SDLcheck: A Model Checking Tool

Vladimir Levin and Hiisnii Yenigiin

Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
{levin,husnu}@research.bell-labs.com

Introduction

SDLcheck is a verification tool developed to support model checking for asyn-
chronous (concurrent) programs written in SDL [IJ2]. Given an SDL program
and a specification of a desired behavior of the program, SDLcheck generates
a verification model that consists of two w-automata, P and T: P models the
program and 7' the specification. Then, the automaton language containment,
L(P) Cc L(T), is tested by model checking with Cospan [3].

The majority of model checking tools designed for asynchronous program
verification make use of interleaving systems as a model platform. In contrast,
SDLcheck translates asynchronous SDL programs into synchronous w-automata.
Concurrent execution (interleaving) of SDL processes is modeled using a simple
technique described below in the paper. The reason for this choice is in order
to efficiently combine partial order reduction, which is known to be useful for
asynchronous programs, with BDD-based symbolic verification, which is known
to be useful for large synchronous models. For this, SDLcheck implements the
algorithm described in [4] that realizes partial order reduction through modi-
fying a program model P prior to model checking. Although model checking
tools for SDL and other programming and design languages are being inten-
sively developed in research, in a practical sense, they mostly remain prototypes
lacking optimizations necessary to cope with large programs. There are several
advanced model checking tools that mainly relate to hardware verification, where
synchronous w-automata, on one hand, naturally match synthesizable hardware
designs and, on the other hand, support symbolic verification. For software veri-
fication, combining IF [5] and SPIN [6], as reported in [[[], supports complemen-
tary sets of model checking optimizations. This combination nonetheless lacks
symbolic verification, as do all other SDL verification tools of which we are aware.

SDLcheck is also capable of supporting software/hardware co-design verifi-
cation. This is realized through Cospan, which is also used as the model checker
in hardware verification, namely, in the commercial tool FormalCheck™ . O
Through the synchronous w-automaton model platform, SDLcheck combined
with Cospan supports both software specific and hardware specific model check-
ing optimizations.

SDL Subset and Co-design Extensions

SDLcheck accepts the SDL’96 standard [1)2] including ASN.1 related features,
however, without axiomatic data definitions, services and OO features. It also
requires the SDL program model to be finite state — so no unbounded recursion.

! licensed by Lucent Technologies to Cadence Design Systems.

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 378-381] 2001.
© Springer-Verlag Berlin Heidelberg 2001

SDLcheck: A Model Checking Tool 379

To support co-verification, SDLcheck implements extensions to SDL (sug-
gested in [§]) that allow description of a software process interfacing to a hard-
ware module. The hardware part of a co-design is expressed in a hardware de-
scription language, Verilog or VHDL. On the software side written in SDL,
SDLcheck supports read/write access to a hardware variable (wire or port)
through the declaration of an associated interface variable. The interface variable
is either sourced from, or feeds the hardware variable. SDLcheck also supports
a none input action. It does not read the process buffer and only triggers a
transition from the current state of the process when the enabling condition
which guards this action evaluates to true. A none input action matches well
the concept of a hardware transition triggered by an event, such as clock rising
(or falling) or signal reset. Being associated with an interface variable value,
a hardware event, say, value 1 on wire A.B.y, may be tested in the enabling
condition and trigger a transition in the corresponding software process. Once
triggered, this transition executes like a hardware transition: synchronously (si-
multaneously) with all enabled transitions of the co-design hardware part. Other
(software) transitions of software processes execute asynchronously according to
usual SDL rules.

Verification Technology and the Tool Architecture
SDLcheck performs three steps:

1. The compiler sd12sr translates both an SDL program and a behavior specifi-
cation into S/R, the input language of Cospan. The specification is expressed
using macro notations always(z), eventually(zx), etc. that reflect linear tem-
poral logic operators and useful combinations of those, with arguments being
SDL boolean expressions over the program variables. The specification lan-
guage is similar to that used in FormalCheck™ . In a co-design case, S/R
code generated by sd12sr is mechanically concatenated with S/R code pro-
duced by the FormalCheck™ compiler for hardware modules.

2. Cospan performs model checking on this S/R code, with any valid combina-
tion of its options, including symbolic verification and localization reduction.
If it detects that the program model fails to satisfy the specification, it pro-
duces an error track demonstrating one of the failure scenarios.

3. The tool T2sdl extracts from the error track pieces related to the SDL
program and prints those with back referencing S/R names to SDL sources.
In a co-design case, the remaining pieces are back referenced to the HDL.

Translation into S/R w-Automata
In S/R, an w-automaton that models an SDL program is described as a syn-
chronous product of primitive w-automata, each being represented by a distinct
state variable whose transitions are defined by a single if-then-else constructor:
asgn t— >a17g1]a2?g2|. .| an—1?Gn-1| an
where the omitted guard of the default alternative a,, is true and the complete
guard for alternative a;, 1 <i <mn,is =g1 A...7g;i—1 A g;.

After flattening complicated data (structures, arrays, etc.), each variable of
an SDL program is translated into a separate state variable.

The sequentiality of process actions is implemented by designating one state
variable per process to encode the process control flow graph, say, variable Cg

380 Vladimir Levin and Hiisnii Yenigiin

for process). It works like a program counter: it is assigned to labels of a
process’ input states and statements, assuming that all statements have been
labeled. Transitions between values of Cg mimic the control flow in the process
Q. The variable Cg is then used in transition guards of other variables owned
by the process, including its local and shared variables, and buffer. Since, the
buffer queue is updated by both the owner process and a sender process, a
buffer transition guard may also test whether the sender process program counter
points to the corresponding output action.

In S/R, non-determinism may be captured and controlled using selection
variables [3] that are assigned to sets of values rather than to distinct values.
Selection variables do not contribute to the state space. The concurrency (in-
terleaving) of actions executed by different SDL processes is implemented by
designating a special selection variable, say, S, which is non-deterministically
assigned to any one of the SDL program processes:
asgn S = {Q1,...Qk}

Then, each normal transition of the program counter Cq is guarded by the
condition S = @. If the condition evaluates to false, the program counter Cq
self-loops at its current point. For example, let the SDL process () consist of
only one statement which is a two branch decision (i.e. if-then-else) and variable
x be assigned, respectively, to y; and ys in its branches. Then, S/R code for this
process will have these two assignments:

asgn Cg — >

Linen? (S = Q)/\(CQ = Lstart)/\dif ‘ Leise? (S = Q)/\(CQ = Lstart)/_‘dif ‘

Lstop? (S = Q) A (CQ = Lipen V CQ = Lelse) N true ‘ CQ
asgnr — >y17(S:Q)/\(CQ :Lthen) | y2?(S:Q)/\(CQ :Lelse) | X
where d;; is the decision condition and Lgtart; Lihen, Letse; Lsiop are labels of
nodes in the process control flow graph. Thus, the variable S models the inter-
leaving of the processes Q1,...Qk and Cg the control flow in the process Q.
Note the regular structure of the Cg alternatives: in each alternative guard, its
rightmost conjunction factor expresses the condition under which the process
control flow (whenever allowed to move by (S = @)) moves from its current
point, which is captured by the middle conjunction factor, to its next point,
which is the alternative’s value.

Optimizations

On the top of this method, SDLcheck implements partial order reduction, which
optimizes model checking by selecting only one of all possible interleavings be-
tween independent actions provided that others have the same verification effect
on the behavior specification. This optimization is implemented by modifying
the original w-automaton model of an SDL program to restrict its transition
relation. For this, SDLcheck imposes a control over the selection variable S.
Namely, if an action of process @ may be selected to execute with ignoring other
possible interleavings, it is marked by the SDLcheck compiler as ample. In the
optimized model, the selection variable S is forced to be assigned to process
Q, if the current action of this process is ample. If there are several such pro-
cesses, only one of them is chosen: this is a deterministic though arbitrary choice,
made in advance by compiler. Only when no ample actions are enabled, S re-
mains non-deterministically assigned by the model to any one of the program
processes {Q1, . .. Q }. This technique may significantly reduce the original non-

SDLcheck: A Model Checking Tool 381

determinism in the state space exploration. The objective is to have more ample
actions. As explained in [4], non-ample actions appear, in particular, because of
the neccesisty to break global cycles in the state space exploration by allowing
the complete non-determinism at least at one point in each global cycle. To stat-
ically deal with this problem, we might mark one action as non-ample in every
local loop in each process control flow graph. However, SDLcheck performs bet-
ter. It statically analyzes control flow loops that belong to different processes but
semantically compensate each other: for example, a loop with output of signal
z is compensated by a loop (in a different process) with an input action for the
same signal z. As shown in [4], to break a global cycle that executes along com-
pensated control flow loops, it is sufficient to have a non-ample action in only
one of those loops. It is how SDLcheck implements partial order reduction. As
an option, SDLcheck strengthens this optimization more by forcing to execute
simultaneously “by a parallel leap” (instead of sequentially) all current actions
that have been marked ample.

Applications

[O] reports on verification of a robot control system developed in an UML-like
graphical notation. The verification has been supported by translating the robot
control system into an internal representation of SDL used by SDLcheck and then
applying SDLcheck and Cospan for model checking. SDLcheck is also applied for
debugging an SDL description of the H.248 gateway control protocol issued by
ITU-T in 2000.

References

1. ITU-T Recommendation Z.100 (03/93) — Specification and Description Language
(SDL) , Geneva, 1993.

2. ITU-T Recommendation Z.100 (10/96) — Specification and Description Language
(SDL) , Addendum 1, Geneva, 1996.

3. R. P. Kurshan, Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach, Princeton University Press, 1994.

4. R. P. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigiin. Static Partial
Order Reduction, Proc. of 4th International Conference Tools and Algorithms for
the Construction and Analysis of Systems, LNCS no. 1384, pp. 345-357, 1998.

5. M. Bozga, J. C. Fernandez, L. Ghirvu, S. Graf, J. P. Krimm, L.. Mounier, J. Sifakis,
IF: An Intermediate Representation for SDL and its Applications. Proc. of the SDL
Forum, Montreal, Canada, 1999.

6. G. J. Holzmann, The Model Checker Spin, IEEE Trans. on Software Engineering
Vol. 23, No. 5, 1997.

7. D. Bosnacki, D. Damm, L. Holenderski, N. Sidorova, Model checking SDL with
Spin, Proc. of the Tools and Algorithms for the Construction and Analysis of Sys-
tems, Berlin, Germany, 2000.

8. Levin, V., E. Bounimova, O. Basgbugoglu, and K. Inan, A Verifiable Soft-
ware/Hardware Co-design Using SDL and COSPAN, Proceedings of the COST 247
International Workshop on Applied Formal Methods In System Design. Maribor,
Slovenia, pp. 6-16, 1996.

9. N. Sharygina, R. P. Kurshan, J. C. Browne, A Formal Object-oriented Analysis
for Software Reliability, To appear at FASE 2001.

	Introduction
	SDL Subset and Co-design Extensions
	Verification Technology and the Tool Architecture
	Translation into S/R \omega-Automata
	Optimizations
	Applications
	References

