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Abstract. Secret sharing schemes protect secrets by distributing them over 
different locations (share holders). In particular, in k out of R threshold 
schemes, security is assured if throughout the entire life-time of the secret 
the adversary is restricted to compromise less than k of the n locations. For 
long-lived and sensitive secrets this protection may be insufficient. 
We propose an efficient proactive secret sharing scheme, where shares are 
periodically renewed (without changing the secret) in such a way that infor- 
mation gained by the adversary in one time period is useless for attacking 
the secret after the shares are renewed. Hence, the adversary willing to learn 
the secret needs to break to all k locations during the same time period (e.g., 
one day, a week, etc.). Furthermore, in order to guarantee the availability 
and integrity of the secret, we provide mechanisms to detect maliciously (or 
accidentally) corrupted shares, aa well a8 mechanisms to secretly recover the 
correct shares when modification is detected. 

1 Introduction 

Secret sharing schemes protect the secrecy and integrity of information by dis- 
tributing the information over different locations. For sensitive data these schemes 
constitute a fundamental protection tool, forcing the adversary to  attack multiple 
locations in order to learn or destroy the information. In particular, in a (k + 1, n)- 
threshold scheme, an adversary needs to compromise more than k locations in order 
to  lesrn the secret, and corrupt at least n - k shares in order to  destroy the infor- 
mation. However, the adversary has the entire lifc-time of the secret to mount these 
attacks. Gradual and instantaneous break-ins into a subset of locations over a long 
period of time may be feasible for the adversary. Therefore for long-lived and sensi- 
tive secrets the protection provided by traditional secret sharing may be insufficient. 

A natural defense is to periodically refresh the secrets; however, this is not always 
possible. That is the case of inherently long-lived information, such as cryptographic 
master keys (e.g., signature/certification keys), data files (e.g., medical records), 
legal documents (e.g., a will or a contract), proprietary trade-secret information 
(e.g., Coca-Cola's formula), and more. 
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Thus, what is actually required to protect the secrecy of the information is to be 
able to periodically renew the shares wrthout changing the secret, in such a way that 
any information learned by the adversary about individual shares becomes obsolete 
after the the shares are renewed. Similarly, to avoid the gradual destruction of the 
information by corruption of shares it is necessary to periodically recover lost o r  
corrupted shares without compromising the secrecy of the recovered shares. 

These are the core properties of proactive secret sharing as presented here. In the 
proactive approach, the lifetime of the secret is divided into periods of i ime (e.g., a 
day, one week, etc.). At the beginning of each time period the share holders engage 
in an interactive update protocol, after which they hold completely new shares of 
the same secret. Previous shares become obsolete and should be safely erased. As 
a consequence, in the caae of a (k + 1, TI) proactive threshold scheme, the adversary 
trying to learn the aecret is required to compromise k + 1 locations during a single 
time period, as opposed to incrementally compromising k + 1 locations over the , 

entire secret life-time. (As an example consider a secret that lives for five years; 
a weekly refreshment of shares will reduce the time available for the adversary to 
break the k + 1 necessary locations from five years to one week.) Similarly, the 
destruction of the secret requires the adversary to corrupt n - k shares in a single 
time period. 

Note that in this setting the adversary is mobile and may break into each server 
multiple times. It nevertheless cannot compromise the secret if at  any time period 
it does not break into more than k locations. 

Our solution to the proactive secret sharing problem can support up to k = 
n / 2  - 1 corrupted parties at  any time period. It assumes the existence of secure 
encryption and signature functions, as well as the security of the verifiable secret 
sharing scheme (VSS) based on homomorphic functions [11,17]. At the system level, 
we assume a broadcast channel and synchrony (as in VSS). The exact model and 
assumptions are described in section 2.1. 

The mobile adversary setting was originally presented in the context of secure 
systems by Ostrovsky and Yung [18] with the focus on a theoretical setting of 
“general distributed function evaluation”. That solution allowed large (polynomial) 
redundancy in the system (redundancy is the ratio of total servers n to the thresh- 
old k of simultaneously faulty servers), and used the availability of huge majority 
of honest servers to achieve the very general task of secure computation in the in- 
formation theoretic sense. That model was then used in a more practical setting by 
Canetti and Herzberg [3] who proactively maintained a distributed pseudorandom 
generator. 

Applications: Proactive secret sharing has numerous applications, primarily 
maintaining data which is long-lived in scenarios where availability and secrecy 
are crucial. Recently, we employed it to implement “proactive function sharing” 
where the shares are never combined to reconstruct a single secret, but rather 
used to collectively compute a function many times and in different inputs. (This 
follows the function sharing model of [I based on threshold encryption [S].) A 
particularly attractive application (presented in a forthcoming paper [14]) provides 
proaciive digital signatures which achieve the benefits of threshold signatures, with 
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the additional property that the scheme is broken only if the adversary corrupts 
more than a threshold of the servers in a single time-period. For signature keys (e.g., 
a certification authority) that live for long time and require very strong security, 
this solution is of particular importance. 

Organization: Section 2 presents in some detail the proactive secret sharing 
model, including the adversary model and the basic definitions of security. It also 
describes the basic cryptographic tools used in our solution. Section 3 describes the 
share renewal protocol, and Section 4 describes the share recovery protocol (proofs 
are omitted from this extended abstract). Section 5 deals with secret reconstruction, 
and Section 6 shows how to maintain inter-server authentication/decryption keys 
securely in the proactive setting. Section 7 summarizes the result. 

2 Preliminaries 

2.1 Model and Assumptions 

We assume a system of n servers A = {PI, Pz, . . . , Pn} that will (proactively) share 
a secret value I through a ( k  + 1,n)-threshold scheme (i.e., k shares provide no 
information on the secret, while k + 1 suffice for the reconstruction of the secret). 
We assume that the system is securely and properly initialized. The goal of the 
scheme is to prevent the adversary from learning the secret z, or from destroying it 
(In particular, any group of k + 1 non-faulty servers should be able to reconstruct 
the secret whenever it is necessary). 
SERVERS AND COMMUNICATION MODEL. Each server in A is connected to  a com- 
mon broadcast medium C, called communication channel, with the property that 
messages sent on C instantly reach every party connected to it. We assume that 
the system is synchronized, i.e., the servers can access a common global clock, and 
that each server in A haa a local source of randomness. 
TIME PERIODS AND UPDATE PHASES. Time is divided into time periods which are 
determined by the common global clock (e.g., a day, a week, etc.). At the beginning 
of each time period the servers engage in an interactive update protocol (also called 
update phase). At the end of an update phase the servers hold new shares of the 
secret t .  
THE MOBILE ADVERSARY MODEL. The adversary can corrupt servers at any mo- 
ment during a time period. If a server is corrupted during an update phase, we 
consider the server as corrupted during both periods adjacent to that update phase. 
We assume that the adversary corrupts no more than k out of n servers in each 
time period, where k must be smaller than n/2 (this guarantees the existence of 
k + 1 honest servers at each time). 

Corrupting a server means any combination of learning the secret information 
in the server, modifying its data, changing the intended behavior of the server, 
disconnecting it, and so on. For the sake of simplicity, we do not differentiate between 
malicious faults and “normal” server failures (e.g., crashes, power failures etc.). We 
m u m e  also that the adversary is connected to the broadcast channel C, which 
means she can hear all the messages and inject her own. She cannot, however, 
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modify messages sent to C by a server that she does not control, nor prevent a non- 
corrupted server from receiving a message sent on C. Additionally, the adversary 
always knows the non-secret data and the algorithm that each machine performs. 

We assume the adversary to be computationally bounded, such that it cannot 
break the underlying cryptographic primitives on which we bsse our design (this 
includes public-key encryption and signatures, and verifiable secret sharing - see 
Section 2.2). 
SECURITY OF A PROACTIVE SECRET SHARING SCHEME. We state the security 
properties of our proactive secret sharing algorithm, relative to the adversary de- 
fined above . We only sketch the definition of security, following the notion of 
semantic sccuritj( introduced in [12]. In the formal definition, to be presented in 
the complete version of this paper, the adversary is modeled as a computationally 
bounded interactive probabilistic Turing machine which is fed with all the publicly 
available information on the secret (e.g., its length, a particular subspace from which 
the secret is chosen, the value of the secret under a one-way function, and so on), 
and with the information learned by the adversary during (one or more) runs of the 
update protocol (this includes all the public communication between servers, secret 
information of the servers that were corrupted in each of these periods, etc.). 

Let n be a function applicable to the space of secrets t. Let p t )  be the probability 
that the adversary correctly computes the value ~ ( z )  when fed with the a-priori 
(public) information on the secret, and let pl‘() be the analogous probability but 
after the adversary is fed with the additional information gathered during the run 
of the protocol. (The above probabilities depend on the random coins used by the 
adversary and the servers.) Intuitively, the function ~ ( x )  models some knowledge 
about 2, while the difference pi“’ - p(bc) quantifies the amount of that knowledge 
“learned” by the adversary by watching the execution of the protocol and actively 
intruding the servers. 

Definitionl. (sketch) We say that a proactive secret sharing scheme is semantically 
secure if for any function K computable on the secret, the difference between the 
probabilities p(dr) and pi“) is negligible. 

The exact notion of “negligible” in the above definition depends on the exact 
model of the adversary. In the traditional complexity-theoretic setting of a poly- 
nomial time adversary, one considers these probabilities as functions of the secret 
length, and ”negligible” stands for any function that decreases faster than any in- 
verse polynomial. A more careful model would bound the difference between p0)C) 
and pi“’ as an explicit function of the (small) probabilities with which the adversary 
can break the underlying cryptographic primitives. 

In some cases, in order to stress the existence of an a-priori public informa- 
tion ~(z) on the secret t, we will say that the proactive secret sharing scheme is 
semantically secure relative to ~ ( t ) .  

Not only we are interested to preserve the secrecy of x ,  but also to guarantee its 
availability and recoverability. This means that we need to prevent the adversary 
from destroying the secret or impeding its reconstruction by, for example, destroying 
or modifying shares. 

( 



343 

Definition2. (sketch) A proactive secret sharing scheme that guarantees the cor- 
rect reconstructibility of the secret at  any time is called robust. 

Notice that for a proactive secret sharing scheme to be robust, one needs to 
ensure that in any time period the honest servers (which could have been corrupted 
during previous time periods) have correct shares (Lee, ones that combine to the 
correct secret z) ,  and that this correctness can be verified by the other servers. This 
requires that honest servers be able to verify whether each of them stores a correct 
share. Also, those who do hold correct shares must be able to cooperate in order to 
recover the shares of the ones that lost them (without exposing the recovered share 
to anybody except its intended holder). 

The focus of this paper is to construct semantically secure and robust proactive 
secret sharing scheme based on the existence of secure public-key encryption [12] 
and signatures [13], aa well aa on the existence of verifiable secret schemes [ll, 161. 
The theorems in this paper are stated relative to these security notions and the 
above adversary model. 
A NOTE ABOUT THE REMOVAL OF AN ADVERSARY FROM A SERVER. We assume 
that the adversary intruding the servers A is “removable” (e.g., through a reboot 
procedure) when it is detected. The responsibility for triggering the reboot oper- 
ation (or other measures to guarantee the normal operation of a server) relies on 
the system management which gets input from the servers in the network. In ad- 
dition to regular detection mechanisms (e.g., anti-virus scanners) available to the 
system management, our protocols provide explicit mechanism by which a major- 
ity of (honest) servers can detect and alert about a misbehaving server. We assume 
for simplicity that the reboot operation is performed immediately when attacks 
or deviations from the protocol are detected. We remark that the initialization of 
servers and reboot operations require a minimal level of trust in the system man- 
agement, restricted to installation of correct programs and of public keys used for 
server-to-server communication. Specifically, no secret information is exposed. 

2.2 Cryptographic Tools 

SHAMIR’S SECRET SHARINQ. Our secret sharing scheme is based on Shamir’s scheme 
[19]. Let q be a prime number, t E 2, be the secret to be shared, n the number of 
participants (or share holding ervers), and k + 1 the reconstructibility threshold. 
The dealer D of the secret chooses a random polynomial f of degree k over 2, 
subject to the condition f ( 0 )  = 2. Each share ti is then computed by 0 as f(i) and 
then transmitted secretly to participant Pi. The reconstruction of the secret can 
be done by having & + 1 participants providing their shares and using polynomial 
interpolation to compute z .  

VERIFIABLE SECRET SHARING - VSS. In Shamir’s scheme a misbehaving dealer 
can deal inconsistent shares to the participants, from which they will not be able 
to reconstruct a secret. To prevent such malicious behavior of the dealer one needs 
to implement a procedure or protocol through which a consistent dealing can be 
verified by the recipients of shares. Such a scheme is called verifiable secret shar- 
ing (VSS) [5] . Our work usea these schemes in an wential way. We implement 
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our solution using specific schemes due to Feldman 1111 and Pedersen [17]. These 
schemes are based on hard to invert homomorphic functions and, in particular, on 
the hardness of computing discrete logarithms over Z,,, for prime p .  The first scheme 
protects the secrecy of the secret in a computational sense, while the second pro- 
vides information theoretic secrecy. Our solution works with either of these schemes. 
We choose to  present here the solution using Feldman's scheme since it is somewhat 
simpler. However, the use of Pedersen's scheme strengthens and simplifies the proofs 
of security. 

FELDMAN'S VSS. For completeness we briefly describe Feldman's scheme. Let p 
be a prime number with p = mq + 1, where q is also prime, and m an integer 
(possibly, a small one like 2,3,4). Let g be an element of 2, of order q. The dealer 
chooses the polynomial f over 2, with coefficients f o ,  fi , .  . ., fk  and broadcasts the 
corresponding values gfo, gfl , . . . , g f k  . Then it secretly transmits the value Ei = 
f ( i )  (mod q )  to Pi. Each server Pi verifies its own share by checking the following 
equation: 

g"' 2 (gf"(g")'(gf')" . . . (gf* y k  (mod p )  

If the equation holds, Pi broadcasts a message accepting its share as proper. If all 
servers find their shares correct then the dealing phase is completed successfully. 
Indeed, by the homomorphic properties of the exponentiation function (i.e., go+' = 
gagb)  the above equation holds for all i E (1.. .n)  if and only if the shares were 
dealt correctly. It is worth noticing that besides allowing the verification of correct 
dealing of shares, the public values gz* can be used at  time of secret reconstruction 
to verify that the participating shares are correct (see Section 5). 

Notice that Feldman's scheme reveals the value y = gz (mod p ) ,  where I = fo 
is the secret being shared. Although the entire value of I cannot be derived from 1 
(assuming the hardness of discrete logarithm), still there is partial information on t 
(e.g., its least significant bit) which is exposed by y. Therefore the semantic security 
of our solution (when based on Feldman's scheme) can be only stated relative lo  
the knowledge ofg" (mod p ) .  This is acceptable in cases where g" is known anyway 
(see [14]); however, in general, one would like to prevent the leakage of partial 
information. In this case, one encodes the actual secret, say s, into a longer string 
I and performs the proactive secret sharing using I. The encoding should have the 
property that given c,  the value of s is easy to recover, but given gz (mod p) then 
no information on s can be efficiently computed. Such schemes exist based on hard 
core bits of the exponentiation function (e.g., if s is represented by the O(log(Ipl)) 
most significant bits of I [15]; a more efficient construction can be based on [l]). For 
more information see [ll, 161. This  issue can be completely avoided in our solution 
by replacing Feldman's VSS with the information theoretic scheme of [ l7] .  
PUBLIC-KEY ENCRYPTION AND SIGNATURES. Our solution requires semantically se- 
cure encryption [12] and existentially unforgeable signatures [13]. We do not specify 
or assume any particular implementation of these functions. For a pair of sender 
S and receiver R, we denote by E N C R ( d a t a )  the probabilistic encryption of da ta  
under R's public key; and by S I G s ( d a t a )  the signature of data under S's private 
key. 
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3 Periodic Share Renewal Scheme 

Here we present a basic component of our solution, namely, the protocols for peri- 
odic renewal of shares which preserve the secret, and at the same time make past 
knowledge obsolete for the adversary. Beyond guaranteeing the secrecy of the shared 
secret, our scheme is robust in the sense of guaranteeing integrity and availability 
of the secret in the presence of up to k misbehaving servers. 

3.1 

Cryptographic solutions in a distributed environment typically require the ability 
to maintain private and authenticated communication between the servers. This 
is achieved by the servers having pairs of private and public keys corresponding 
to public-key cryptosystems with encryption and signature capabilities (e.g., RSA, 
ElGamal, etc.). However, an adversary that breaks into a server and learns its 
private key can then impersonate that server for the whole life of that private key. 
Therefore, to ensure proactive security, it is necessary to maintain these private keys 
proactively, namely, to renew them periodically. 

We will show in section 6 how this can be done in our context (a more general 
treatment of proactive authentication can be found in [4]). However, for clarity of 
presentation, we start by making the strong assumption that servers are equipped 
with a pair of private and public keys in a way that the private key cannot be 
learned or modified by the adversary, even if this adversary manages to  break into 
the server. While such an intruder will be able to generate legal signatures and 
decrypt messages using the private key (as a “black-box”), it will not be able to  
learn or modify the key itself. We will remove this assumption and deal with the 
proactive maintenance of the private keys in section 6. 

Initial Setting: Black-box Public Key Assumptions 

3.2 Initialization of Secret Sharing 

We assume an initial stage where a secret t E 2, (for prime q )  is encoded into 
n pieces 21,. . . , t, E 2, using a k-threshold Shamir’s secret sharing: Each Pi, i E 
(1.. .n} holds its share ti, where ti = f ( i )  for some k-degree polynomial f(.) over 

After the initialization, at the beginning of every time period, all honest servers 
trigger an update phase in which the servers perform a share renewal protocol. The 
shares computed in period t are denoted by using the superscript ( t ) ,  i.e., zi(l),t = 
0,1,. . .. The polynomial corresponding to these shares is denoted f(‘)(-). 

2, s.t. 2 = f(0). 

3.3 Share renewal 

To renew the shares at period t , t  = 1,2,. . ., we adapt a simplified version of the 
update protocol presented by Ostrovsky and Yung in [18]. When the secret t is 
(distributively) stored as a value j ( * - l ) ( O )  = t of a k degree polynomial f(”’)(.) in 
Z,, we can update this polynomial by adding it to a k degree random polynomial 
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a(.), where 6(0) = 0,so that f(*)(O) = fct - ' ) (0)+6(O) = z+O = 2. By the linearity 
of the polynomial evaluation operation we get the renewal of the shares a$) = f l ' ) ( i )  
according to: 

In our system we will have a(.) = (61(.) + 64 . )  + . . . + an(.)) (mod q), where each 
polynomial St(.), i E (1.. .n} is of degree k and is picked independently and at 
random by the ith server subject to the condition bi(0) = 0. The share renewal 
protocol for each server Pi I i E ( 1 . . . n}, at time period t is as follows: 

1. Pi picks k random numbers (6im}meC1...k) from 2,. These numbers define a 
polynomial6i(z) = 6ilz1 +6i2z2+. . .+&zk in Z,, whose free coefficient is zero 
and hence, Ji(0) = 0. 

2. For all other servers Pj , pi secretly sends ui, = & ( j )  (mod Q) to  Pj. 
3. After decrypting ujj, V j  E (1.. .n}, pi computes its new share zit) + zjt") + 

( ~ 1 i  + ~ 2 i  4- . . . + Uni ) (mod q )  and erases all the variables i t  used except of its 
current secret key zP). 
This protocol solves the share renewal problem against a ("passive") adversary 

that may learn the secret information available to  corrupted servers but where all 
servers follow the predetermined protocol. This is proven in the next theorem. Notice 
that we assume here that the shares are transmitted to  the corresponding holders 
with perfect secrecy. This allows us to prove the information-theoretic secrecy of 
this scheme. In the next sections we use explicit encryption for the transmission of 
these shares and then the secrecy of the scheme is reduced to  the strength of the 
encryption. 

Theorem 3. If all servers follow the above share renewal protocol then: 

Robustness: The new shares computed at the end of the update phase correspond to 
the secret x (Lee, any subset o f k +  1 of the  new shares can reconstruct the secret 

Secrecy: An  adversary that at any Lime period knows no more than k shares (possibly 
8). 

a different set of shares in each period) learns nothing about the secret. 

3.4 Share Renewal Protocol in the Presence of Active Attackers 

In the above basic share renewal protocol an active adversary controlling a server 
can cause the destruction of the secret by dealing inconsistent share updates or 
just by choosing a polynomial bi with 6i(O) # 0. In order to w u r e  the detection 
of wrongly dealt shares we add to  the above basic protocol a verifiability feature. 
Namely, we adapt to our scenario Feldman's verifiable secret sharing scheme a9 
described in section 2.2. In traditional applications of verifiable secret sharing, the 
fact that all the shareholders find their shares to be consistent is used as a proof 
for a correct dealing of the secret. In our case, this is used as a proof for correct 
dealing of update shares by the servers. 

The verifiable share renewal protocol for each server pi at period t is as follows: 
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1. 4 picks t random numbers {6im}mr{l...r) from 2, to define the polynomial 
6i(z) = 6ilz’ + diIr2 + . . . + 6 i r Z ’ .  It  SO computes V ~ U W  Cjm = g6*m (mod p ) ,  
m E { l  ... k}. 

2. Pi computes uij = bi(j) (mod q), j E (1.. .n), and computes eij = ENCj(uij), 
V j  # i. 

3. Pi broadcast the message VS$) = ( i , t l  { ~ i m } m ~ { ~ . . . ~ ~ ~  {ei j } jE{ l  ... r)\{i}), and 
the signature SXG~(VSS$‘)). 

4. For all message broadcasted in the previous step by other servers, Pi decrypts 
the shares intended for Pi (i-e., computes uji out of ej i ,  V j  # i), and verifies the 
correctneas of sharea using the equivalent of the verifiability equation 1 from 
section 2.2, namely, for all j # i it verifies: 

(Notice that this equation accounts for the condition 6j(O) = 0.) 
5. If Pi finds all the messages sent in the previous step by other servers to be 

correct (e.g., all have correct signatures, time period numbers, etc.), and all 
the above equations to hold, then it broadcasts a signed acceptance message 
announcing that all checks were succeasful. 

6. If all servers sent acceptance messages then pi proceeds to update its own share 
by performing: a$) c xi’-’) + ( uli + u2i + . . . + uni ) (mod q )  and erases all 
the variables it used except for its current share ZY).  

7. If in the above step 5, Pi finds any irregularities in the behavior of other servers 
during step 4 then it broadcasts a signed accusation against the misbehaving 
server(a). When to send accusations, and how to resolve them is discussed in 
the next subsection. 

Resolving accusations In step 5 of the above protocol, each server checks the 
correct behavior and dealing of other servers. If a misbehaving server is found then 
there are two kinds of actions to take. One is not to use the polynomial &(-) dealt 
by this server in the renewal of shares in step 6. The second is to alert the system 
management so that it could take measures to rectify the misbehaving server (e.g., 
it may be required to reboot the server in order to “expel” the adversary). How- 
ever, an accusation against a server by another server requires verification, since a 
misbehaving server could falsely accuse others. For a consistent update of shares, 
the honest servers need to agree on who the “bad” servers are. We explain below 
how each server Pi decides on its list Bi of bad processors. 

We say that a measage from server Pi at period t is c o m e t  if it complies with the 
specifications of the above protocol, including all the specified fields and information 
(e.g., the correct time period number) aa well as a correct signature. 

We distinguish between three classes of irregularities in the protocol: (a) For- 
mally incorrect messages: wrong time period numbers, numbers out of bounds etc.; 
(b) Two or more correct messages from the same server containing a valid signature, 
or no message at all from some server; and (c) a mismatch in equation 2. 



Notice that irregularities of the first two types are discovered using public in- 
formation only, and then are found by all (honest) servers. Any such misbehaving 
processor is marked as “bad” by each of the other processors. The faults of the third 
kind are more problematic since they are discovered only locally by a Berver that 
receives a share causing a mismatch in equation 2. 

When a server pi finds that equation 2 corresponding to  the information sent by 
Pj does not hold, it needs to broadcast an accusation against Pi. Then the servers 
decide whether it is Pi or Pj who is cheating. A way to  do this is by having Pj “de- 
fend” itself. If Pj sent a correct u j i ,  namely, one that passes equation 2, then i t  can 
expose this value and prove that i t  corresponds to  the publicly available encryption 
value eji  sent by Pj to Pi. To prove this Pj may need to reveal additional informa- 
tion used to compute the encryption (like the random vector used in probabilistic 
encryption). However, Pj does not need to reveal any private information of itself. 
Then everybody can check whether uji  and the additional information published , 

by Pj encrypts under Pi’s public key to eji  as broadcasted by Pj in step 2 .  Second, 
everybody can check whether this u,j matches equation 2.  If Pj defends itself cor- 
rectly then all servers mark Pi aa bad, otherwise Pj is marked as bad. Notice that 
in some encryption schemes (like RSA), the information published by the accuser 
is sufficient for public verification, which simplifies the above general protocol. 

Once all accusations are resolved, every honest server Pi holds the same list of 
bad servers Bi (i.e., for each pair (Pi, P j )  of non-faulty servers, Bi = B j ) .  NOW the 
computation of the new shares is done by replacing step 6 of the share renewal 
protocol by: 

2, ( t ,  + xi(t--l) + C uji (mod n) 
i @ B l  

3.5 Security Properties 

In Theorem 3 we dealt with the share renewal assuming the servers are curious but 
honest. Here we claim the analogous result for the case that up to  k servers are 
arbitrarily misbehaving in the renewal protocol. 

Theorem4. If the adversary controls up to  k servers during the protocol, then: 

Robustness: The new shares computed at the end of the update phase by honest 
servers correspond to the secret z (i .e. ,  any subset of k + 1 of the new shares of 
honest servers interpolate to  the secret x). 

Secrecy: The above secret sharing scheme i s  semantically secure. 

4 Share Recovery Scheme 

A proactive secret sharing system must be able to check whether a share of each 
participating server has been corrupted (or lost), and restore the correct share if 

’ In the protocol above we achieve semantic security relative to the a priori knowledge 
of the exponent gf (mod p) of the secret z. This extra knowledge is avoided by using 
Pedersen’s VSS scheme [I71 (see discussion on Feldman’s V S S  in section 2.2). 



349 

necessary. Otherwise, an adversary could cause the loss of the secret by gradually 
destroying n - k shares. Below we present the necessary mechanisms for detection 
and recovery of corrupted shares. 

The share a$‘) held by processor Pi in period t is called correct if zit) = 
f ( * ) ( i )  (mod q),  where f(:) is the current secret sharing polynomial. Otherwise, we 
say that the share is-incorrect. A server can have an incorrect share because it 
was controlled by the adversary during the share renewal protocol (and hence i t  
was prevented to  update its share correctly), or because the adversary attacked the 
server after the update phase and modified the server’s secret share. A secret share 
can also be lost because a server was rebooted or replaced by a new server. 

4.1 Detection of Corrupted Shares 

How are corrupted shares detected? In some cases it is easy to  detect that a server 
requires to recover its correct share. This is the case of servers that do not participate 
of an update phase (e.g., due to a crash), or servers that misbehave during that 
phase. However, if the share of some server is (“silently”) modified by the adversary 
(e.g., after an update phase) then this modification may go undetected. Hence, in 
the spirit of proactiveness, the system must periodically test the correctness of the 
local states of the participating servers, detecting in this way lost or modified shares. 

To implement the distributed verifiability of shares, we add an invariant that 
in each time period t ,  each server Pi stores a set {$l]jE~l.,.n) of exponents yjt )  = 
go’ (mod p )  of current shares of all servers in A. This is achieved as follows. First, 

corresponding to the initial shares zjo), j E { 1 . . . n} (this can be achieved by per- 
forming Feldman’s VSS at initialization). Also, using the homomorphism of the 
exponentiation function, we supplement step 6 of the update protocol in section 3.4 
SO that each server Pi updates its set { ~ j } j ~ { l . . , ~ ~  by computing for every j :  

(0 

we augment section 3.2 with the requisite that each server stores the values gj ( 0 )  

(in the general case, the above product is computed using only update shares umj 
corresponding to  servers that did not misbehave in the update phase, i.e., m # Bi) .  

We extend the update phase between time periods to  include a share recovery 
protocol. Its first part is the lost share detection protocol which works as follows: 
Every server broadcasts the values {yj*)]jE{l,..flj stored in that server, together 
with a signature on these values. After collecting these messages from all servers 
and checking their signatures, each server decides by majority on the current proper 
set of share exponents. Now each server P, can decide on a set Bi of servers which 
presented an incorrect (i.e,, different from majority) exponent of their own share. 
These are the servers that Pi believes to need a share recovery. (In particular, it can 
be the case that for some i, Pi E Bi, which means that server Pi decided that its 
own share is not correct). It is clear that every pair of non-faulty servers (Pi, Pj) has 
the same view about who has an incorrect share, i.e., Bi = Bj = B, where IBl 5 k.  
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4.2 Basic Share Recovery Protocol 

A straightforward way to reconstruct the shares zr = f”)(r) for r E B, is to let each 
server in V = A\ B send its own share to Pr. However, this would expose the secret 
z to P,. Instead, for each r E S, the servers in the set V will collectively generate 
a random secret sharing of xr in a way analogous to that used to  re-randomire the 
secret sharing of the main secret x in the share renewal protocol: Every server Pi 
in ’D deals a random k-degree polynomial &(.) ,  such that &(r) = 0 (mod q). In this 
way, a new, random secret sharing {z:}iED of tr is obtained. The servers can now 
send these new shares to Pr, to allow it to compute zr without letting Pr learn 
anything about the original shares (zi)iap. Also, any coalition of h or less servers, 
not including Prl will learn nothing about the value of tr. 

We first present the share recovery protocol stripped of verifiability. It is secure 
only against an adversary that eavesdrops into k or less servers, but does not change 
the servem behavior. For each P p  that requires share recovery, the following protocol 
is performed: 

1. Each p i , i  E V ,  picks a random h-degree polynomial &(.) over Z, such that 
&(r) = 0, i.e. it picks random coefficients {&j}jE11.. .k1 C 2, and then computes 
6io = - Cjeti ... a) aijr’ (mod Q). 

2. Each Pi,i E D ,  broadcasts {ENCj(Gi(j))}jEa. 
3. Each Pi, i E V, creates its new share of zr ,  zi = 2 6  + CjclD6j(i) and sends it 

4. Pr decrypts these shares and interpolates them to recover xr. 
to Pr by broadcasting E N C r ( x i ) .  

4.3 Full Share Recovery Protocol 

In the general case, the adversary not only can eavesdrop into the servers but also 
cause the corrupted servers to deviate from their intended protocol. To cope with 
these cases, we add to the above protocol (section 4.2) the necessary “verifiability” 
properties for the dealing of polynomials & ( a )  in step 2 and for reconstruction of Zr 

from xi’s in step 3 and 4. Due to space constraints we omit the description of this 
protocol in these Proceedings, but we sketch the properties of thia protocol in the 
following theorem: 

Theorem5. If ihe adversary compromises no more than k servers in any tame 
period, then the full  sham recovery protocol has the following two properties: 

Robustness: Each recovering server that follows the protocol recovers its correct 

Secrecy: The semanfic securilgr of the secret x is  preserved. 
sham t r  = f(’)(r) (mod q). 

5 Secret Reconstruction 

In the above section we have shown how to renew shares consistent with the secret, 
and preeerve their integrity such that at  any time any k+l partiea could reconstruct 
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the secret if desired. However, when coming to actually reconstruct the secret, the 
participants in the reconstruction protocol (namely, polynomial interpolation as 
in Shamir's scheme) must be able to detect servers that provide corrupted shares 
to the reconstruction. This detection is easily accomplished by verification of the 
submitted shares against values gf) held by the majority of servers. 

6 Dynamically Secure Private Keys 

We now show how to remove the protected key assumption of section 3.1. We extend 
the update phase between time periods to include a third component, the private keg 
renewal protocol, which will be triggered before share recovery and share renewal. 
As a result of the private key renewal, an adversary that breaks into a server in 
period t ,  but which does not control the server at period t + 1, cannot learn this 
server's new key. 

The private key renewal protocol a t  the beginning of each update phase works as 
(:I (*I follows: Each server Pi choow a new pair of private and public keys ai , bi . The 

serva then broadcasts its new public key b y )  authenticated by its signature using 
its preuious private key a$*-'). The other servers, having bi*-') from the previous 
period, can verify this signature. Clearly, an adversary that controlled the server 
at time period t - 1, or before, but not during the update phase between periods 
t - 1 and t ,  cannot learn the new private key chosen by the server. However, if the 
adversary knows up-') then, even if she is not controlling Pi during the private 
key renewal protocol of period t ,  she can choose her own private key and inject its 
public counterpart into the broadcast channel, authenticated as if it originated from 
Pi. But since Pi is not actively controlled by the adversary anymore, it will send 
its own authenticated public key to the communication channel as well. This will 
result in two different messages legally authenticated as coming from Pi. This will 
constitute a public proof of Pi's compromise, after which a reboot procedure must 
be triggered. 

When a server is rebooted, it internally chooses its new private key, publishing 
only the corresponding public key, which must be then installed on all servers in A. 

7 Proactive Secret Sharing: the Combined Protocol 

Combining all the above pieces we get our full protocol for proactive secret sharing: 
At the beginning of every time period, the update phase is trigerred, which consist 
of three stages: the private key renewal protocol, the share recovery protocol (in- 
cluding lost share detection) and the share renewal protocol. The following theorem 
summarizes our main result: 

Theorem6. If there are no more ihan k corrupted servers in each period (where 
seruers compromised at a renewal phase are considered as compromised in both 
adjacent periods), then the aboue protocol constitutes a secure and robwi proactive 
secret sharing scheme. 
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