Discovery of Temporal Patterns*

Learning Rules about the Qualitative
Behaviour of Time Series

Frank Hoppner

Department of Electrical Engineering and Computer Science
University of Applied Sciences, Emden
Constantiaplatz 4
D-26723 Emden, Germany
frank.hoeppnerQieee.org

Abstract. Recently, association rule mining has been generalized to the
discovery of episodes in event sequences. In this paper, we additionally
take durations into account and thus present a generalization to time
intervals. We discover frequent temporal patterns in a single series of
such labeled intervals, which we call a state sequence. A temporal pattern
is defined as a set of states together with their interval relationships
described in terms of Allen’s interval logic, for instance “A before B,
A overlaps C, C overlaps B” or equivalently “state A ends before state
B starts, the gap is covered by state C”. As an example we consider
the problem of deriving local weather forecasting rules that allow us to
conclude from the qualitative behaviour of the air-pressure curve to the
wind-strength. Here, the states have been extracted automatically from
(multivariate) time series and characterize the trend of the time series
locally within the assigned time interval.

1 Introduction

To predict or forecast a system’s behaviour in the near future it is probably best
to develop a global model of the system and to estimate its parameters with the
help of observations in the past. But the identification of such a model requires
substantial knowledge about the whole system, which is absent in typical knowl-
edge discovery applications. Nevertheless, we often expect certain relationships
between measured variables and the systems behaviour in the future, may be we
have already some snapshots of typical behaviour in mind, but we are far away
from being able to model the system as a whole. Such typical key situations are
often associated with a typical qualitative behaviour of measured variables, and
consequently humans control technical systems often by simple visual inspection
of displayed trends [4]. Examples of rules using qualitative descriptions of time-
varying data can be found in the domain of medical diagnosis, material science

* This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under
grant no. K1 648/1.

L. De Raedt and A. Siebes (Eds.): PKDD 2001, LNAI 2168, pp. 192—@, 2001.
L) [Springer-Verlag Berlin Heidelberg 2001

Discovery of Temporal Patterns 193

[6], diagnostics and supervision [11] or qualitative reasoning [12], to mention
only a few. In this paper, we consider the problem of deriving such local rules
inductively by observing the variables for a long period of time.

Why qualitative descriptions at all? The problem of finding common char-
acteristics of multiple time series or different parts of the same series requires a
notion of similarity. If a process is subject to variation in time (translation or
dilation), those measures used traditionally for estimating similarity (e.g. point-
wise Euclidean norm) will fail in providing useful hints about the time series
similarity in terms of the cognitive perception of a human. This problem has
been addressed by many authors in the literature, e.g. [1, 5]. Here we use qual-
itative descriptions to divide up the time series in small segments, each of it
easy to grasp and understand by the human. Matching of time series is then
performed on the basis of these labeled segments rather than on the raw time
series. The basic descriptions can be defined a priori (for example “slightly in-
creasing segment”) [4, 14, 6], can be learned from a set of examples (labeled
training set), or can be found automatically by means of clustering short subse-
quences [7]. Finally, we arrive at a sequence of labeled intervals: time intervals
in which a certain condition holds in the original time series.

This paper considers the problem of discovering temporal relationships be-
tween primitive patterns in time series in a fairly general manner: The time series
is turned into a sequence of labeled intervals in Sect. 2. A temporal pattern will
be defined as a number of states (the primitive patterns) and their temporal
relationship in terms of Allen’s temporal logic [3] in Sect. 3. After discussing
how to count patterns in an interval sequence in Sect. 4, we seek for frequent
patterns in Sect. 5 in a fashion that is similar to the discovery of association rules
[2], which has been extended to event sequences in [13, 15]. Given the frequent
patterns, rules about temporal relationships can be derived. As an application
of this algorithm, we consider the problem of finding rules about the qualitative
behaviour of multivariate time series in Sect. 6.

2 State Sequences

Let S denote the set of all possible trends, properties, or states that we want
to distinguish, for example “pressure goes down” or “water level is constant”.
A state s € S holds during a period of time [b, f) where b and f denote the
initial point in time when we enter the state and the final point in time when
the state no longer holds. A state sequence on S is a series of triples defining
state intervals

(blvslafl)a (b27527f2)7 (b37537f3)7 (b47547f4)7

where b; < b;+1 and b; < f; holds. We do not require that one state interval
has ended before another state interval starts. This enables us to mix up several
state sequences (possibly obtained from different sources) into a single state
sequences.

194 F. Hoppner

However, we do require that every state (b;, s, f;) is maximal in the sense,
that there is no (bj, s, f;) in the series such that [b;, f;) and [b;, f;) overlap or
meet each other:

V(bi, 85, fi), (bj, 85, f3),0 <J: fi <bj = 8i # 85 (1)

If (1) is violated, we can merge both state intervals and replace them by their
union (min(b;, b;), s, max(f;, f;))-

3 Temporal Patterns

We use Allen’s temporal interval logic [3] to describe the relation between state
intervals. For any pair of intervals we have 13 possible relationships; they are
illustrated in Fig. 1. For example, we say “A meets B” if interval A terminates
at the same point in time at which B starts. The inverse relationship is “B is-
met-by A”. In the following we denote the set of interval relations as shown in
the figure by Z.

A - - —

Ba-——» - time

A after B B before A

A is-met-by B : : B meets A

A is-overlapped-by B~ > B overlaps A

A finishes B B S B is-finished-by A
A during B : : B contains A

A is-started-by B - B starts A

A equals B -_— B equals A

Fig. 1. Allen’s interval relationships.

Given n state intervals (b;, s;, fi), 1 < i < m, we can capture their relative
positions to each other by an n x n matrix R whose elements R[i, j] describe the
relationship between state interval 7 and j. As an example, let us consider the
state sequence in Fig. 2. Obviously state A is always followed by B. And the lag
between A and B is covered by state C. Below the state interval sequence both of
these patterns are written as a matrix of interval relations. Formally, a temporal
pattern of size n is defined by a pair (s, R), where s : {1,..,n} = S maps index
1 to the corresponding state, and R € Z™*™ denotes the relationship between
[b;, fi) and [b;, f;)'. By dim(P) we denote the dimension (number n of intervals)
of the pattern P. If dim(P) = k, we say that P is a k-pattern. Of course, many
sets of state intervals map to the same temporal pattern. We say that the set
of intervals {(b;, s;, f;)| 1 <1 < n} is an instance of its temporal pattern (s, R).
We define the space T'P(S) of temporal patterns over S informally as the space
of all valid temporal patterns of arbitrary dimension?.

! To determine the interval relationships we assume closed intervals [b;, fi]
2 Conditions for a valid temporal pattern are, for instance, that R[i, j] is always the
inverse of R[j,1].

Discovery of Temporal Patterns 195

state interval sequence: temporal relations:
c D C F C | A B | ABC
— Al=b Al=bo
A B A B A E B Bla = B|la =io
. C |io o =
time

(abbreviations: a=after, b=before, o=overlaps, io=is-overlapped-by)

Fig. 2. Example for state interval patterns expressed as temporal relationships.

Next, we define a partial order C on temporal relations. We say that tem-
poral relation (sa,R4) is subpattern of (s, Rg) (or (sa,Ra) C (sB,RB)),
if dim(s4,Ra) < dim(sp,Rp) and there is an injective mapping =
{1,..,dim(sa,Ra)} — {1,..,dim(sp, Rp)} such that

Vi,j € {1,..,dim(sa, Ra)} : Rali,j] = Rp[n(7), 7(4)]

The relation C is reflexive and transitive, but not antisymmetric: we can
have (s4,Ra) C (sg,Rgp) and (sp,Rp) C (sa,Ra) without s4 = sp and
Ra = Rp due to a different state ordering. But permutating the states
does not change the semantics of the temporal pattern. Therefore, we define
(sa,Ra) = (sB,RB) < (sa,Ra) C (sB,RB) A (sB,RB) C (54, Ra) and con-
sider the factorisation (TP(5) /_, E/_), where C has been generalized canonically
to equivalence classes. Then, &/ is also antisymmetric and thus a partial order
on (equivalence classes of) temporal patterns.

To simplify notation we pick a subset NT P(S) C T P(S) of normalized tem-
poral patterns such that N7 P(S) contains one element for each equivalence class
of TP(S) /_ and (NT P(S), C) is isomorphic to (TF($) /—, £/_). In the remainder,
we will then use (NTP(S),C) synonymously to (TF(5) /=, E/_). Within each
equivalence class, we can order the patterns lexicographically by initial time,
final time, and state. This ordering is unique thanks to (1). We use the first
pattern in this ordering as the representative of the class.

4 Occurrences of Temporal Patterns in State Sequences

To be considered interesting, a temporal pattern is limited in its extension, that
is, the whole pattern has to be small enough to be observed by a (forgetful) op-
erator. We therefore choose a maximum duration ¢,,,,, which serves as the width
of a sliding window which is moved along the state sequences. We consider only
those pattern instances that can be observed within this window. In a monitor-
ing and control application, this threshold could be taken from the maximum
history length that can be displayed on the monitor and thus be inspected by
the operator.

We define the total time in which the pattern can be observed within the
sliding window as the support supp(P) of the pattern P. (Space limitations
prohibit the justification of this choice, we refer the interested reader to [9].) Let
us illustrate this definition with some examples in Fig. 3. In subfigure (a) we have

196 F. Hoppner

a single state A. We see the pattern for the first time, when the right bound of
the sliding window touches the initial time of the state interval (dotted position
of sliding window). We can observe A unless the sliding window reaches the
position that is drawn with dashed lines. The total observation time is therefore
the length of the sliding window ¢, plus the length of state interval A. The
support (observation duration) is depicted at the bottom of the subfigure.

Subfigure (b) shows another example “A overlaps B”. We can observe an
instance of the pattern as soon as we can see state B and we loose it when A
leaves the sliding window. If the pattern occurs multiple times, two things may
happen: If there is a gap between the pattern instances, such that we loose the
pattern in the meanwhile, then the support of the individual instances add up
to the support of the pattern, as shown in subfigure (c). If there is no such gap
(subfigure (d)), we see the pattern as soon as a first instance enters the sliding
window until the last instance leaves the window. In the meantime, it does not
matter how many instances are present, as long as there is at least one.

: i ! B | : ' ‘TR
a) : A 1 | o)]] 1
| ; A : T A
77777777777777 time ! t . l”””””’ﬁm‘e
support support support

—————————————— ‘ o .

b) ; —B 3 0 BB B
A ‘ ‘ —A A A
*************** time B o : T ime
= support - support

Fig. 3. Illustration of our notion of support.

If we divide the support of a pattern by the length of the state sequence plus
the window width ¢, we obtain the relative frequency p of the pattern: If we
randomly select a window position we can observe the pattern with probability
p. Also note that there is no need for discretization, we can handle time contin-
uously by jumping from interval bound (initial or final time) to interval bound
and integrating the support over the jump period. This is because observability
of a pattern changes only if the sliding window meets one of the interval bounds.

5 Discovery of Temporal Rules

A pattern is called frequent, if its support exceeds a threshold supp,,;,- The task
is to find all frequent temporal patterns in NT P(S), from which we then create
the temporal rules. To find all frequent patterns we start in a first database pass
with the estimation of the support of every single state (also called candidate
1-patterns). After the kth run, we remove all candidates that have missed the
minimum support and create out of the remaining frequent k-patterns a set of
candidate (k + 1)-patterns whose support will be estimated in the next pass.
This procedure is repeated until no more frequent patterns can be found. The
fact that the support of a pattern is always less than or equal to the support of
any of its subpatterns

Vpatterns P,Q : @QC P = supp(Q) > supp(P) (2)

Discovery of Temporal Patterns 197

guarantees that we do not miss any frequent patterns. At this level of detail the
procedure is identical to association rule mining [2].

5.1 Candidate Generation

The number of potential candidates grows exponentially with the size &k of the
patterns. Efficient pruning techniques are therefore necessary to keep the increase
in the number of candidates moderate. We use three different pruning techniques.

The technique that is used for the discovery of association rules [2] can still
be applied to temporal patterns: Due to (2), every k-subpattern of a (k + 1)-
candidate must be frequent, otherwise the candidate itself cannot be frequent.
To enumerate as few non-candidate (k+ 1)-patterns as possible, we join any two
frequent k-patterns P and @ that share a common (k — 1)-pattern as a prefix.
Let us denote the remaining states in P and) besides those in the prefix as
p and g respectively. We denote the interval relationship between p and ¢ in
the candidate pattern X = (sx,Rx) as Rx[k,k + 1] = r. Figure 4 illustrates
how to build the (k + 1)-pattern matrix Rx out of Rp and Rg. Since Rp and
Rg are identical with respect to the first £ — 1 states in normalized form, the
same is true for the new pattern X (indicated by the same submatrix A). The
relationship between p and ¢ and the first £ — 1 states can also be taken from
Rp and Rg. Thus, as we can see in Fig. 4(c), the only degree of freedom is r.
From the (k — 1)-pattern prefix and the two states p and ¢ we thus can build up
a (k + 1)-pattern which is completely specified up to the relation between p and
q.

Sx
sp 50 B
Rp |0...k—1]p Ro [0...k—1|q E;X 0...k—1|p|q
0 0
sp A B 8Q A D Sinl A B|D
o £l 14 C =|r
p C = q E = ; o = L
(a) Pattern P (b) Pattern Q

(c) New pattern X

Fig. 4. Generating a candidate (k + 1)-pattern X out of two k-patterns P and @ that
are identical when restricted to the first £ — 1 states.

The freedom in choosing r yields 13 different patterns that might become
candidate (k + 1)-patterns, because there are 13 possible interval relationships.
Since we can restrict ourselves without loss of generality to normalized patterns,
the number of possible values for r reduces to a maximal number of 7. Before
we check each of the seven (k + 1)-patterns for frequent k-subpatterns, we apply
another pruning technique based on the law of transitivity. For example, the
two 2-patterns “A meets B” and “A meets C” share the primitive 1-pattern “A”

198 F. Hoppner

as a common prefix. We have to fix the missing relationship between B and C
to obtain a 3-candidate. The law of transitivity for interval relations [3] tells
us that the possible set of interval relations is {is-started-by, equals, starts}. In
normalized form, only 2 out of 7 possible relationships remain. In general, for
each state s(z) of the first k — 1 states we apply Allen’s transitivity table to the
relationship between p and s(i) (Rp(k,i]) and s(i) and ¢ (Rg[é, k]). Only those
values for r that do not contradict the results of the £ — 1 applications of the
transitivity table yield a candidate pattern.

Finally, for every temporal pattern () we maintain an observed and expected
support set Og and Eg, resp. The set Og contains all points in time that
contribute to the support of the pattern (), that is, all points in time in which
the pattern can be observed in the sliding window. Before we consider a (k + 1)-
pattern P as a candidate pattern, we intersect? all sets Og of all k-subpatterns
@ of P. The result gives us the expected support of P in Ep. The cardinality
of Ep serves as a tighter upper bound of the support of P than min{Fqg |Q C
P, dim(Q) = k} does. If it stays below supp,,;, the pattern cannot become a
frequent pattern, therefore we do not consider it as a candidate.

5.2 Support Estimation

Again, due to space limitations we can give only a quick overview of the basic
ideas, a more detailed report is currently in preparation (contact the author).

In order to estimate the support for the candidate patterns, we sweep through
the state sequence and incrementally update the list of states which are currently
visible in the sliding window. We also update the relation matrix for the states
in the sliding window incrementally. By ¢,.; we denote the right bound of the
sliding window.

The set of candidate patterns is partitioned into three subsets, which we call
the set of passive, active, and potential candidates. The set of passive candidates
contains those candidates P that we do not expect in the current sliding window
because the expected support does not contain the time of the current window
position, that is, t,.; € Ep. The set of potential candidates contains those can-
didates for which we have t,.; € Ep, that is, there is a chance of observing P in
the window. Finally, the set of active patterns contains those patterns that are
currently observable in the sliding window.

At the beginning all patterns are passive patterns. Associated with every
pattern we have the set of expected support Ep, we therefore know in advance
when the pattern will become a potential pattern, namely at activation time
ap =min{t|t € Ep}. If the set Ep is organized as a sorted list of intervals, the
minimum is simply the left bound of the first interval in the list. We keep the set
of passive patterns ordered by their activation time. Whenever t,.; reaches the
activation time of a pattern P, P becomes either a potential or active pattern,
depending on whether P occurs in the sliding window or not. When P becomes

8 The sets Og and Eg can be organized as lists of intervals. The intersection is also a
list of intervals. We only have to add up the interval lengths to obtain the cardinality.

Discovery of Temporal Patterns 199

a potential pattern, we remove the leading interval from the Ep list and store
the deactivation time dp (end of the interval), because at that time the pattern
will fall back into the set of passive patterns.

A potential pattern P becomes a passive pattern if the fall back-time dp
has been reached by the sliding window. Whenever a new state interval enters
the sliding window, we check for all potential patterns if an instance of the
pattern can be found. (Since the set of potential pattern may become quite
large, this is the most expensive operation.) If this is the case, the potential
pattern becomes an active pattern, otherwise we keep it as a potential pattern.
If a pattern instance has been found, we calculate the point in time when the
pattern disappears and use it as the fall back-time for the active pattern.

Just like the set of passive patterns, the set of active patterns is sorted by their
fall back-times. Whenever t,.; reaches the fall back-time of an active pattern,
we check whether a new pattern instance has entered the sliding window in the
meanwhile. In this case the pattern remains an active pattern, but we update
the fall back-time. Otherwise, depending on whether dp < t,¢¢ or not, the active
pattern becomes a potential or passive pattern.

Whenever a pattern instance has been found, the support of the pattern
is updated incrementally, that is, we insert the period of pattern observation
(the support) into Og. Since we have an upper bound of the remaining support
(namely the cardinality of the continuously updated set Ep), we can perform
a fourth online pruning test. If the support achieved so far (card(Op)) plus
the maximally remaining support (card(Ep)) drops below supp,,;, we do not
consider the pattern any longer. At the end of each database pass, the set Ep
is empty and Op contains the support of P, which is then subsequently used in
the next candidate generation step for pruning.

5.3 Rule Generation

After having determined all frequent temporal patterns, we can construct rules
X = Y from every pair (X,Y) of frequent temporal patterns with X C Y. We
restrict ourselves to “forward rules”, that is, rules that make conclusions in the
future rather than in the past. If the confidence of the rule conf(4 — B) =
supp(B)

supp(A) is greater than the minimal confidence, the rule is printed. Enumeration

of all possible rules can be done efficiently using techniques described in [2].

5.4 Disjunctive Combination of Temporal Patterns

When analysing the rules obtained by the algorithm, we must keep in mind
that we were seeking for the simple interval relationships only, that is, those
relationships that consist of a single attribute r € Z. If a process B is started
some time after A has started, then this can result in a number of rules “A — B”
with temporal relationships overlaps, meets, and before. The confidence of the
true relationship (which is in this case: A overlaps/meets/before B) might be
very high, but the confidence values we observe for the three rules we have found

200 F. Hoppner

are comparatively low. We are not allowed to add up the confidence values of
all three rules in order to obtain the confidence of the composed rule. This
would lead to an overestimation, because there might be sliding windows that
contain multiple of these patterns simultaneously, and in this case we would
count them twice (or more). Fortunately, it is possible to calculate the support
of composed rules afterwards. The support of a pattern P which is a disjunction
of two patterns @ and R can be calculated easily as supp(P) = card(Og U OR).
The sets of observed support Og and Og have been calculated already during
the execution of the algorithm, all we have to do is to store the sets for later
access. (Note that we cannot guarantee that we will find all frequent pattern
compositions in this way. Several patterns that do not reach supp,,;, individually
might fulfil this requirement after their combination.)

6 Evaluation and Discussion

We have examined air-pressure and wind strength/wind direction data from a
small island in the northern sea*. From the time stamps we have also extracted
the season. It is well known that local differences in air pressure are the cause
for wind, therefore we should find some relationships between these variables.
Although global weather forecast is (more or less) done perfectly by large-scale
weather simulations, it is still not possible to precisely localize where a certain
weather phenomenon will occur to which extent at what time. Rules about the
qualitative behaviour of the air pressure curve indeed help sailors in short-term
local weather forecasting [10].

Il n A n ;
f() i A el

val high F 1]]
Fig. 5. Extracted features from time series: wind strength, Helgoland, April 1997.

The data has been measured hourly and we used 3, 6, and 9 years of data
from 1991-1999 to test the algorithm. We have applied kernel smoothing in
order to compensate for noise and to get more robust estimates of the first

* Helgoland, 54:11N 07:540

Discovery of Temporal Patterns 201

and second derivative. Then, the smoothed series have been partitioned into
primitive patterns like “increasing”, “concave”, “high-value”, etc. See Fig. 5 for
an example.

Table 1 shows the performance of the pattern mining algorithm with different
average state densities, window widths, and state series lengths. The threshold
SUPP i, has been chosen to be 2% of the data period in all runs. The computation
times ranged from a few seconds to 20 minutes on a 550 MHz Pentium III
processor with 256 MB main memory. We can see that the pruning techniques
were quite efficient, besides a few exceptions, only 1-3% of all processed patterns
became candidate patterns. The artificially generated data set has a rich pattern
structure, on the average 45% of all candidates became frequent patterns. This
value increases if we consider only runs with large window widths. If the state
density D (average number of state intervals visible in the sliding window) is
fixed, the run time is roughly linear in the size of the state series.

SW[D F |F/C|C/P| T F |F/CIC/P] T F |F/C|C/P| T
8[18[3.42 191 [30.3]5.1 [1.19 178 |29.4 5.0 [1.31 28 | 7.1 |53.1[0.56
8(30(5.70 1,126 |56.2| 3.4 [2.95 1,055 |54.9| 3.5 [3.03 96 [20.9] 8.2 [0.65
8(42|7.908 4904 783| 2.3 [8.27 4,459 (78.1|2.3 |[7.97 249 [27.3| 7.2 |1.11
15(18(5.40 1,071 |55.8| 2.7 [2.06 471 |25.0| 1.6 [2.19 829 |46.7| 1.8 [2.01

15(30(9.00 2,779 |42.6| 2.4 (5.24 2,618 [41.6| 2.5 [5.38 2,024 [37.1| 2.8 |4.67
15(42]12.6 12,900(67.3| 1.3 |16.0 11,986(66.4| 1.4 (15.7 9,618 |63.3| 1.5 [13.4
27/18|8.28 1,600 (25.2| 2.1 (4.27 1,562 |24.9| 2.1 |5.34 1,359 (23.0| 2.3 |4.08
27\30(13.8 9,767 |42.7| 1.8 (12.4 9,184 |41.6| 1.8 |14.5 7,082 (37.8| 2.0 |10.1
27|42|19.3 48,832|65.3| 0.7 (43.3 45,302|64.2| 1.0 |49.0 34,872|60.9| 1.1 |32.7

(a) (b) years "97-’99 (c) years ’94-°99 (d) years ’91-°99

Table 1. Results of the algorithm. In all experiments the threshold supp,,;, has been
chosen to be 2% of the time series length (3, 6, and 9 years). Column S denotes the
number distinct states in the series, column W denotes the window width (hours),
column D the average state series demnsity (average number of states visible in the
window). Column F' contains the number of frequent patterns, F//C the percentage
of frequent patterns among candidate patterns, and C/P the percentage of candidate
patterns among processed patterns (that is, candidate and pruned patterns). Column
T shows the run time per 1000 state intervals in the series.

Due to the complexity of the temporal patterns, matching a k-pattern against
the sliding window is O(D?). Therefore, the complexity of the analysis depends
on all parameters that influence D, e.g. sliding window width, number and length
of intervals generated from a time series, size of the set of labels, etc. Further-
more, if the sliding window content changes quickly, we have to check more
frequently if potential candidates become active candidates. Another point is
the number of “uninteresting” associations that are generated by the interval
extraction: If the state series represents extracted local trends in time series it
is natural that we observe many frequent patterns like “increasing segment be-

202 F. Hoppner

fore decreasing segment” or “concave before convex segment”, and vice versa.
These uninteresting frequent patterns can be combined to patterns with more
than 2 states arbitrarily and have considerable impact on the number of frequent
patterns (and thus on run-time).

| summer |
s] [|
(a) (b) ()

Fig. 6. Some exemplary rules. The bars indicate the temporal relationship between
the intervals, their length has been chosen arbitrarily. The label in the bar describes a
condition that holds in the interval (where grd denotes gradient, crv curvature, etc.).

Due to lack of space, here are only some exemplary rules. We have generated
only those rules with a conclusion lying in the future (with respect to the intervals
in the premise). Among them, there were many rules predicting a high gradient
in wind strength, Fig. 6(a) shows one of them: If a period of highly increasing or
decreasing air pressure overlaps a period of high curvature, it is very likely that
the wind strength will change quickly (with a high gradient). The depicted rule
occurs also with during and meets relationships between the air pressure states,
so a disjunctive combination as described in Sect. 5.4 is promising. Figure 6(b)
is an example for a rule that concludes from a change in wind direction to a
strong change in wind strength. The rule in Fig. 6(c) tells us that stable weather
(air pressure is nearly constant) is likely to be continued in summer, that is, a
constant air pressure segment is followed by another constant air pressure period
with low winds. Similar rules for other seasons can also be found, but with a
much lower confidence value.

On the average, the confidence values of the rules are comparatively low
(about 40-60% for the examples). This is because simple patterns (used in the
premise) can be observed longer than complex patterns (patterns comprising
premise and conclusion). To illustrate this, review Fig. 3(a)-(b), where the sup-
port of pattern “A” is greater than the support of pattern “A overlaps B”,
although A has the same length in both cases. This leads to confidence val-
ues below 1 even if every A overlaps a B in the examined state series. We are
investigating on other measures for rule evaluation in [9].

7 Conclusion

We have proposed a technique for the discovery of temporal rules in state se-
quences, which might stem from multivariate time series for instance. The ex-
amples in Sect. 6 have shown that the proposed method is capable of finding
meaningful rules that can be used as rules-of-thumb by a human, but also in
a knowledge-based expert system. The rules can be easily interpreted by a do-
main expert, who can verify the rules or use them as an inspiration for further

Discovery of Temporal Patterns 203

investigation. Even if there is already considerable background knowledge, the
application of this method might be valuable if the known rules incorporate
more variables than readily available. For instance, weather forecasting rules
as discussed by Karnetzki [10] also use information about the general weather
outlook (cloudiness) or information from the local weather forecasting station.
Such information might be difficult to incorporate or expensive to measure, and
in such a case one is interested in how much one can achieve by just using the
available variables. Selection of the best rules gets further treatment in [9].

Acknowledgements. The author would like to thank Prof. F. Klawonn for critical
review of this paper and the Deutsche Wetterdienst for providing the data.

References

[1] R. Agrawal, K.-L. Lin, H. S. Sawhney, and K. Shim. Fast similiarity search in
the presence of noise, scaling, and translation in time-series databases. In Proc.
of the 21st Int. Conf. on Very Large Databases, 1995.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast dis-
covery of association rules. In [8], chapter 12, pages 307-328. MIT Press, 1996.

[3] J. F. Allen. Maintaing knowledge about temporal intervals. Comm. ACM,
26(11):832-843, 1983.

[4] B. R. Bakshi and G. Stephanopoulos. Reasoning in time: Modeling, analysis,
and pattern recognition of temporal process trends. In Advances in Chemical
Engineering, volume 22, pages 485-548. Academic Press, Inc., 1995.

[5] D.J. Berndt and J. Clifford. Finding patterns in time series: A dynamic program-
ming approach. In [8], chapter 9, pages 229-248. MIT Press, 1996.

[6] A. C. Capelo, L. Ironi, and S. Tentoni. Automated mathematical modeling from
experimental data: An application to material science. IEEE Trans. on Systems,
Man, and Cybernetics, Part C, 28(3):356-370, Aug. 1998.

[7] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery
from time series. In Proc. of the 4th Int. Conf. on Knowledge Discovery and Data
Mining, pages 16-22. AAAT Press, 1998.

[8] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Ad-
vances in Knowledge Discovery and Data Mining. MIT Press, 1996.

[9] F. Hoppner and F. Klawonn. Finding informative rules in interval sequences. In
Proc. of the 4th Int. Symp. on Intelligent Data Analysis, Lissabon, Portugal, Sept.
2001. Springer.

[10] D. Karnetzki. Luftdruck und Wetter. Delius Klasing, 3 edition, 1999.

[11] K. B. Konstantinov and T. Yoshida. Real-time qualitative analysis of the temporal
shapes of (bio)process variables. Artificial Intelligence in Chemistry, 38(11):1703—
1715, Nov. 1992.

[12] B. Kuipers. Qualitative Reasoning — Modeling and Simulation with Incomplete
Knowledge. MIT Press, 1994.

[13] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in
event sequences. Technical Report 15, University of Helsinki, Finland, Feb. 1997.

[14] S. A. McIlraith. Qualitative data modeling: application of a mechanism for inter-
preting graphical data. Computational Intelligence, 5:111-120, 1989.

[15] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and per-
formance improvements. In Proc. of the 5th Int. Conf. on Extending Database
Technology, Avignon, France, Mar. 1996.

	Introduction
	State Sequences
	Temporal Patterns
	Occurrences of Temporal Pattern in State Sequences
	Discovery of Temporal Rules
	Candidate Generation
	Support Estimation
	Rule Generation
	Disjunctive Combination of Temporal Patterns

	Evaluation and Discussion
	Conclusion

