneously.
• g1 and ¬g2 becomes fired if g2 remains idle and g1 is awaken.

We introduce a predicate fire(g)(σ, σ′) to indicate the transition from the state σ to the
state σ′ can awake the guard @(g).

fire(↑ v)(σ, σ′) =df σ(v) < σ′(v), fire(↓ v)(σ, σ′) =df σ(v) > σ′(v)
fire(v)(σ, σ′) =df σ(v) �= σ′(v)
fire(g1 or g2)(σ, σ′) =df fire(g1)(σ, σ′) ∨ fire(g2)(σ, σ′)
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fire(g1 and g2)(σ, σ′) =df fire(g1)(σ, σ′) ∧ fire(g2)(σ, σ′)
fire(g1 and ¬g2)(σ, σ′) =df fire(g1)(σ, σ′) ∧ ¬fire(g2)(σ, σ′)

The event guard @(g) can be immediately fired after it is scheduled, it is actually triggered
by the execution of its prior atomic action. According to the operational semantics of
@(g) (in the appendix), there are two kinds of computational sequences leading to the
terminating state.

< @(g), σ, σ′, 1 > −→ < @(g), σ, σ′, 0 >
<σ,σ′>−→ fire(g) < ε, σ

′, ∅, 0 >

< @(g), σ, σ′, 0 >
<σ,σ′>−→ fire(g) < ε, σ

′, ∅, 0 >
Another case is the guard @(g) waits to be fired by the environment. There are three
kinds of computational sequences leading to the terminating state.

< @(g), σ, σ′, 1 > −→ < @(g), σ, σ′, 0 >
<σ,σ′>−→¬c < @(g), σ′, ∅, 0 >

( et−→¬c)j0,...,jδ < @(g), σn, ∅, 0 > <σn,σn+1>−→c < ε, σn+1, ∅, 0 >

< @(g), σ, σ′, 0 >
<σ,σ′>−→ ¬c < @(g), σ′, ∅, 0 > ( et−→¬c)j0,...,jδ < @(g), σn, ∅, 0 >

<σn,σn+1>−→c < ε, σn+1, ∅, 0 >
< @(g), σ, ∅, 0 > ( et−→¬c)j0,...,jδ < @(g), σn, ∅, 0 > <σn,σn+1>−→c < ε, σn+1, ∅, 0 >
Here c = fire(g). There is a corresponding phase semantics for each type of transition.
Using the definition of phase semantics and Theorem 2.9, 3.13, we obtain:

Theorem 4.4: @(g) = selftrig(g) ∨ (await(g) ; trig(g) )
where,
selftrig(g) =df H(true � ttr �= null ∧ fire(g)(π2(last(

←−
tr)), ttr)) ∧ II ; flash

await(g) =df H( true � (ttr = null ∨ ¬fire(g)(π2(last(
←−
tr)), ttr) )) ∧ II

; flash ; silence(¬fire(g))

trig(g) =df Inst

(
idle ∧ len(−→tr −←−tr) = 1 ∧O(null, null, 0, 0)
∧fire(g)(π2(last(

←−
tr)), π2(last(

−→
tr)))

)

4.5 Other Statements

chaos represents the worst process. Its behaviour is totally unpredictable. The condi-
tional if b(v) then P elseQ behaves the same as the “then” branch if b is true when
activated, and the same as the “else” branch otherwise. The delay event #n holds the ex-
ecution for n units. An assignment guard @(x := e) is a special assignment representing
an atomic action. It is used in supporting the parallel expansion laws.

Let {gi | 1 ≤ i ≤ n} be a finite family of event guards, and {Pi | 1 ≤ i ≤ n}
a family of Verilog processes. The notation (@(g1) P1) [] . . . [] (@(gn) Pn) denotes the
program which initially waits for one of the guards to be fired, and then behaves the same
as the corresponding guarded process. The program (@(x1 := e1) P1)[] . . . [](@(xn :=
en) Pn) performs one of its alternative , and the choice is made non-deterministically.

In accordance with the semantic map and operational semantics of these statements
[7], we obtain the denotational semantics for these statements.
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Theorem 4.5
(1) if b then S1 else S2 = skip ; S1 ✁ b(ttr) ✄ S2

(2) #n = flash ; hold(n)
(3) @(x := e) = flash ; hold(0) ; trig(@(x := e))
(4) (@(x1 := e1)P1) [] . . . [] {@(x := en)Pn)

=
∨ {@(xi := ei);Pi | 1 ≤ i ≤ n}

(5) chaos = (flash✁ (ttr �= null ∧ flag = 0) ✄ II) ; ⊥
(6) (@(g1) P1) [] . . . [] (@(gn) Pn)

=
∨ {(selftrig(gi) ∨ (await(g); trig(gi))) ; Pi | 1 ≤ i ≤ n}

where trig(@(x := e)) =df Inst(
−→
tr =←−tr ∧O(null, π2(last(

←−
tr))[e/x], 0, 0) )

g stands for the compound guard g1 or . . . or gn.

4.6 Parallel

Although we have not derived the universal formula representing the denotational se-
mantics for a parallel process, we can write down its transition system. Its semantics can
be calculated based on its transition steps. Algebraic laws dealing with parallel can also
be proved using the denotational map based on its specific transition systems.

Example 4.6: Let P = (#1;x := 2) ‖ (x := 1; #1) ; #1. Consider the denotational
semantics of P .
We can write down the computational sequences leading program P to the terminating
state under three cases (ttr = null, ttr �= null∧ flag = 1 and ttr �= null∧ flag = 0)
based on the parallel transition [7]. The semantics of P can be calculated based on the
semantic map and its computational sequences. Therefore, the denotational semantics
of P is

flash ; hold(0) ; Inst( S(1) ) ; hold(1) ; Inst( S(2) ) ; hold(1)

where, S(u) =df
−→
tr =←−tr̂ < (←−−time, {x 	→ u}, 1) > ∧ O(null, null, 0, 0) ✷

Theorem 4.7 (Expansion laws)
(par-1) Let Pi =df @(ηi) Qi for i = 1, 2. Then

P1‖P2 =

 (@(η1 and ¬η2) (Q1‖P2))
[] (@(η1 and η2) (Q1‖Q2))
[] (@(η2 and ¬η1) (P1‖Q2))


(par-2) Let Pi =df @(xi := ei) Qi for i = 1, 2. Then

P1‖P2 =
(

(@(x1 := e1) (Q1‖P2))
[] (@(x2 := e2) (P1‖Q2))

)

5 Conclusion

The main contribution of our work is to derive the denotational semantics for a subset of
Verilog from its operational semantics [7]. Thus, our denotational semantics presented
here is equivalent with its operational semantics. We provide a discrete denotational
model and design a refinement calculus for it. Our approach for the derivation is new.
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We define a transitional condition and the phase semantics for each type of transi-
tion. The denotational semantics can be derived as the sequential composition of those
phase semantics. Verilog’s algebraic laws are also discussed, which can support pro-
gram transformation and system partitioning for hardware/software co-design. Proofs
are undertaken in two ways, one using the denotational semantics and the other using
the operational semantics. Thus, the three semantics form a unifying model for (a subset
of) Verilog.

For the future, we are continuing to explore unifying theories for Verilog. We wish
to extend the scope of the derivation of denotational semantics for Verilog to further
constructs in the language such as iteration. The derivation of operational semantics
from denotational semantics for Verilog is another interesting topic for study.
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Appendix

Below are the transition system definitions for the assignment and event guard constructs.
Definitions for other commands can be found in [7].
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1. Assignment

T1: < v = e, σ, ∅, 0 > −→ < v = e, σ, σ, 1, 1 >
< v = e, σ, σ′, 1 > −→ < v = e, σ, σ′, 1, 1 >

T2: < v = e, σ, σ′, 1, 1 > −→ < ε, σ, σ′[e(σ′)/v], 1 >

T5: < v = e, σ, σ′, 0 >
<σ,σ′>−→ < v = e, σ′, ∅, 0 >

< v = e, σ, ∅, 0 > <σ,σ′>−→ < v = e, σ′, ∅, 0 >

2. Event Guard

T3: < @(η), σ, σ′, 1 > −→ < @(η), σ, σ′, 0 >

T5: < @(η), σ, σ′, 0 >
<σ,σ′>−→ fire(η) < ε, σ

′, ∅, 0 >
< @(η), σ, ∅, 0 > <σ,σ′>−→ fire(η) < ε, σ

′, ∅, 0 >
< @(η), σ, σ′, 0 >

<σ,σ′>−→ ¬fire(η) < @(η), σ′, ∅, 0 >
< @(η), σ, ∅, 0 > <σ,σ′>−→ ¬fire(η) < @(η), σ′, ∅, 0 >

T6: < @(η), σ, ∅, 0 > 1−→ < @(η), σ, ∅, 0 >
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