
Precomputing Oblivious Tkansfer

Donald Beaver

317 Pond Lab, Penn State University, University Park, PA 16802, (814) 863-0147;
beaverQcse.psu.edu.

Abstract. Alice and Bob are too untrusting of computer scientists to let
their privacy depend on unproven assumptions such as the existence of
one-way functions. Firm believers in SchrXnger and Heisenberg, they
might accept a quantum OT device, but IBM’s prototype is not yet
portable. Instead, M part of their prenuptial agreement, they decide to
visit IBM and perform some OT’s in advance, 80 that any later divorces,
coin-flipping or other important interactions can be done more conve-
niently, without needing expensive third parties.
Unfortunately, OT can’t be done in advance in a direct way, because
even though Bob might not know what bit Alice will later send (even if
she first sends a random bit and later corrects it, for example), he would
already know which bit or bits he will receive. We address the problem of
precomputing oblivious transfer and show that OT can be precomputed
at a cost of 8 (k) prior transfers (a tight bound). In contrast, we show
that variants of OT, such as oncout-of-two OT, can be precomputed
using only one prior transfer. Finally, we show that all variants can be
reduced to a single precomputed one-out-of-two oblivious transfer.

1 Introduction

Oblivious transfer [Rab81], a process by which Alice sends Bob a bit over a noisy
channel without knowing whether it arrives, is a fundamental and ubiquitous
tool for cryptographic protocols. It comes in several varieties, but one thing
is common to all implementations: they require intensive online computation
relying on unproven intractability assumptions [Rab81, BM89, HL90, Boe91,
Bea921, or they rely on not-yet-available hardware whose reliability is based
on well-demonstrated physical facts, such as Heisenberg’s Uncertainty Principle
[BC90, BBCS911.

In this paper, we reduce online oblivious transfer to precomputed oblivious
transfer. These reductions provide two immediate benefits. First, online com-
putations such as generating large Blum integers or computing modular square
roots can be performed in advance, using machine cycles and network bandwidth
at off-peak times. (Note that we are distinctly no2 referring to preprocessing, such
as computing a bunch of moduli and storing them for later use, but rather to
e t e c d i n g the transfers already, by whatever means available, and storing the
single-bit resuHs to build later transfers when the desired bits are known.) Sec-
ond, unproven assumptions can be avoided entirely by visiting Billes Grassard,’

Supported in part by NSF grant CCR-9210954.
Names have been changed to protect the innocent.

D. Coppersmith (Ed.): Advances in Cryptology - CRYPT0 ’95, LNCS 963, pp. 97-109, 1995.
0 Spnnger-Verlag Berlin Heidelberg 1995

98

<
OT

JOT
(?)OT

Pr<
OT
e(k)
&{k)
e(k)

xomp
iOT

1
1

1

uted
(?)0T

1
1
1

Fig. 1. Tight costs of implementing one OT variant using another precom-
puted variant, to achieve 1 — O(2~k) "security." Cost is measured as the num-
ber of invocations of the precomputed primitive.

asking for a couple of hours on the quantum OT machine [BBCS91], and trans-
ferring a set of bits for later use.

For subtle reasons, however, it is not at all immediate that OT can be pre-
computed. If Alice wishes to reserve her choice of a given bit b to send until
tomorrow, then for whatever bits she sends today, Bob will already know which
bits have arrived. For example, if she goes ahead and obliviously transfers a ran-
dom bit r today, with the intent of sending b ® r on a direct channel tomorrow,
then even though Bob can't learn b until tomorrow, he does get some unfair
information: he knows today whether he will get the result tomorrow or not!

We show that it is indeed possible to precompute the original OT introduced
by Rabin [Rab8l]. To achieve a l -O(2~ k) level of information-theoretic security,
our protocols use O(k) prior transfers. The parameter k arises regardless of
whether the precomputed OT's are implemented through cryptographic means
or via a quantum channel. Our bound is tight: we also show that fi(k) prior
transfers are necessary.

We also consider the following variants:

- OT, or "standard" OT, permits Alice to send a bit b to Bob. Bob receives
6 with 50-50 probability and knows whether he received the bit. Alice does
not know whether Bob received the bit.

- JOT, or "one-out-of-two" OT, permits Alice to send one of two bits, 60 or
bi, to Bob [EGL82], Bob receives either 60 or b\, with equal probability, and
he knows which one he received. Alice does not know which bit Bob received.

- (i)OT, or "chosen one-out-of-two" OT, is similar to JOT, except that Bob
chooses an index c and receives be. Alice does not learn c.

In contrast to OT, JOT and (i)OT can be precomputed at no additional cost,
i.e. requiring only one prior transfer per future transfer. Moreover, any of the
three variants can be reduced to a single precomputed iOT (or (i)OT), with no
chance of error.

Figure 1 illustrates our results, demonstrating the costs of implementing any
of the three standard variants using a primitive that is only temporarily avail-
able. Clearly, the optimal number of invocations made by an online reduction
can be no larger than that by a precomputed reduction (else the precomputa-
tion would be done online!). Except for the precomputed self-reduction for OT,
the costs of precomputation are no more than those of online reductions (c/.

99

[BCR86a, BCR86b, Cr&7]; as part of our analysis, we also introduce simple
online reductions between (?)OT and)OT).

These results shed some light on the nature of the three variants. Intuitively,
OT requires us to maintain a degree of flexibility so that the fate of a future bit
- ic. whether it will arrive or not - remains undetermined. Unfortunately, the
fact of whether a bit arrived or not cannot be reversed later on. In contrast, the
as-yet undetermined choicea made in *OT and (:)OT can be arbitrarily made
and later reversed.

The price of inflexibility in the OT case is a need for additional prior transfers.
Given that the arrival of a bit is an irrevocable event, it is remarkable that such
flexibility can be accommodated at all. We show that these additional transfers
are, in fact, necessary.

2 Preliminaries and Definitions

We use L‘c t $” to denote assigning c the value 0 or 1 with equal probability.
Local variables are sometimes referred to in a (C++)-like notation to distinguish
them from similarly-named local variables held by another agent: for example,
P : z denotes P’s local variable x . The notation “ P + Q : 2” denotes the event
that P sends P:x to Q. The notation “Q + P : f denotes the event that Q
receives a message from P and stores it as Q:y. (We sometimes omit explicit
mention of message reception.)

For clarity, we ignore blatantly detectable misbehavior (e-g. sending syntacti-
cally incorrect messages) by assuming that an honest party rewards it by refusing
further interaction with the offender. Including such non-instructive cases makes
for unreadable code.

The reader well-versed in OT may skip to $2.3 on first reading.

2.1

We describe oblivious transfer formally in terms of a three-party protocol in-
volving Alice, Bob, and an absolutely trusted third party, communicating over
synchronized and absolutely secure channels. Essentially, the third party repre-
sents the desired primitive, and the protocol describes how the primitive is used.
Let A be Alice and B be Bob; then our specification of Rabin’s original concept
would be the following protocol for for A, B, and third party OT:

The Variants of Oblivious Transfer

blivious Transfe
input b

A -+ OT:
OT: ? b c $
OT + B: (?b, ?b - 6) //either (0’0) or (1, b)

The value of ?b records whether Bob receives a valid bit or not. The other
standard variations on OT involve the special third parties $OT and (:)OT:

100

One-Out-Of-Two Obl ivious Tkan sfeg
A: input bo, bl

A 4 30T: (b 0 , b l)
&OT: c + $

&OT -+ B: b C

Chosen One-Out-Of-Two Oblivious Transf er
A: input bo, b1
8: input e
A 4 @)OT: (b o , b l)
B -., (:)OT: c

(:)OT 4 B: (c ,b ,)

2.2 Secure Implementations

A full formal framework with details of the tedious proofs included in our sub-
mitted version is omitted in this presentation - undoubtedly to the relief of
many. Details will appear again in the final version. We sketch some of the main
aspects, but the reader is invited to skip to $2.3.

In particular, we would like to map an implementation, namely a three-
party protocol, (A(+., k), B(za, k), P(k)) , to a specification, namely another
three-party protocol, (i(ta, k), k (q , k), $(k)), and show that the implemen-
tation achieves results asymptotically indistinguishable from the specification
(as k 4 00). Here, 2, and zb are the inputs of Alice and Bob, and P suggests a
primiiiue, namely a trusted third party such as OT, kOT, or (:)OT.

The implementation should model the results of the specification even when
attacked by an adversary, adv. In particular, attacks on the implementation
should be mapped to “equivalent” attacks on the specification. We provide such
a mapping by way of an interface that envelops adv, converting adv’s attacks
to equivalent actions in the specification protocol, and converting the informa-
tion gained in the specification protocol to appear as though it came from the
implementation, for adv’s sake.

Let k be a security parameter. When adv attacks implementation
(A(+., k), B(+a, k), P(k)) , let [adv, A, 8, P] denote the distribution on the in-
puts/outputs ((gadv, k), (+A, YA, k), (ZB, y ~ , k)) of adv, A and B, respectively.

Definitionl. Protocol (A, B, P) is a (1 - O(2-‘))-secure implementation
of protocol (A, B, f) if there exists an interface Z such that for all adversaries
adv, for d l Zadv, 2 0 and

[adv, A, B , P] GsO(~-’) [Z(adv), A, b, k].
We consider adaptive adversaries, namely adversaries who can corrupt any

number of players (except trusted primitives) at any point during the protocol.

101

The details of the interfaces will not appear here (the various sequences
of events it must handle are numerous, particularly when handling adaptive
adversaries), but we remark on two important aspects.

First, when the specification can be shown information-theoretically private
(perfectly or statistically), the job of the interface reduces to supplying “faked“
samples to adv, using a distribution that is independent of the inputs to which
the interface has no aecess (namely, those held by uncorrupted players). For the
protocols we have designed, this simulation is easy to do in polynomial time,
typically consisting of mere coin flips or exclusive-or’s with earlier messages.

Second, for the protocols presented here, the interface must convert messages
from adv (who plays the part of a corrupt A or B)-into “equivalent” messages sent
by a corrupt 2 or B to the trusted third party, P. The interface does so without
looking “inside” the adversary, but rather by performing simple computations
on the messages adv sends. (Subtly but importantly, this demonstrates that adv
“knows” what effective messages it sends [Bea92].) We thus avoid any need to
derive an “intent” or a (‘strategy’’ of the adversary in order to achieve the same
effects when attacking the secure specification protocol.

2.3 Precomputed Reductions

Let (A, h, P) be a specification in which A and B invoke a primitive, 8, precisely
once, and then output their results. The three OT protocols listed in $2.1 are
such protocols.

A precomputed reduction from one primitive, P, to another primitive, P,
is a two-stage protocol {A, B, P) that implements (A, B, P) , O(2-k)-securely. In
the first, or precompuiation stage, A and B can invoke P freely. At the start
of the second, or online stage, A and B receive their respective inputs zd and
Z), but no further communication with P is possible. If there is a precomputed
reduction from P to P, we write P 2 P.

An online reduction has no precomputation stage. If there is an online re-
duction from P to P, we write P :’ P.

The complexity of an implementation is the worst-case number of times the
protocol invokes P.

3 Precomputed i O T or (:)OT

We first describe implementations of all three variants using a single precom-
puted 30T (or a single precomputed (;)OT).

3.1 Precomputed Reduction: i O T to i O T
pr*

Figure 2 presents the simplest and cheapest precomputed reduction, $0T 5
$0T, which raises some subtle issues despite its simplicity. Roughly speaking,
Alice initially transfers two random bits, r g and r1. Bob receives one of them,

102

Precomputation:
A:
A - JOT:
)OT:
JOT — B:

ro <
(ro

— $i ri

n)
d*-%

Td)

Online Stage:
A:

A —B:
B:

input 60 > fci
c —$
(c, io © re, ti © rj-)
receive (c,xo.ii)
Output (d ®C,TiQ Xd9c)

Fig. 2. Precomputed self-reduction for |OT.

r ,̂ and knows which one it is. Later, when Alice has decided on 60 and fri, she
sends the corrections (60 © ro, &i © ri) to Bob. More accurately, Alice flips a coin,
c, and may instead send the corrections (60 © ri,bi © ro) to Bob. Bob thus gets
(60 © rc,6i © fe), and, knowing r«j, he can calculate 6,j$e. The other bit, b^9e,
remains masked by the unknown value rj.

The inclusion of c in this reduction is a very subtle point. If omitted, which
one may be apt to do without careful consideration, then Bob learns in advance
which bit he will receive - b0 or 61 - even though he does not learn the bit's
value until the online stage.

This leak seems innocuous at first. But say that Bob the gambler is awaiting
the answer 60 to the question, "Will the roulette wheel in Las Vegas give black or
red at 12:00 noon?" or the answer bo to the question, "Will the roulette wheel in
Monte Carlo give black or red at 12:00 noon?" He has an inside contact in each
casino who will let him know the local answer at 11:55, but one of those insiders
will surely end up nabbed by the police (or other unsundry enforcers). At best,
Bob can wait either in Las Vegas or in Monte Carlo and hope that the insider at
his chosen location can give him the answer. If Bob doesn't know which insider
will survive, he has at best a 50-50 chance of getting the prediction. But if Bob
does find out which insider will survive, he simply waits in the right casino and
is guaranteed an easy profit.

Indeed, without c, this reduction bears some similarity to the "non-
interactive" OT implemented in [BM89, HL90]. (Such methods employ
complexity-theoretic assumptions to transfer sequences of bits, and seek weaker2

goals for the purpose of supporting particular tasks such as non-interactive
proof systems.) If such a coin flip had been included, the non-interactive zero-
knowledge proof system of [BM89] would have been secure against the very
subtle attack proposed in [CHL94]. In contrast, the protocol described here is
provably secure:

Theorem 2. hOT <* \OT with complexity 1. That is, \OT can be implemented
using 1 prior invocation ofhOT.

3 Bob's reception of each successive bit is not independent of his reception of earlier
bits. Alice may derive correlations in reception patterns, although she does not learn
the precise patterns themselves.

103

Proof Sketch. Our goal is to convert attacks on the implementation (fig. 2)
into equally-powered attacks on the specification (52.1).

In the precomputation stage, Alice receives nothing. If ado corrupts her,
we (the interface/simulator Z) simply keep track of what adv generates on her
behalf. Bob receives the pair (d, rd), which we need to generate for him only if
adv has corrupted him. If so, we generate a uniformly random (d, rd).

In the online stage, if adv c h m to corrupt Alice, we choose to corrupt 2
(the Alice in the specification protocol), thereby obtaining inputs bo and b l . We
generate a random r o and r l , then hand r g , rl, bo, b1 to adv as the “faked” view
of Alice. (If Alice was already corrupted in the precomputation stage, then we
just hold onto the (r0,t-l) she gave us earlier, hand her bo,bl , and continue as
described below .)

Then, ado generates (c, ZO, 21) on faulty Alice’s behalf. We calculate Alice’s
efectiue bits as Po = 2 0 @ rc, PI = 21 @ rz. (These bits may or may not be bo,
61. If adv is merely curious but honest, they indeed will be bo, b l . But whatever
clever or mysterious methods adv uses to come up with (c, 20, q), we can eas-
ily determine what the message really “means,” in terms of messages c a q j n g
equivalent information and injluence in the specification.) Having corrupted A in
the specification protocol (see 52.1), we send (PO,&) to 30T on behalf of A. As
a result, B will output either Po or P I , which is exactly what Bob will do in the
implementation. (Technically, let 9 be 30T:c in the specification and let 7 be
adv:c@ 4OT:d in the implementation. Then strictly speaking, B outputs (9 , &)
while Bob outputs (7,Pr): but in either scenario, + or -y is uniformly random
and fully independent of AIAlice’s view .)

The case in which adv corrupts Bob is simple, because Bob’s role is essentially
passive. All we need do is to corrupt B and discover the value (D,b,) that the
online 30T sends on to B in the specification. We don’t need to discover the
value b, a fact which incidentally demonstrates that the implementation does
not leak the value of the unreceived bit. Using the faked, uniformly random
values (d,rd), we set c = d @ D (to make D = d @ c be the index of the
received bit), set ZD = b ~ , and choose xb at random. Finally, we hand Bob
the triple (c , 2 0 , 21). A curious but law-abiding adversary might then calculate
Bob’s output as bD = ZD. In any case, a corrupt Bob receives precisely the same
information in the implementation as in the specification.

This outline of an interface-based mapping can be filled in to show formally
that any adversarial attack on the implementation can be equated with an attack
on the specification, with perfectly identical distributions (on inputs/outputs of
honest players and views of adversaries). 0

3.2 Precomputed Reduction: (:)OT to kOT

Reducing (:)OT to precomputed 30T is slightly more complicated, partic-
ularly since is it somewhat surprising that a chosen reception can be obtained
using a random reception.

104

(i)OT<*iOT
Precomputation:
A: ro *-
A -+ JOT: (ro,
iOT: d -
iOT — B: (d, r

- », rj *— 9

r ,)

$

<*)

Oniine Stage:
A:
B:

B:

A:
B:
A:

input &o> h
input c
e = c©(<
(to©re,6i ©ry)
(xo.ii)
Output *c © Td

Fig. 3. Precomputed reduction from (J)OT to |OT.

Fig. 3 describes the implementation. Again, Alice initially transfers two ran-
dom bits r0 and ri via the initial ^OT. Bob receives one of them, namely r^,
and he knows which one he received.

Later, after Alice has chosen her desired bits bo and 6i, she sends corrections
like those in the JOT <* JOT protocol. This time, Bob selects which sort of
correction she should send, for otherwise he would have no control over which 6*
he received. In particular, if Bob wants to discover be, he sends Alice e = c© d.
She provides him with (6Q © >"e,oi © r^), and using rj, Bob can decode be^,
namely bc. The other bit, b^, remains masked by the unknown bit r j .

The question remains whether Alice learns anything from the message e sent
by Bob. From Alice's point of view, if Bob requests t — 0, there is an equal
chance that d = 0 and Bob wants 6o or that d = 1 and Bob wants b\. Likewise,
if Bob requests e = 1, there is an equal chance that d = 0 and Bob wants b\ or
that d = 1 and Bob wants 6o. The secret random bit d provided by the JOT
primitive is enough to protect Bob's privacy.

Theorem 3. (?)OT<* kOT with complexity 1. That is, (i)OT can be imple-
mented using 1 prior invocation of h

Proof. Similar to the proof of Theorem 2. As before, a key ingredient is the
extraction of Alice's effective bits by computing (XQ © rt,x\ © rg) (which are
certainly (6o,&i) if Alice is honest) and handing these to (i)OT (the primitive
available in the specification protocol), so that B sees the same distribution on
chosen bits as adv induces Bob to calculate in the implementation. Another key
ingredient consists of randomly faking (ro, rj) and e for B, and later compensat-
ing for this by faking the later message (x0, x\) with an appropriate distribution,
even though we have access to only one of Alice's bits (by way of (i)OT). °

3.3 Other Precomputed Reductions

To facilitate the discussion of other precomputations, we first consider a few on-
line reductions. While online reductions from OT to ^OT or to (?)OT are trivial,
an online reduction from iOT to (i)OT requires care, despite its simplicity.

105

Lemma4. *OT 2’ (i) OT, with completity 1. That is, there is an online nduc-
iion from)OT to (i) OT that invokes (i) OT precisely once.

Proof Sketch. First, Alice simply switches bo and bl randomly (by transferring
(b d , b) for d + 8) , before allowing Bob to choose. Second, Bob makes a random
choice c t- $, thereby obtaining b d e c .

The subtle aspect is in requiring Bob to make a random choice. Clearly, there
is an unsubtle privacy issue: Alice must be prevented from learning which bit
Bob gets. More subtly, however, there is a correctness issue: Alice must not be
able to cause Bob to receive a deterministic selection of bits. The random coin
toss of the)OT primitive is effectively the exclusive-or of Alice’s reversal choice
with Bob’s choice, and if Bob’s choice is not random, the implementation will
not correspond to the specification. In order for honest Bob to get a random
selection - which could conceivably be crucial to some higher-level protocol’ -
he must randomize the choice himself, to protect against Alice’s failing to do so.

(As a side remark, we note that this aspect becomes obvious when one tries
to find an interface-based comparison between implementation and specification.
In particular, the distribution obtained by honest l!l in the specification always
contains the uniformly random c chosen by (?)OT. If Bob’s random choice in
the implementation is overlooked, then c is whatever Alice sent him, and the im-
plementation’s results are easily distinguished from the specification’s results.)
0

Online reductions facilitate the development of precomputed reductions:

Lemma5. Let P, Q and R be (not necessarily distinct) primitives from
{OT, 3 OT, (:) O q . Then:

(A) I f P z ’ Q a n d Q z R t h e n P z R .

(B) If P Q and Q 2’ R then P 2 R.
0.1

Proof. (A) follows from incorporating the reduction P 5 Q into the online
stage of the precomputed reduction demonstrating Q 2 R. (B) follows from

incorporating the reduction Q 5 R into the precomputation stage of the pre-
computed reduction demonstrating P 2 Q. 0

0.1

We can now start to fill in the columns of Fig. 1.

Lemma6. OT 2 *OT,) O T Z *OT, and (:) O T Z $OT, each with complex-
ity 1.

Imagine a protocol in which Bob makes use of the CIS he obtains from 30T to run
a primality test, for example. While this may be odd, stupid, and contrived, it is a
mathematically acceptable use of the results of the 30T primitive.

106

Proof. The first two cases follow from Theorems 2 and 3. Applying lemma5
to Theorem 2 and the trivial online reduction OT 2' 30T gives the third. E d
reduction (whether online or precomputed) requires only one invocation of its
respective primitive. 0

Lemma7. OT
compleziiy 1.

Proof. Using lemmas 6, 4, and 5,

G)OT, (:)OT 2 (:)OT, and #OT G)OT, each with

OT +OT 2' (:)OT =+ OT 7 (:)OT

#OT 2)OT 2' (:)OT + 30T 2 (:)OT

(:)OT (:)OT 2 bOT 2' (:)OT+ @)OT

4 Precomputed OT
We now turn to the precom uted reduction from OT to itself. The precomputed
reductions from 30T and [)OT to OT are similar in content and cost to this
preprocessed. self-reduction.

Figure4 shows a preprocessed reduction from the standard O T to itself,
using 15k = 8 (k) invocations of OT in the preprocessing stage. The protocol
is adapted from CrCpeau's online reduction [Crk87] from +OT to OT. (The
necessity of using a (k) OT's is argued below; see Theorem 9.) In these 15h
transfers, Bob will receive between 5E + 1 and 1Ok - 1 bits, with probability
exceeding 1 - 0 (2 - k) . He can thus find two disjoint 5k-sets UO and U1 containing
indices of received and unreceived bits, respectively. He can't find two disjoint
sets containing only received bits, however. Alice uses these sets of indices to
construct two masks, vo and v1, by taking the exclusiveor over all rj for a given
set. Having received everything indexed by U,-,, Bob can calculate either vo or
v l , but not both. In the online stage, Alice sends b, masked with either 00 or v l ,
randomly, giving Bob a 50-50 chance to calculate b. Since Alice does not know
which of the two sets UO and U1 is the set that Bob received, she does not know
whether Bob receives b.

Theorem8. OT 2 OT with complecify 8 (k) . That is, OT CUR be implemented
using 8(E) prior invocations of OT.

Proof Sketch. The proof is similar to that of Theorem 2, but complicated by
the (negligible) possibility of error. Conditioned on the event that the trusted
OT party transmits between 5k + 1 and 1Ok - 1 bits to Bob, the interface-
mapped attacks on the specification (52.1) achieve results identical to those
obtained by attacks on the implementation (Fig. 4). The chance that this event

107

Prewmputation:
A: ri c S (i = 1..15k)
A + OTi: ti (i = l..lSk)
OTi -+ B: (?+i,ri) (i = 1..15k)
B: R = (iI ?ri = 1)

Choose random Uo C R, lUol= 51
Choose random Ut C x, IUII = 51

f - s
U = $ieuori

B + A : (U,,U7)

A + B : (V0,Vi)
A. reject if 6 n # I

vo = @iev,ri
VI = $ieVIri

Online Stage:
A: input b

A 4 B:
d + S
(d , b $ v d)
receive (d,t)
if d = f then

else output (O,O)
output (1, u $ 2)

Fig. 4. Precomputed self-reduction for OT.

fails to occur is at most 10k[15k!/(10k!)(5k!)]2-16k. Using Stirling's formula,
15k!/(lOk!)(5k!) 5 e9*66k 5 213.". Thus the chance that the event fails is
bounded by 1 0 k . 213.skZ-16k = 0(2'k). &moving the condition that this event
occurs, we see that the results are 0(2-')-indistinguishable. 0

Theorem9. Any precomputed reduction from OT to OT that is (1 - 0(2-'))-
secure against static 1-adversaries (even honest-but-curious ones) must use R(k)
prior transfers.

Proof. Assume there exists a (1 - 2-')-secure implementation that does not
use n(k) transfers. Then for infinitely many b, at m a t k/10 transfers are used.
We create a static l-adversary adv that corrupts Bob at the outset, but adv
directs Bob to follow his program precisely. With probability at least 2-'/1°,
Bob receives all bits in the precomputation stage, in which case adv predicts
with virtually 100% accuracy that it will indeed discover the 6 sent later on. In
the specification protocol for OT, adv has no such ability to predict whether
Alice's actual bit will arrive, and the 2-k/10-correlation of adv's prediction with
the reception of Alice's bit is enough to show that the protocol is not 2-'-secure.

In slightly more detail, consider random variables describing Alice's inter-
nal random choices (a), Bob's (p) , the OT reception pattern (R € (0, l}'/lo,
with a "1" indicating reception), and the conversation (C) in the pre-
computation stage. Call C fair if Pr [Bob outputs (1,b) laterlq > .49 and
Pr [Bob outputs (0,O) laterlq > .49. Then Pr [C unfair] 5 2-', else the pro-
tocol is not (1 - 2'')-secure (since even an honest Alice would learn the fate of
her bit). Furthermore, Pr [C unfairlR = 111 . - '11 - < 2-'12, else Pr [C unfair] >

Now, adv's only unusual behavior is to make a prediction when it sees R =
111-..1 (ie. Bob received all OT's). Even if Bob outputs (0,O) (Bob is law-
abiding, after all), with high probability C is fair and adv can inspect Bob's

2-k/102-k/2 > 2-k.

108

records to determine a different p, consistent with C, that would have caused
Bob to output (1, b). (Naturally, the tiny error rate does admit the possibility of
p’s causing Bob to output (l,&). If C is fair, the probability of this is at most

Thus, not only does adv obtain Alice’s bit, but it is able to predict in advance
that it will obtain the bit. In particular, in the assumed implementation, adv’s
advantage is at least the following (fair and correct, minus fair and incorrect,
minus unfair):

.02.)

This exceeds the best-possible 0 advantage in the specification protocol by far
more than 2-&, thus the implementation is not (1 - 2-i)-secure. It is a simple
matter to extend 1 - 2-& to 1 - 0 (2 - ‘) . D
The proof generalizes to show that w(1ogE) transfers are necessary to achieve
(l-Ebw(’)) security (i .e. “statistical” security), and in particular, that using 0(1)
transfers admits a constant probability of error. It also implies lower bounds for
online reductions from $OT or (:)OT to OT, showing that Cr4peau’s methods
are asymptotically optimal [Cr487].

5 Conclusions

Putting together Lemmas 6 and 7 and Theorems 8 and 9, we conclude:

Theorem 10. All variants of oblivious transfer can be reduced to precomputed
invocation(s) of any variant, with iighf compleziiy bounds as given in the ta&
in Figure 1.

In particular, one-out-of-two oblivious transfer can be performed in advance and
used to implement any variant of O T later on, at a cost of one prior transfer per
future transfer. Chosen one-out-of-two OT also suffices. Unfortunately, Rabin’s
original OT cannot be used in this manner, as it requires O(k) prior tranfers per
future transfer.

These reductions are information-theoretically secure and permit prior exe-
cution of oblivious transfers, whether the execution involves quantum channels,
Blum integers, or any other construct.

It is not hard to see that the reductions described in $3 and $4 apply to string
transfers, letting variables b, b~ and b1 represent strings and interpreting the @
symbol as bitwise exclusive-or, as appropriate.

Moreover, the discretelog based %on-interactive“ oblivious transfer channels
of [BM89, HL90, Har911 can now be used correctly to implement any variant of
OT, at a cost of 1 bit per transfer. The proof of this claim requires significantly
greater formalism to address computational security and is beyond the scope of
this work.

109

References

[Bea92] D. Beaver. “How to Break a ‘Secure’ Oblivious Transfer Protocol.” Advances
in Cryptology - Eurocrypt ’92 Proceedings, Springer-Verlag LNCS 658,1993,

M. Bellare, S. Micali. “Non-Interactive Oblivious Transfer and Applica-
tions.” Advances in Cryptology - Crypto ’89 Proceedings, Springer-Verlag

[BBCSSl] C. Bennett, G. Brassard, C. CrCpeau, M. Skubiszewska. “Practical Quan-
tum Oblivious Transfer.” Advances i n Cryptology - Crypto ’91 Proceedings,
Springer-Verlag LNCS 576, 1992, 351-366.
B. den Boer. “Oblivious Transfer Protecting Secrecy.” Aduonces in Cryptol-
ogy - Eurocrypt ’91 Proceedings, Springer-Verlag LNCS 547, 1991, 31-45.
G. Brassard, C. Cripeau. “Quantum Bit Commitment and Coin Tossing
Protocols.” Advances i n Cryptology - Crypto ,990 Proceedings, Springer-
Verlag LNCS 537, 1991, 49-61.

[BCRSSa] G. Brassard, C. Cripeau, J. Robert. “All or Nothing Disclosure of Secrets.”
Aduances in Cryptology - Crypt0 ’86 Proceedings, Springer-Verlag LNCS
263, 1987.

[BCRSGb] G. Brassard, C. Crhpeau, J. Robert. “Information Theoretic Reductions
among Disclosure Problems.” Proceedings of the 27th FOCS, IEEE, 1986,

Y-H. Chen, T. Hwang, C-M. Li. “On the Zero Knowledge Proof Systems
Based on One-out-of-two Non-Interactive Oblivious Transfers.“ Manuscript,
1994.
C. Cripeau. “Equivalence Between Two Flavours of Oblivious Transfers.”
Aduances i n Cryptology - Crypto ‘87 Proceedings, Springer-Verlag LNCS

C. CrCpeau, J. Kilian. “Achieving Oblivious Transfer Using Weakened Se-
curity Assumptions.” Proceedings of the 2gth FOCS, IEEE, 1988, 42-52.
S. Even, 0. Goldreich, A. Lempel. “A Randomized Protocol for Signing
Contracts.” Proceedings of Crypto 1982, Springer-Verlag, 1983, 205-210.
L. Harn, H. Lin. “Noninteractive Oblivious Transfer.” Electronics Letters
26:lO (May 1990), 635-636.
L. Harn. ”An Oblivious Transfer Protocol and Its Application for the Ex-
change of Secrets.” Advances in Cryptology - Asiocrypt ’91 Proceedings,
Springer-Verlag LNCS 739, 1993, 312-320.
J. Kilian. “Founding Cryptography on Oblivious Transfer.” Proceedings of
the 20th STOC, ACM, 1988, 20-29.
M. Rabin. “How to Exchange Secrets by Oblivious Transfer.” TR-81, Har-
vard, 1981.

285-296.
[BM89]

LNCS 435, 1990, 547-557.

[Boegl]

[BC90]

168-173.
[CHL94]

[CrC87]

293, 1988, 350-354.
[CK88]

[EGL82]

[HL90]

[Hargl]

[Kil88]

[Rab81]

	Precomputing Oblivious Transfer
	Introduction
	Preliminaries and Definitions
	The Variants of Oblivious Transfer
	Secure Implementations
	Precomputed Reductions

	Precomputed iOT or (:)OT
	Precomputed Reduction: iOT to iOT
	Precomputed Reduction: (:)OT to kOT
	Other Precomputed Reductions

	Precomputed OT
	Conclusions
	References

