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Abstract. Events of a parallel program are no longer strictly ordered
as in sequential programs but are partially ordered. Vector clocks can be
used to model this partial order but have the major drawback that their
size is proportional to the total number of threads running in the pro-
gram. In this article, we present a new technique called ‘accordion clocks’
which replaces vector clocks for the specific application of data race de-
tection. Accordion clocks have the ability to reflect only the partial order
that is relevant to data race detection. We have implemented accordion
clocks in a Java virtual machine and show through a set of benchmarks
that their memory requirements are substantially lower than for vector
clocks.

1 Introduction

Parallel systems have a notion of time which differs considerably from that of
sequential programs. In sequential programs, all operations are ordered one after
the other as they are executed. In parallel programs on the other hand, operations
can be performed simultaneously. The total order of sequential programs is lost
and replaced by a partial order.

To model this new notion of time, Lamport introduced the ‘happened before’
relation in [6]. Further investigations into this notion resulted in the definition
of a data structure called ‘vector clocks’ [7,4,5]. Vector clocks exactly model the
partial order of the events in a parallel system but have the major disadvantage
that a vector timestamp (a ‘moment’ in vector time) consumes memory pro-
portional to the number of concurrent threads in the system [1]. When dealing
with systems with unbounded parallelism the modeling of the happened before
relation can be a major problem since the vector clocks grow without limits.

Vector clocks are used in a large number of applications: distributed break-
points, detection of global predicates, distributed shared memory, etc. In this
article we will focus on another application: the detection of data races. A data
race occurs when two threads modify a common variable without proper syn-
chronisation. This results in non-deterministic behaviour and can be very hard
to spot.

One method to detect data races maintains a set of vector clocks for every
shared variable. Using these vector clocks, every access to the shared variables
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is checked. If the vector clocks show that a modification to a shared variable is
not properly synchronized with previous or following accesses then a data race
is detected. Since vector clocks are maintained for every shared variable, the
problem of the size of the vector clocks cannot be ignored.

In this article we propose a refinement of vector clocks called ‘accordion
clocks’. An accordion clock can be used as a drop-in replacement for vector
clocks. They have the additional property that when a new thread is created,
they dynamically grow and when a thread ‘dies’, their size can sometimes be
reduced. By taking into account that for data race detection, the full capability
of a vector clock is not needed, an accordion clock has less strict requirements to
reduce its size than traditional logical clocks. Accordion timestamps have a mem-
ory consumption proportional to the number of ‘living’ threads. Furthermore,
accordion clocks have approximately constant execution time overhead.

We will give a short overview of the concept of vector clocks and more gen-
erally logical time and establish a formal framework in Section 2. In Section 3
we show how vector clocks are applied to detect data races and illustrate their
inherent limitations. In Section 4 we will define accordion clocks. Finally, in Sec-
tion 5 we present a number of measurements of a modified Java Virtual Machine
which illustrate the performance of accordion clocks. In Section 6 we draw some
conclusions.

2 Logical Time

Parallel systems consist of a set of threads, T , executing events from the event
set, E. Events can be thought of as being processor instructions or could be
a coarser type of operation. The subset of all events executed by thread, Ti :
T , is Ei ⊂ E. Every event is executed on one thread so we can define ∀e :
Ei.Tid(e) = i. It is clear that all events in Ei are sequentially ordered by the
fact that operations are executed sequentially on a processor. We can therefore
define a relation on the set Ei,

seq→ :

∀(a, b) : Ei
2.(a

seq→ b ≡ a is executed before b) (1)

Things are not so clear when dealing with events executed by different
threads. Since there is usually no common clock to keep the two threads exactly
synchronized, we cannot use ‘real time’ to order these events. Among different
threads, the only order between events we can be sure of is between events that
perform some sort of message exchange. Therefore we define a second relation
on E:

∀(a, b) : E2.(a
msg→ b ≡ a sends message to b) (2)

Using
seq→ and

msg→ , we can build the ‘happened before’ relation (also called
the ‘causal relation’), cau→ , as defined by Lamport in [6]:

∀(a, b) : E2.(a cau→ b ≡ (a
seq→ b) ∨ (a

msg→ b) ∨ (∃c : E.a
cau→ c ∧ c

cau→ b)) (3)
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Intuitively, it orders all events that could have influenced each other dur-
ing the execution of the parallel system. It is also called the ‘causal relation’.
Two events are said to be parallel when they are not ordered by the causal
relationship:

∀(a, b) : E2.(a ‖ b ≡ ¬(a cau→ b ∨ b
cau→ a)) (4)

Many data structures have been constructed to detect part or whole of the
causal relationship and are called ‘logical clocks’. Logical clocks provide a map-
ping, L : E → D, from events to ‘timestamps’, from set D, such that some or
all properties of the causal relationship are carried over onto a relation of the
timestamps, <.

One such mapping, Vc, is a vector clock [7,4]. A vector clock timestamp is an
n-tuple of dimension equal to the number of threads in the parallel system, #T.
With ✷n ≡ {i : N | i < n} a subrange of the natural numbers, I ≡ ✷(#T ) the
set of all thread identifiers, V ≡ I → N the set of all vector clock timestamps and
δi,j the Kronecker symbol, the mapping, Vc, of events to vector clock timestamps
becomes:

Vc : E → V

∀i, j : I2.∀a : Ei.Vc(a)[j] = max({Vc(b)[j] | b : E.b
cau→ a} ∪ {0}) + δi,j

(5)

A property of this mapping is that we can define a relation, <, on the resulting
timestamps that reflects exactly the causal relation:

<≡ (v1, v2) : V 2.(∀i : I.v1[i] ≤ v2[i]) ∧ v1 �= v2 (6)

i.e. one timestamp is ‘smaller’ than the other if all components are smaller or
equal and the two timestamps are not identical.

The causal relationship is carried over exactly to the vector clock timestamps.

a
cau→ b ≡ Vc(a) < Vc(b) (7)

If we know the threads, Ti and Tj , which executed the events, a and b, then
this comparison can be optimized as follows.

∀(a, b) : (Ei × Ej).((i �= j) ⇒ (a cau→ b ≡ Vc(a)[i] ≤ Vc(b)[i])) (8)

It has been proven in [1] that the size of a vector clock timestamp for general
programs must at least be equal to the number of parallel threads in the system.
This poses some serious scalability issues in highly multi-threaded applications.

In what follows, we will describe a new technique, called ‘accordion clocks’,
which alleviates the problem of the growing size of timestamps for the specific
application of data race detection.

3 Data Race Detection

Using the happened before relation, we can define a datarace more formally. If
we define R(e) as the set all locations read during event e and similarly W (e) as
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the set of all locations written to during event e then a data race between two
events, e1 and e2, can be defined more formally as:

Race(e1, e2) ≡
{

e1 ‖ e2

(R(e1) ∩ W (e2)) ∪ (W (e1) ∩ R(e2)) ∪ (W (e1) ∩ W (e2)) �= ∅
(9)

Several approaches to detecting data races were described in [9,3,8,10]. The
approach we will focus on consists of maintaining ‘access histories’ as described
in [3]. An access history of a memory location consists of a list of previous
read and write operations to this location. It contains all the most recent read
operations that are not causally ordered with one another and the last write
operation that occurred to this location.

Each time a new read or write operation is performed, this new operation is
checked with the access history. If Condition 9 holds between the new read/write
event and an event in the access history, a data race is reported. Afterwards,
the read or write operation is recorded in the access history, possibly removing
other events already present.

Since every access history can contain as many as #T +1 vector clock times-
tamps, there can be a very large number of vector timestamps present in the
system. Each of these grows proportional to the number of threads. We can
clearly conclude that this approach to data race detection does not scale well
with an increasing number of threads.

4 Accordion Clocks

The basic idea for accordion clocks comes from the observation that usually not
all threads are active at the same time. Consider the behaviour of a simple FTP-
server as seen in Figure 1. We see that for each file request made to the server,
a new slave thread is created. Depending on the size of the file to transfer, the
bandwidth of the network connection to the client and many other factors, this
slave thread can take a variable amount of time to finish. When the slave thread
has finished transferring the file, it is destroyed.

Clearly, over a long period of time, only a small fraction of the slave threads
will run concurrently. Still, the size of the vector clock will be equal to the total
number of threads executed by the FTP-server. Indeed, if we would try to remove
the information about the execution of thread T2 when the thread has finished,
we would run the risk of no longer detecting all data races.

Take for example event e1 on thread T2. Even when thread T2 has finished
execution, this event can still cause a race with another event e2 on thread T3.
Indeed, if T2 had run a little slower, e2 would have been executed before e1,
which clearly constitutes a data race. The cause for this data race is that T2

simply dies when it has finished its task without synchronizing with any other
thread. Therefore, the risk for data races with event e1 will continue to exist
indefinitely.
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Fig. 1. A simple FTP-server spawning threads for each file request

Using vector clocks, we are stuck here. In general, we cannot reduce the size
of a vector clock. The best we can do is increase the size of the vector clocks
dynamically as new threads are created.

The Equation 8 shows us how to improve vector clocks. Suppose we have two
events, ei and ej, from resp. threads, Ti and Tj. If we want to know whether
these two events were executed in parallel then, according to Definition 4, we
must verify that neither ei

cau→ ej nor ej
cau→ ei holds. To perform this check,

Equation 8 tells us we only need the values of the vector clocks at indices i
and j. Or, if we invert this reasoning, we can throw away all positions in the
vector clocks corresponding to threads from which we have no events left that
interest us when doing data race detection!

The events that still interest us are stored in the access histories of the
shared variables. These events are gradually being removed by the following
three mechanisms:

1. When a read operation occurs on a shared variable, its access history is
updated. All the read operations that are causally ordered before the new
read operation are removed. Then the new read operation is added. See [3].

2. When a data structure is destroyed and its memory is freed, there can no
longer be data races on this data structure. There is therefore no more need
for its access history. As a consequence, the access history can be destroyed.

3. Periodically, for example after every garbage collection, we can perform a
‘cleanup’ as follows. We take a consistent cut, c of the system from the set
of consistent cuts CC, i.e. we stop the system in a consistent state. (P is the
‘powerset’, the set of all subsets of a set)

CC = {c : P(E) | ∀e1 : c.∀e2 : E.e2
cau→ e1 ⇒ e2 ∈ c} (10)

For every thread, Ti, we look up the event it is currently executing, cur(i, c),
at the consistent cut, c. We combine the vector timestamps of each of these
events to calculate the ‘past’ vector timestamp, past : CC → V , of all these



Accordion Clocks: Logical Clocks for Data Race Detection 499

threads as follows.

∀i : I.∀c : CC.past(c)[i] ≡ min{Vc(cur(j, c))[i] | j ∈ I} (11)

All events present in the access history that have occurred before past(c)
can no longer be parallel with any new events that will occur. This means
that no race can occur between these old events and any new events. We can
therefore safely remove these from the access history.

Due to the three mechanisms described above, the access histories at a consis-
tent cut, c : CC, contain only a subset of all the events executed by the threads.
If we let S(c) ⊂ E be this set and if we let the predicate running indicate that a
thread is currently running in the system then we can construct the set of active
threads at a consistent cut, Tact(c) ⊂ T as follows

∀c : CC.Tact(c) ≡ {ti : T | ∃e : S(c).Tid(e) = i} ∪ {t : T | running(t)} (12)

The threads that are not member of the active set have either not run yet
or have run but all traces of their activities have disappeared from the access
histories. If a thread has not run yet, no events performed by this thread can
be involved in a data race yet so no room for it must yet be allocated in the
timestamps of events. If a thread has run, but none of the events performed
by it are stil ‘remembered’ in the access histories, again no room must remain
allocated for it in the timestamps.

Either way, these threads can currently not be involved in a data race. We
will not need to compare the vector timestamps of events from threads in this
set with each other so there is no need to maintain the indices in the vector
timestamps for these threads.

As threads enter and leave the active set, we can adjust the vector clocks
accordingly. When a thread has not yet run, and is about to start, we can
easily expand the existing vector clock timestamps to include a 0 at the index
corresponding to the new thread. If a thread has finished its execution and
none of its events are present in the access histories, then we can remove the
corresponding index from all timestamps and vector clocks.

If we return to our example from Figure 1 we see that, although with vector
clocks we can never remove or reuse the index corresponding to thread T2 from
the vector clocks because T2 fails to synchronize at the end of its life, removing
an index is possible with the above aproach. Suppose that event e1 accessed a
file descriptor that was used to read a file. When T2 terminates, it frees the file
descriptor (by itself or through a garbage collector). At this point, the access
history of the file descriptor is also removed and e1 is no longer of importance.
If the other events performed by T2 are also removed from the access history,
then all knowledge of T2 can be dropped from the timestamps.

Using this insight, we can define a logical clock which grows when threads
are started and shrinks when all events of a thread are ‘forgotten’ by the other
threads. We call this logical clock an ‘accordion clock’.

An accordion clock, Ac, is a mapping from an event, e : E, to an accordion
clock timestamp, a : A, at a consistent cut, c : CC, in the execution of the
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system. An accordion clock timestamp is a pair. The first component of the pair
is denoted as as. It itself is a tuple of scalar values that indicate the local time,
just like the values of the vector clock time stamp. The second component of
the pair is a thread identifier, aid : I, indicating the thread that performed the
event for which this time stamp was generated.

A = T × I
Ac : (E, CC) → A

∀e : E.∀c : CC.Ac(e, c) = (Sac(e, c), Tid(e))
(13)

Sac : (E, CC � c) → Tact(c) → N

∀c : CC, ∀e : E.∀i : Tact(c).Sac(e, c)[i] = Vc(e)[i]
(14)

In essence, an accordion clock timestamp contains the same scalar values
as the vector clock timestamp but only those we are still interested in at a
certain point in the execution of the system. The timestamp therefor requires
only O(#Tact(c)) memory.

The comparison of accordion clock timestamp, <ac, at a certain consistent
cut, c : CC, becomes

<ac≡ (a1, a2) : A2.a1,s[a1,id] ≤ a2,s[a1,id] (15)

5 Implementation and Measurements

We have implemented accordion clocks in a race detection system called
‘TRaDe’ [2]. TRaDe is built on a Java virtual machine from Sun that is adapted
to on-the-fly detect data races in multi-threaded Java programs that are being
executed on the virtual machine. The definition of data races given in Formula 9
is used. The accordion clocks are used to avoid the size problem of vector clocks.

We have used Condition 14 to check whether an accordion clock’s size could
be reduced. We performed this check after every garbage collection of the JVM.
Since the garbage collector requires that the JVM be halted temporarily, this
seems an appropriate time to perform our analysis.

To test the performance of the accordion clocks we used the following set of
benchmarks.

In Figure 5 we see the results of using vector clocks (on the left) vs. accordion
clocks (on the right). In each of the graphs, we show the amount of memory
consumed by the data structures needed for performing data race detection. We
split the memory consumption into two parts. At the top of each graph we see
the memory used to create resp. the vector clocks and accordion clocks in the
system. At the bottom, we see the remaining memory used for storing, among
others, the access histories. The memory used by the virtual machine itself is not
shown. All other optimisations which reduce the size and number of the access
histories are enabled during both executions. Only the improvement in memory
consumption due to the use of accordion clocks is measured.

On the left of each of the figures, we see that in general the vector clocks
continuously grow and tend to consume a large amount of memory after only a
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Table 1. Description of the Java benchmarks used

Name Description

SwingSet Demo A highly multi-threaded demo, included with the JDK 1.2, of the
Swing widget set. It demonstrates buttons, sliders, text areas,
... Every tab in the demo was clicked twice during our tests.
Immediately thereafter it was shut down.

Java2D Demo A highly multi-threaded demo, included with the JDK 1.2. It
demonstrates the features of the Java 2D drawing libraries and
is highly multithreaded. Every tab in the demo was clicked 5
times. Immediately thereafter it was shut down.

Forte for Java A full-blown Java IDE with object browsers, visual construction
of GUI code, ... To exercise the benchmark, we created a small
dialog while doing race detection.

few minutes of performing data race detection. Clearly, this behaviour prohibits
the use of vector clocks for doing data race detection for a long period of time.

On the right, we show the use of accordion clocks. For the Java2D and Forte
benchmarks we see an almost ideal behaviour. Originally the vector clocks grew
proportional with time. This memory consumption is reduced to a constant cost
by using accordion clocks. What is more, we have succeeded in leveling off the
memory consumption for data race detection since the other data structures
apparently, after a startup period, also consume a constant amount of memory.

We have also added a figure of the memory consumption of the Swing bench-
mark. Again, we can see that the memory needed to maintaining accordion clocks
is substantially smaller than for vector clocks. Here we do not yet succeed in re-
ducing memory consumption for data race detection to a constant cost. Both
the vector clocks and the access histories grow proportionally with time. Never-
theless, using accordion clocks, we at least succeed in reducing considerably the
memory consumption for the clocks. The cause of the memory increase in this
benchmark is not yet clear to us. Further research will be needed.

The time overhead of using accordion clocks is negligable. On the one hand,
some overhead is incurred by reducing and increasing the size of the accor-
dion clocks. On the other hand, since accordion clocks are usually substantially
smaller than vector clocks, the cost of comparing, copying, etc. of their data
structures is reduced. Time overhead of the accordion clocks is currently not a
real concern since the time overhead incurred by performing the checks of read
and write operations for data race detection is by far the predominant factor in
the overhead.

6 Conclusions

In general, the maintenance of vector timestamps consumes memory propor-
tional to the number of threads in a program. In this article, we have shown
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Fig. 2. Memory consumption of data structures for data race detection for the
three benchmark programs used

that by taking into account what the vector timestamps will be used for, the
size of timestamps can be reduced beyond the limit of the total number of threads
running in the system. We have defined a new type of logical clock that has the
ability to grow and shrink, called an accordion clock. An accordion clock has the
same order of magnitude of execution time consumption as a vector clock. It has
the potential to reduce the memory consumption considerably by adapting dy-
namically the size of the timestamps when it can be verified that no comparison
between events of certain threads will be necessary in the future.



Accordion Clocks: Logical Clocks for Data Race Detection 503

Acknowledgements

Mark Christiaens is supported by the IWT SEESCOA project (IWT/ADV/
980.374). We are grateful to Michiel Ronsse for proofreading this article and his
many stimulating remarks.

References

1. Bernadette Charron-Bost. Concerning the size of logical clocks in distributed sys-
tems. Information Processing Letters, 1(39):11–16, July 1991. 494, 496

2. Mark Christiaens and Koen De Bosschere. Trade, a topological approach to on-
the-fly race detection in java programs. In Proceedings of the Java Virtual Machine
Research and Technology Symposium 2001, pages 105–116, Monetery, California,
USA, April 2001. USENIX. 500

3. A. Dinning and E. Schonberg. An empirical comparison of monitoring algorithms
for access anomaly detection. In Second ACM SIGPLAN symposium on Principles
& practice of parallel programming, pages 1–10, March 1990. 497, 498

4. C. J. Fidge. Partial orders for parallel debugging. In Proceedings of the ACM
SIGPLAN and SIGOPS Workshop on Parallel and distributed debugging, pages
183–194, May 1988. 494, 496

5. Dieter Haban and Wolfgang Weigel. Global events and global breakpoints in dis-
tributed systems. In 21st Annual Hawaii International Conference on System
Sciences, volume II, pages 166–175. IEEE Computer Society, January 1988. 494

6. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978. 494, 495

7. Friedemann Mattern. Virtual time and global states of distributed systems. In
Proceedings of the Intl. Workshop on Parallel and Distributed Algorithms, pages
215–226. Elsevier Science Publishers B. V., North-Holland, 1989. 494, 496

8. Michiel Ronsse. Racedetectie in Parallelle Programma’s door Gecontroleerde
Heruitvoering. PhD thesis, Universiteit Gent, May 1999. 497

9. Michiel Ronsse and Koen De Bosschere. Recplay: A fully integrated practical
record/replay system. ACM Transactions on Computer Systems, 17(2):133–152,
May 1999. 497

10. Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: A dynamic data race detector for multi-threaded programs. In
Operating Systems Review, volume 31, pages 27–37. ACM, October 1997. 497


	Accordion Clocks: Logical Clocks for Data Race Detection
	Introduction
	Logical Time
	Data Race Detection
	Accordion Clocks
	Implementation and Measurements
	Conclusions


