Lazy Induction of Descriptions for Relational
Case-Based Learning

Eva Armengol and Enric Plaza

IITA - Artificial Intelligence Research Institute,
CSIC - Spanish Council for Scientific Research,
Campus UAB, 08193 Bellaterra, Catalonia (Spain).

{eva, enric}@iiia.csic.es,

Abstract. Reasoning and learning from cases are based on the concept
of similarity often estimated by a distance. This paper presents LID,
a learning technique adequate for domains where cases are best repre-
sented by relations among entities. LID is able to 1) define a similitude
term, a symbolic description of what is shared between a problem and
precedent cases; and 2) assess the importance of the relations involved
in a similitude term with respect to the purpose of correctly classifying
the problem. The paper describes two application domains of relational
case-based learning with LID: marine sponges identification and diabetes
risk assessment.

1 Introduction

Reasoning and learning from cases is based on the concept of similarity. Often
similarity is estimated by a distance (a metric) or a pseudo-metric. In addition
to this, an assessment of which properties are “important” or “relevant” in the
similarity is needed. This approach proceeds by a pairwise similarity comparison
of a problem with every precedent case available in a case base; then one case
(or k cases) with biggest (bigger) similarity is (are) selected. This process is
called the retrieval phase in Case-based Reasoning (CBR), and also plays a
pivotal role in lazy learning techniques like Instance-based Learning (IBL) and
k-nearest neighbor. In classification tasks, the solution class of the problem is
inferred from the solution class of the precedent case(s) selected.

However, distance-based approaches to case retrieval are mainly used for
propositional cases, i.e. cases represented as attribute-value vectors. We are in-
terested in this paper in learning tasks where cases are best represented in a
scheme that uses relations among entities. We will call this setting relational
case-based learning. One option to achieve case-based learning in a relational
setting is to adapt the process of pairwise similarity comparison by defining a
distance that works upon relational instances. This approach is taken in “rela-
tional IBL” [5] where cases are represented as collections of Horn clauses (see
related work on §6).

The approach taken in this paper is different from pairwise similarity com-
parison based on metrics or pseudometrics. Basically, in our approach, similarity
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between two cases is understood as that which they “share”. In addition, we need
to be able to evaluate if what they share is what is important (or to which degree
they share what is important). This paper presents a technique called LID for
relational case-based learning. LID is based on two main notions: 1) similarity is
constructed as a symbolic description of what is shared between precedent cases
and a specific problem to be classified, and 2) there is some assessment function
to help the system decide which relations among entities are “important” or
“relevant” to be shared with the precedent cases.

The representation formalism used to represent cases, feature terms, is pre-
sented in §2l Then, {3 introduces the framework of relational case-based learning
and the main building blocks that we will use in #]to describe the LID method.
In §5l two application domains of relational case-based learning with LID are de-
scribed: diabetes risk assessment and marine sponges identification. The paper
closes with the sections on related work and conclusions.

2 Representation of the Cases

LID handles cases represented as feature terms. Feature terms (also called feature
structures or i-terms) are a generalization of first order terms [2I8]. The main
difference is that first order terms parameters are identified by position, e.g.
f(z,y,g(x,y)) can be formally described as a tree and a fixed tree-traversal
order. The intuition behind a feature term is that it can be described as a
labelled graph where arcs are labelled with feature symbols and nodes stand for
sorted variables.

Given a signature ¥ = (S, F,<) (where S is a set of sort symbols that
includes L; F is a set of feature symbols; and < is a decidable partial order on
S such that L is the least element) and a set o} of variables, we define feature
terms as an expression of the form:

Yu=Xis[fi =W ... fn =0, (1)

where X is a variable in 9 called the root of the feature term, s is a sort in
S, fi...[fn are features in F, 0 < n, and each ¥; is a set of feature terms and
variables. When n = 0 we are defining a variable without features. The set of
variables occurring in 1) is noted as ;.

Sorts have an informational order relation (<) among them, where s < s’
means that s has less information than s’ Nor equivalently that s is more general
than s’. The minimal element (L) is called any and it represents the minimum
information. When a feature has unknown value it is represented as having the
value any. All other sorts are more specific than any.

A path 7(X, f;) is defined as a sequence of features going from the variable
X to the feature f;. When two paths 7(X, f;) and 7(Y, f;) point to the same
value we say that there is a path equality.

The function root() returns the sort of the root of ¢. We note F, the set
of features {fi ... fn} of the root of .
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Fig. 1. Examples of feature terms.

The depth of a feature f in a feature term ¢ with root X is the number
of features that compose the path from the root X to f, including f, with no
repeated nodes.

Given a particular maximum feature depth k, a leaf feature of a feature term
is a feature f; such that either 1) the depth of f; is k or 2) the depth of f; is less
than k and the value of f; is a term without features.

The semantic interpretation of feature terms brings an ordering relation
among feature terms that we call subsumption. Intuitively, a feature term
subsumes another feature term ¢’ (¢ C ') when all information in 1 is also
contained in v)’. In other words, a feature term ¢ subsumes another feature term
¢’ when the following conditions are satisfied: 1) the sort of root(4)’) is either
the same or a subsort of root(v), 2) if Fy, is the set of features of ¢ and Fy is
the set of features of ¢’ then Fy, C Fys and 3) the values of the features in Fy,
and Fy satisfy the two conditions above.

For instance, the feature term X; in Figure [Th represents a person that is
married with a person Z and both live at the address A, (i.e. there is a path
equality since X;.address = Xj.spouse.address). Because all the information in
X is also present in X5 (Figure[Ib), X; subsumes X, (X7 C X5). However X5
does not subsume X; —since X7 has not the feature children.

A more detailed explanation about the feature terms and the subsumption
relation can be found in [3]. In this reference there is also a detailed explanation
of how feature terms can be translated to clause and graph representations.

3 Relational Case-Based Learning

There are three aspects that we need to define in order to perform CBR on
relational cases: 1) to define a case from a constellation of relations, 2) to define a
way to assess similarity between cases, and 3) to establish a degree of importance
for the relations involved in the similarity.

A case base contains a constellation of relations between objects. The first
step is to determine which of these relations constitute a case. A case (in feature
terms) is specified from a relational case base using two parameters: a root sort
and a depth. Assuming a case base expressed as a collection of feature terms,
a case is a feature term whose root node is subsumed by the root sort and
whose depth is at most depth. Examples of case specification are case[root-sort =
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patient, depth = 5] in the diabetes domain and case[root-sort = sponge, depth =
4] in the marine sponges domain (see §5.

The estimation of the similitude between cases is one of the key issues of the
lazy learning algorithms. Those techniques (such as IBL [1] and k-nearest neigh-
bor) that use cases represented as attribute-value vectors define the similitude of
two cases by means of a distance measure. The LID method (§4)) uses a symbolic
estimation of the similitude between cases. The intuition of a symbolic simili-
tude is that of a description containing the features shared by the two cases. In
feature terms this intuition is formalized using the subsumption.

We say that a term s is a similitude term of two cases ¢; and co if and only
if s C ¢; and s C ¢y i.e. the similitude term of two cases subsumes both cases.
In this framework, the task of similarity assessment is a search process over the
space of similarity descriptions determined by the subsumption relation.

The next subsection explains a technique to assess the importance of a feature
using the cases present in the case base. This technique is a heuristic measure
based on the Lépez de Mantaras (RLM) distance. Then, § explains how LID
incrementally builds a similitude term based on the RLM heuristic.

3.1 Relevance of Attributes

Given a new example to be classified, the goal is to determine those features that
are most relevant for the task. The relevance of a feature is heuristically deter-
mined using the RLM distance [I1] that assesses how similar are two partitions
(in the sense that the lesser the distance the more similar they are). Each feature
fi € F induces a partition P; of the case-base, namely a partition whose sets
are formed by those cases that have the same value for feature f;. The correct
partition is a partition P, = {C; ...C,,} where all the cases contained into a set
C; belong to the same solution class. For each partition P; induced by a feature
fi, LID computes the RLM distance to the correct partition P.. The proximity
to P, of a partition P; estimates the relevance of feature f;.

Let P; and P; the partitions induced by features f; and f; respectively.
We say that the feature f; is more discriminatory than the feature f; iff
RLM(P;, P.) < RLM(P}, P,), i.e. when the partition induced by f; is closer
to the correct partition P, than the partition induced by f;. Intuitively, the
most discriminatory feature classifies the cases in a more similar way to the
correct classification. LID uses the more discriminatory than relationship to es-
timate the features that are more relevant for the purpose of classifying a current
problem.

4 Lazy Induction of Descriptions

In this section we introduce a new method called Lazy Induction of Descriptions
(LID). The goal of LID is to classify a problem as belonging to one of the solution
classes. The main idea of LID is to determine which are the more relevant features
of the problem and to search in the case base for cases sharing these relevant
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Function LID (Sp, p, D, C)
if stopping-condition(Sp)
then return class(Sp)
else fq := Select-leaf (p, Sp, C)
D’ := Add-path(n(root(p), fa), D)
Spr := Discriminatory-set (D', Sp)
LID (Sp, p, D', C)

end-if
end-function

Fig. 2. The LID algorithm. D is the similitude term, Sp is the discriminatory set of
D, C is the set of solution classes, class(Sp) is the class C; € C' to which all elements
in Sp belong.

features. The problem is classified when LID finds a set of relevant features
shared by a subset of cases belonging all of them to the same solution class.
Then, the problem is classified into that solution class.

Given a case base B containing cases classified into one of the solution classes
C ={C;...Cy} and a problem p, the goal of LID is to classify p as belonging
to one of the solution classes. The problem and the cases in the case base are
represented as feature terms (see §2). We call discriminatory set the set Sp =
{b € B|D C b} that contains the cases of B subsumed by the similitude term D.

The main steps of the LID algorithm are shown in Figure[2. In the first call
LID(Sp,p, D,C) parameter Sp is initialized to B (the whole case base) and
parameter D can be initialized to any or to a value D = D (where D° # any)
based on domain knowledge we may have (see an example in §5.1.

The specialization of a similitude term D is achieved by adding features to
it. In principle, any of the features used to describe the cases could be a good
candidate. Nevertheless, LID uses two biases to obtain the set F; of features
candidate to specialize D. First, of all possible features in F, LID will consider
only those features present in the problem p to be classified. As a consequence,
any feature that is not present in p will not be considered as candidate to spe-
cialize D. The second bias is to consider as candidates for specializing D only
those features that are leaf features of p (see §2). This bias is similar to that of
the relational pathfinding method [I6] in that it favours the selection of relations
chained together in the examples.

The next step of LID is the selection of a leaf feature fy € F; to specialize
the similitude term D. Selecting the most discriminatory leaf feature in the set
Fj is heuristically done using the RLM distance of §8.1] over the features in Fj.
Let us call f; the most discriminatory feature in Fj.

The feature fy is the leaf feature of path m(root(p), f4) in problem p. The
specialization step of LID defines a new similitude term D’ by adding to the
current similitude term D the sequence of features specified by 7 (root(p), fq).
After this addition D’ has a new path 7 (root(D’), fq) with all the features in the
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path taking the same value that they take in p. After adding the path 7 to D,
the new similitude term D’ = D + 7 subsumes a subset of cases in Sp, namely
the discriminatory set Sps (the subset of cases subsumed by D).

Next, LID is recursively called with the discriminatory set Sp. and the simil-
itude term D’. The recursive call of LID has Sp as first parameter (instead of
Sp) because the cases that are not subsumed by D’ will not be subsumed by any
further specialization. The process of specialization reduces the discriminatory
set ST C Sg_l C...C S% at each step.

The stopping condition of LID, given the current similitude term D, is that all
the cases in its discriminatory set Sp belong to only one solution class Cy € C.
LID gives D as an explanation of classifying p in Cy and Sp as the cases justifying
that result. The similitude term D can be viewed as a partial description of Cy
because it contains a subset of features that are discriminant enough to classify
a case as belonging to Cj. Notice that D is not the most general generalization
of C} since in general D does not subsume all the cases belonging to C but
only a subset of them (those sharing the features of D with the new problem).
The similitude term D depends on the new problem, for this reason there are
several partial descriptions (i.e. similitude terms) for the same class.

5 Experiments

In this section we describe two applications developed usimg LID: diabetes risk
assessment (1) and identification of marine sponges (B.2).

5.1 Complications Risk Assessment in Diabetes

Diabetes mellitus is one of the most frequent human chronic diseases. There are
two major types of diabetes: diabetes type I (or insulin-dependent) usually found
in people younger than 40 years, and diabetes type II (or non insulin-dependent)
often developed in people over this age. Both forms of diabetes produce the same
short-term symptoms (i.e. increase of thirst, and high blood glucose values) and
long-term complications (i.e. blindness, renal failure, gangrene and amputation,
coronary heart disease and stroke).

The main concern in the management of the diabetes is reducing the individ-
ual risks of patients in developing new long-term complications and reducing risk
of progression in the complications already present. In fact, the expected risks
are different whether the patient has diabetes type I than he has diabetes type
IT. Moreover, the risk is also different whether the patient has no complications
(development risk) or he has developed some complication (progression risk).
We have developed a case base of 370 patients in collaboration with an expert.

The goal of LID in this domain is to assess the individual risks of complica-
tions for diabetic patients. Specifically, LID has to classify a patient in one of
the following risk classes: low risk, moderate risk, high risk, and very high risk.
We will focus on three macro-vascular complications: infarct, stroke and amputa-
tions. Each of these tasks requires LID to independently classify a problem using
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Fig. 3. Partial description of a diabetic patient. Here only 15 leaves are shown out of
a total of more than 50 leaves present in the complete description of the patient.

the patients available in the case base. In order to illustrate the performance of
LID in the diabetes domain we will focus on the assessment of the infarct risk.
For this task the correct partition Pc is formed by the sets of patients that have
the same risk class for the infarct complication.

Let us suppose that LID is used to assess the risk of infarct for the patient-
371 described in Figure[3l The search of LID can be constrained using domain
knowledge. In this domain, we are only interested in considering patients in the
case base that share with our current patient the same type of diabetes and the
fact of whether or not the patient has macro-complications. Specifically, LID is
initialized with D° (Figure[dh) having features dm-type with value 2 and macro-
compl? with value false as in patient-371. The discriminatory set S% contains
144 cases having different infarct risk. Therefore the similitude term D° has to
be specialized. The first step is to select the most discriminatory leaf feature
using the RLM distance where the correct partition Po is the classification of
the cases according to their infarct risk degree.

LID finds the leaf feature g-albumin as the most discriminatory and builds
the similitude term D! by adding to D° the path w(patient, g-albumin) with
g-albumin taking value low as in the patient-371 (see Figuredb). The discrimina-
tory set SL contains 99 cases with different infarct risk. Therefore the similitude
term D' has to be specialized by adding a new leaf feature. LID finds now the
leaf feature maculopathy as the most discriminatory. The similitude term D? is
obtained by adding the path 7 (patient, maculopathy) to D' with value false as
in patient-371.

The discriminatory set S%, contains 66 cases with different infarct risk there-
fore D? has to be specialized. Now LID finds other-t as the most discriminant
leaf feature. The similitude term D? subsumes 57 cases with different infarct
risk. This means that D> has to be specialized. The next more discriminant
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Fig. 4. Three similitude terms constructed for assessing the infarct risk of Patient-371.

leaf feature is g¢-cholesterol-total. The similitude term D* including the path
m(patient, g-cholesterol-total) with value high subsumes 16 cases that also have
different infarct risk. The similitude term D° is obtained by adding to D* the
path m(patient, blindness) with value false. The discriminatory set S?, still con-
tains cases having either high or moderate infarct risk. Finally, the similitude
term DS (Figure [k) is obtained by adding to D® the path w(patient, g-hbalc)
with value low. The discriminatory set S% contains two cases with moderate
risk of infarct. Therefore LID concludes that patient-371 has a moderate risk of
infarct. LID explains this classification with the similitude term D of Figure Hc
and justifies this result with the 2 cases of S%,.

LID has been evaluated in the following way. An expert diabetologist con-
structed a gold standard consisting of a risk pattern for macro-complications
for the 370 cases of the base. This gold standard gives a unique “correct” risk
value for each complication and considers all other risk estimations “incorrect”.
In fact, this assumption is too strong because often the expert assesses a range
of risks (e.g. very high or high).

The experimental evaluation has been performed with this definition of cor-
rectness for the tasks of assessing the risk of stroke, infarct and amputation. For
each task, we have built 15 test sets with the 370 patients case base, where each
test set has 300 cases randomly chosen as training set. The results of LID upon
the remaining 70 cases for each test set where compared with the gold standard
and averaged for each task. The accuracy of LID is the following: 100% correct in
assessing the stroke risk, 90% correct in assessing amputation risk, and 72.45%
correct in assessing the infarct risk. In fact, the incorrect assessment of the in-
farct risk fail only by one degree (e.g. high risk vs. very-high risk) in 81.69% of
the cases. We are currently analyzing those cases with the support of the expert
since often he assesses a range of risks that includes the answer of LID.

In addition to estimate the accuracy of LID we have also analyzed the justi-
fications (similitude terms) in order to determine whether the risk has been ob-
tained based on correct assumptions or, conversely, whether it has been obtained
from assumptions that the expert considers irrelevant for estimating a risk. Let
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Fig. 5. Partial representation of a sponge using feature terms.

us consider assessing the stroke risk where LID always obtains a similitude term
containing only one feature: the blood pressure. The expert confirms that the
blood pressure is the determining factor for the risk of stroke. When assessing
the risk of amputation, the justification contains the feature polyneuropathy that
is one of the most important factors according to the expert criteria. Concerning
the assessment of the infarct risk, the LID explanations also use among others
features such as diabetes duration, cholesterol or haemoglobin that the expert
considers as determinant factors for assessing the infarct risk.

Notice that LID explanations are not generalizations describing a class, they
are symbolic descriptions of the (important) aspects shared between the problem
and similar cases.

5.2 Identification of Marine Sponges

Marine sponges are relatively little studied and most of the existing species are
not yet fully described. The main problems in sponge identification are due to
the morphological plasticity of the species, to the incomplete knowledge of many
of their biological and cytological features and to the frequent description of new
taxa. Moreover, there is no agreement around the species delimitation since it is
not clear how the different taxa can be characterized. The application of LID to
this domain allows the classification of new specimens based on their similarity
to specimens clearly classified in some taxa. This similarity, in turn, is based on
the relevant features of the specimen that has to be classified.

With the support of two experts, we have developed a case base with
the descriptions of 280 sponges belonging to the orders: C' = {astrophorida,
hadromerida, azinellida}. LID has been used to identify the order of new speci-
mens.
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Fig. 6. Sequence of similitude terms constructed by LID for classifying sponge s252.

Let us consider how LID identifies the specimen s252 of Figure [§ given a
case base B. LID begins with the similitude term D° = any, the discriminatory
set S = B and p = s252. Since the cases in S% belong to several orders, the
similitude term D has to be specialized. The first step of the specialization
is to select the most discriminatory leaf of $252. Using the RLM distance LID
finds that the most discriminatory feature is the leaf smooth-form. Then LID
specializes D to the new similarity term D! by adding the path 7(sponge,
smooth-form) taking as value the set {style, tylostyle, subtylostyle} (Fig. Bh).

The discriminatory set S}, contains 25 cases subsumed by the similitude
term D'. Since these cases belong to several orders D' has to be specialized.
Now LID finds that the most relevant leaf feature is grow. Then D! is specialized
to D? adding the path m(sponge, grow) with value the set {erect, encrusting}
(see Figure Bb). The discriminatory set S% contains 10 cases belonging to the
axinellida order. Therefore LID classifies the sponge s252 in the azinellida order.
The explanation of this classification is the similitude term D? of Figure Bb
stating that the sponge $252 is azinellida because 1) has megascleres of form
style, tylostyle and subtylostyle, and 2) grows erect and encrusting.

We evaluated LID in the marine sponges domain with the goal of identifying
the order of specimens. We performed six ten-fold crossvalidation runs on the
case base containing 280 descriptions of marine sponges. The average accuracy
of LID is 89.998% with a standard deviation of 5.827.

6 Related Work

There are two main lines of research closely related to our approach on similarity
assessment in relational representations. On the one hand, there is research about
similarity assessment of structured and complex cases in CBR; and, on the other
hand, there is research on relational IBL.

Although a lot of work in similarity assessment of cases in CBR is focused
on weighted distances among attribute value vectors there is also active research
in establishing similarity estimates among structured representation of cases [6]
7I15]. Some approaches share the idea of building a “structural similarity” (as
our “similitude term” approach) but they use techniques subtree-isomorphism or
subgraph isomorphism detection for building the description of this “structural
similarity” [7]. In [6] the “structural similarity” is used to guide adaptation phase
of CBR [6] and not for the retrieval phase. Another way to construct a similitude
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term is using antiunification (computing the most specific generalization of two
cases) [15], and later having a measure to assess which similitude term is better
(e.g. using an entropy measure [14]) to select the best precedent in the case-base.

A related approach to feature terms as case representation formalism is that
of using Description Logics for this purpose; antiunification can also be used but
some assessment measure is also needed, as shown in [12] where a probabilistic
interpretation of the “least common subsumer” is used. LID does not use antiu-
nification to build the similitude term; instead it constructs the similitude term
guided by an example-driven heuristic to assess the relevance of the features to
be added to the similitude term. Finally, some research work on case retrieval
use inductive techniques involving the construction of decision trees (as in [4])
and only for cases that are attribute-value vectors.

Relevant work is being carried on for transferring IBL techniques to rela-
tional learning, mainly in the ILP framework of a Horn clause representation of
cases and background knowledge. An approach in ILP using a concept closed to
similitude terms [I5JT4] is that of Progol’s Analogical Prediction [I3]. Progol’s
AP is a lazy induction technique capable of binary classification. For each prob-
lem, AP tries to build an hypothesis using the Progol engine. If this hypothesis
is found the problem is classified as true, otherwise the problem is classified as
false. LID builds a similitude term (“hypothesis”) but can deal with multiple
classes. The RIBL system [9/10] first generates cases out of Horn clauses in a
knowledge base, then calculates the distance among cases by estimating the rel-
evance of predicates and attributes. RIBL 2.0 [10] uses an “edit distance” to
estimate the distance between cases (that can contain lists and terms). Instead
of the notion of “distance” among cases LID uses a distance in the heuristic
assessment of the importance of features to be included in the similitude term.
Moreover, our assessment is not based on a pairwise comparison of “problem vs.
case” similarity but takes into account all cases that share a particular “struc-
tural similarity” embodied by those cases subsumed by the similitude term that
LID builds.

7 Conclusions

We have developed a technique for case-based learning where cases are best rep-
resented as collection of relations among entities. The LID approach is based on
a similarity assessment used by a heuristic search in a space of symbolic descrip-
tions of similitude. Moreover, the symbolic description of similitude provides
an explanation of the grounds on which a precedent case is selected from the
case base as most relevant (or “similar”) to the current problem. The symbolic
similitude that classifies a problem subsumes a subset of the elements in a class,
and as such it is just a partial description of that class. Indeed, this is the main
difference between a lazy learning approach like LID and an eager approach as
that of induction (see the INDIE inductive method in [3]).

As for future work, we intend to explore a variation of LID that adap-
tively chooses a middle ground between the extreme points of lazy and eager
approaches. Our assumption is that it is unlikely that a lazy (or eager) approach
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is always the best suited for all application domains. Thus, our aim will be to
investigate in which situations it is useful to store (memorize) the partial class
descriptions provided by LID an use them to solve new problems and in which
situations is better to keep a purely lazy approach.

Acknowledgements. This work has been supported by Projects SMASH (CI-
CYT TIC96-1038-C04-01) and IBROW (IST-1999-19005). The authors thank
Dr. Marta Domingo and physician Albert Palaudaries for their assistance in
developing the marine sponges and diabetes applications.

References

[1]
2]

3]

[4]

D. Aha, editor. Lazy Learning. Kluwer Academic Publishers, 1997.

Hassan Ait-Kaci and Andreas Podelski. Towards a meaning of LIFE. J. Logic
Programming, 16:195-234, 1993.

E. Armengol and E. Plaza. Bottom-up induction of feature terms. Machine
Learning, 41(1):259-294, 2000.

E. Auriol, S. Wess, M. Manago, K.-D. Althoff, and R. Traphoner. Inreca: A
seamless integrated system based on inductive inference and case-based reasoning.
In CBR Reseacrh and Development, number 1010 in Lecture Notes in Artificial
Intelligence, pages 371-380. Springer-Verlag, 1995.

U. Bohnebeck, T. Horvath, and S. Wrobel. Term comparisons in first-order sim-
ilarity measures. In D. Page, editor, Proc. of the 8th International Workshop on
ILP, volume 1446 of LNAI, pages 65-79. Springer Verlag, 1998.

K Borner. Structural similarity as a guidance in case-based design. In Topics in
Case-Based Reasoning: EWCBR’9/, pages 197-208, 1994.

H Bunke and B T Messmer. Similarity measures for structured representations.
In Topics in Case-Based Reasoning: EWCBR’9/, pages 106-118, 1994.

B. Carpenter. The Logic of typed Feature Structures. Tracts in theoretical Com-
puter Science. Cambridge University Press, Cambridge, UK, 1992.

W. Emde and D. Wettschereck. Relational instance based learning. In Lorenza
Saitta, editor, Machine Learning - Proceedings 13th ICML, pages 122 — 130. Mor-
gan Kaufmann Publishers, 1996.

Tamas Horvath, Stefan Wrobel, and Uta Bohnebeck. Relational instance-based
learning with lists and terms. Machine Learning, 43(1):53-80, 2001.

Ramon Lépez de Méantaras. A distance-based attribute selection measure for
decision tree induction. Machine Learning, 6:81-92, 1991.

T. Mantay and R. Moller. Content-based information retrieval by computing
least common subsumers in a probabilistic description logic. In Proceedings of the
ECAI Workshop Intelligent Information Integration, 1998.

Stephen Muggleton and Michael Bain. Analogical prediction. In Proc. ILP, 1999.
E. Plaza, R. Lépez de Méntaras, and E. Armengol. On the importance of simili-
tude: An entropy-based assessment. In I. Smith and B. Saltings, editors, Advances
in Case-based reasoning, number 1168 in Lecture Notes in Artificial Intelligence,
pages 324-338. Springer-Verlag, 1996.

Enric Plaza. Cases as terms: A feature term approach to the structured repre-
sentation of cases. In M. Veloso and A. Aamodt, editors, Case-Based Reasoning,
ICCBR-95, number 1010 in Lecture Notes in Artificial Intelligence, pages 265-276.
Springer-Verlag, 1995.

B. L. Richards and R. J. Mooney. Learning relations by pathfinding. In proceedings
of AAAI-92, pages 50-55, 1992.



	Introduction
	Representation of the Cases
	Relational Case-Based Learning
	Relevance of Attributes

	Lazy Induction of Descriptions
	Experiments
	Complications Risk Assessment in Diabetes
	Identification of Marine Sponges

	Related Work
	Conclusions

