
A BDD-Based Model Checker
for Recursive Programs

Javier Esparza and Stefan Schwoon

Technische Universität München
Arcisstr. 21, 80290 München, Germany

{esparza,schwoon}@in.tum.de

Abstract. We present a model-checker for boolean programs with (pos-
sibly recursive) procedures and the temporal logic LTL. The checker is
guaranteed to terminate even for (usually faulty) programs in which the
depth of the recursion is not bounded. The algorithm uses automata to
finitely represent possibly infinite sets of stack contents and BDDs to
compactly represent finite sets of values of boolean variables. We illus-
trate the checker on some examples and compare it with the Bebop tool
of Ball and Rajamani.

1 Introduction

Boolean programs are C programs in which all variables and parameters (call-by
value) have boolean type, and which may contain procedures with recursion. In
a series of papers, Ball and Rajamani have convincingly argued that they are a
good starting point for investigating model checking of software [1,2].

Ball and Rajamani have also developed Bebop, a tool for reachability analysis
in boolean programs. As part of the SLAM toolkit, Bebop has been successfully
used to validate critical safety properties of device drivers [2]. Bebop can de-
termine if a point of a boolean program can be reached along some execution
path. Using an automata-theoretic approach it is easy to extend Bebop to a tool
for safety properties. However, it cannot deal with liveness or fairness proper-
ties requiring to examine the infinite executions of the program. In particular,
it cannot be used to prove termination.

In this paper we overcome this limitation by presenting a model-checker
for boolean programs and arbitrary LTL-properties. The input to the model
checker are symbolic pushdown systems (SPDS), a compact representation of
the pushdown systems studied in [4]. A translation of boolean programs into
this model is straightforward. The checker is based on the efficient algorithms
for model checking ordinary pushdown systems (PDS) of [4]. While SPDSs have
the same expressive power as PDSs, they can be exponentially more compact.
(Essentially, the translation works by expanding the set of control states with
all the possible values of the boolean variables.) Therefore, translating SPDSs
into PDSs and then applying the algorithms of [4] is very inefficient. We follow
a different path: We provide symbolic versions of the algorithms of [4] working
on SPDSs, and use BDDs to succintly encode sets of (tuples of) values of the
boolean variables.

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 324–336, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A BDD-Based Model Checker for Recursive Programs 325

This paper (and its full version [5]) contribute symbolic versions of the al-
gorithms of [4], tuned to minimise the number of required BDD variables; an
efficient implementation including three heuristic improvements; some experi-
mental results on different versions of Quicksort; and, finally, a performance
comparison with Bebop using an example of [1].

The paper is structured as follows. PDSs and SPDSs are introduced in Sec-
tion 2. The symbolic versions of the algorithms of [4] are presented in Section 4
and their complexity is analysed. In particular, we analyse the complexity in
terms of the number of global and local variables. In Section 5 we discuss the
improvements in the checker and present our results on verifying Quicksort; in
particular we analyse the impact of the improvements. Section 6 contains the
comparison with Bebop, and Section 7 contains conclusions.

2 Basic Definitions

In this section we briefly introduce the notions of pushdown systems and linear
time logic, and establish our notations for them.

2.1 Pushdown Systems

We mostly follow the notation of [4]. A pushdown system is a four-tuple P =
(P, Γ, c0, ∆) where P is a finite set of control locations, Γ is a finite stack alphabet,
and ∆ ⊆ (P×Γ)×(P×Γ ∗) is a finite set of transition rules. If ((q, γ), (q′, w)) ∈ ∆
then we write 〈q, γ〉 ↪→ 〈q′, w〉. A configuration of P is a pair 〈p, w〉 where p ∈ P
is a control location and w ∈ Γ ∗ is a stack content. c0 is called the initial
configuration of P . The set of all configurations is denoted by C.

If 〈q, γ〉 ↪→ 〈q′, w〉, then for every v ∈ Γ ∗ the configuration 〈q, γv〉 is an imme-
diate predecessor of 〈q′, wv〉, and 〈q′, wv〉 an immediate successor of 〈q, γv〉. The
reachability relation ⇒ is the reflexive and transitive closure of the immediate
successor relation. A run of P is a sequence of configurations such that for each
two consecutive configurations cici+1, ci+1 is an immediate successor of ci.

The predecessor function pre : 2C → 2C of P is defined as follows: c belongs to
pre(C) if some immediate successor of c belongs to C. The reflexive and transitive
closure of pre is denoted by pre∗. We define post(C) and post∗ similarly.

In the next section, when we model boolean programs as pushdown systems,
we will see that it is natural to consider a product form for P and G. More
precisely, it is convenient to introduce sets P0 and G such that P = P0 ×G, and
sets Γ0 and L such that G = Γ0 ×L. G and L are called sets of global and local
values, since they are, loosely speaking, the possible valuations of the global and
local variables of the program, respectively. So, for the rest of the paper, we
assume

P = P0 × G and G = Γ0 × L .

A symbolic pushdown system is a pushdown system in which sets of transition
rules are represented by symbolic transition rules. Formally, a symbolic pushdown
system is a tuple PS = (P, Γ, c0, ∆S), where ∆S is a set of symbolic transition

326 Javier Esparza and Stefan Schwoon

rules of the form 〈p, γ〉 R↪−−→ 〈p′, γ1 . . . γn〉, and R ⊆ (G × L) × (G × Ln) is a
relation. A symbolic pushdown system corresponds to a normal pushdown system
(P0 ×G, Γ0×L, c0, ∆) in the sense that a symbolic rule 〈p, γ〉 R

↪−−→ 〈p′, γ1 . . . γn〉
denotes a set of transition rules as follows:

if (g, l, g′, l1, . . . , ln) ∈ R, then 〈(p, g), (γ, l)〉 ↪→ 〈(p′, g′), (γ1, l1) . . . (γn, ln)〉 ∈ ∆

In practice, R should have an efficient symbolic representation. In our applica-
tions we have G = {0, 1}n and L = {0, 1}m for some n and m, and so R can be
represented by a BDD.

Given a pushdown system P = (P, Γ, c0, ∆), we use P-automata to represent
regular sets of configurations of P . A P-automaton uses Γ as alphabet, and P
as set of initial states. Formally, a P-automaton is a tuple A = (Γ, Q, δ, P, F)
where Q is a finite set of states, δ ⊆ Q × Γ × Q is a set of transitions, P is the
set of initial states and F ⊆ Q is the set of final states. An automaton accepts
or recognises a configuration 〈p, w〉 if p

w−−→ q for some p ∈ P, q ∈ F . The set of
configurations recognised by an automaton A is denoted by Conf (A). A set of
configurations of P is regular if it is recognized by some automaton.

A symbolic PS-automaton is a tuple AS = (Γ0, Q, δS , P0, F), where the sym-
bolic transition relation is a function δS : (Q × Γ0 × Q) → (G × L × G). The
relation δS should be seen as the symbolic representation of the transition rela-
tion δ: δS(q, γ, q′) is the set of all (g, l, g′) such that ((q, g), (γ, l), (q′, g′)) ∈ δ. If
R ⊆ (G×L×G), we denote by q

γ−→
R

q′ the set of transitions ((q, g), (γ, l), (q′, g′))

such that (g, l, g′) ∈ R. In the sequel, P-automata and symbolic PS-automata
are just called automata and symbolic automata, respectively.

2.2 The Model-Checking Problem for LTL

We briefly recall the results of [3] and [4]. Given a formula ϕ of LTL, the model-
checking problem consists of deciding if c0 violates ϕ, that is whether there is
some run starting at c0 that violates ϕ. The problem is solved in [4] using the
automata-theoretic approach. First, a Büchi pushdown system is constructed as
the product of the original pushdown system and a Büchi automaton B for the
negation of ϕ. This new pushdown system has a set of final control states. We
define a new reachability relation r=⇒ with respect to this set; we write c

r=⇒ c′

if c′ can be reached from c while visiting some final control state along the way.
Now, define the head of a transition rule 〈p, γ〉 ↪→ 〈p′, w〉 as the configuration
〈p, γ〉. A head 〈p, γ〉 is repeating if there exists v ∈ Γ ∗ such that 〈p, γ〉 r=⇒ 〈p, γv〉
holds. We denote the set of repeating heads by Rh. It is shown in [4] that the
model-checking problem reduces to either checking whether c0 ∈ pre∗(Rh Γ ∗),
or, equivalently, checking whether post∗({c0}) ∩ Rh Γ ∗ 6= ∅. Furthermore, it is
shown that the problem can be solved in O(|P |2 |∆| |B|3) time and O(|P | |∆| |B|2)
space.

3 Modelling Programs as Symbolic Pushdown Systems

Pushdown systems find a natural application in the analysis of sequential pro-
grams with procedures (written in C or Java, for instance). We allow arbitrary

A BDD-Based Model Checker for Recursive Programs 327

int x;

void main() {
int z;

...

f(x+z);

...

}

void f() {
x=x+y;

}

00

1

f:

return

x=x+y

main:

1

3

2

f(x+z)

Fig. 1. An Example Program (left) and the Associated Flowgraph (right).

recursion, even mutual procedure calls, between procedures; however, we require
that the data types used in the program be finite. In the following, we present
informally how to derive a symbolic pushdown system from such a program.

In a first step, we represent the program by a system of flow graphs, one
for each procedure. The nodes of a flow graph correspond to control points in
the procedure, and its edges are annotated with statements, e.g. assignments or
calls to other procedures. Non-deterministic control flow is allowed and might
for instance result from abstraction. Figure 1 shows a small C program and the
corresponding flow graphs. The procedure main ends in an infinite loop to ensure
that all executions are infinite. In the example, a finitary fragment of the type
integer has to be chosen.

Given such a system of flow graphs, we derive a pushdown system and a
corresponding symbolic pushdown system. For simplicity, we assume that all
procedures have the same local variables. The sets G and L contain all the
possible valuations of the global and local variables, respectively. E.g., if the
program contains three boolean global variables and each procedure has two
boolean local variables, then we have G = {0, 1}3 and L = {0, 1}2. P0 contains
one single element p, while Γ is the set of nodes of the flow graphs.

Program statements are translated to pushdown rules of three types.

Assignments. An assignment labelling a flow-graph edge from node n1 to node n2

is represented by a set of rules of the form

〈glob , (n1, loc)〉 ↪→ 〈glob ′, (n2, loc ′)〉.
where glob and glob ′ (loc and loc ′) are the values of the global (local) variables
before and after the assigment. This set is represented by a symbolic rule of the
form 〈p, n1〉 R

↪−−−→ 〈p, n2〉, where R ⊆ (G × L) × (G × L).

Procedure Calls. A procedure call labelling a flow-graph edge from node n1 to
node n2 is translated into a set of rules with a right-hand side of length two
according to the following scheme:

〈glob, (n1, loc)〉 ↪→ 〈glob ′, (m0, loc′) (n2, loc′′)〉

328 Javier Esparza and Stefan Schwoon

Here m0 is the start node of the called procedure; loc′ denotes initial values of
its local variables; loc′′ saves the local variables of the calling procedure. (No-
tice that no stack symbol contains variables from different procedures; hence
the size of the stack alphabet depends only on the largest number of local vari-
ables in any procedure.) This set is represented by a symbolic rule of the form
〈p, n1〉 R

↪−−−→ 〈p, m0n2〉, where R ⊆ (G × L) × (G × L × L).

Return Statements. A return statement has an empty right side:

〈glob , (n, loc)〉 ↪→ 〈glob ′, ε〉
These rules correspond to a symbolic rule of the form 〈p, n〉 R

↪−−→ 〈p, ε〉, where
R ⊆ (G×L)×G. Procedures which return values can be simulated by introducing
an additional global variable and assigning the return value to it.

Notice that the size of the symbolic pushdown system may be exponentially
smaller than the size of the pushdown system. This is the fact we exploit in
order to make model-checking practically usable, at least for programs with few
variables. Notice also that in the symbolic pushdown system we have |P0| = 1
and Γ0 is the set of nodes of the flow graphs.

Since a symbolic pushdown system is just a compact representation of an
ordinary pushdown system, we continue to use the theory presented in [4]. In this
paper we provide modified versions of the model-checking algorithms that take
advantage of a more compact representation. In our experiments, we consider
programs with boolean variables only and use BDDs to represent them. Integer
variables with values from a finite range are simulated using multiple boolean
variables.

4 Algorithms

According to Section 2 we can solve the model-checking problem by giving al-
gorithms for the following three tasks:

– to compute the set pre∗(C) for a regular set of configurations C (which will
be applied to C = Rh Γ ∗)

– to compute the set post∗(C) for a regular set of configurations C (which will
be applied to C = {c0})

– to compute the set of repeating heads Rh

In [4] efficient implementations for these three problems were proposed for or-
dinary pushdown systems. In this section, we sketch how the algorithms may
be lifted to the case of symbolic pushdown systems. More detailed presentations
are given in the full version of the paper [5]. We fix a symbolic pushdown system
P = (P0 × G, Γ0 × L, c0, ∆S) for the rest of the section.

4.1 Computing Predecessors

Given a regular set C of configurations of P , we want to compute pre∗(C).
Let A be a P-automaton that accepts C. We modify A to an automaton that

A BDD-Based Model Checker for Recursive Programs 329

accepts pre∗(C). The modification procedure adds only new transitions to A,
but no new states are created. Without loss of generality, we assume that A has
no transitions ending in an initial state.

In ordinary pushdown systems, new transitions are added according to the
following saturation rule:

If 〈p, γ〉 ↪→ 〈p′, γ1 . . . γn〉 and p′ γ1−−→ q1
γ2−−→· · · γn−−→ q

in the current automaton, add a transition (p, γ, q).

The correctness of the procedure was proved in [3]. For the symbolic case,
the corresponding rule becomes:

If 〈p, γ〉 R
↪−−→ 〈p′, γ1γ2 . . . γn〉 and p′ γ1−−→

R1
q1

γ2−−→
R2

· · · γn−−→
Rn

q in the
current automaton, replace p

γ−→
R′ q by p

γ−→
R′′ q where

R′′ = R′ ∪ { (g, l, gn) | (g, l, g0, l1, . . . , ln) ∈ R
∧ ∃g1, . . . , gn−1 : ∀1 ≤ i ≤ n : (gi−1, li, gi) ∈ Ri }.

The computation of R′′ can be carried out using standard BDD operations.
A detailed, efficient implementation of the procedure can be found in [5].

4.2 Computing the Repeating Heads

For ordinary pushdown systems [4] we construct a directed graph whose nodes
are the heads of the transition rules (and so elements of P ×Γ). There is an edge
from (p, γ) to (p′, γ′) iff there is a rule 〈p, γ〉 ↪→ 〈p′′, v1γ

′v2〉 where 〈p′′, v1〉 ⇒
〈p′, ε〉 holds. The edge has label 1 iff either p is an accepting Büchi state, or
〈p′′, v1〉 r=⇒ 〈p′, ε〉. The edges are computed using pre∗. A head (p, γ) is repeating
iff it belongs to a strongly connected component (SCC) containing a 1-labelled
edge. The SCCs are computed in linear time using Tarjan’s algorithm [9].

For symbolic pushdown systems we represent the graph compactly as a sym-
bolic graph SG. The nodes of SG are elements of P0 × Γ0, and its edges are
annotated with a relation R ⊆ (G×L)2 (plus a boolean, which is easy to handle
and is omitted in the following discussion for clarity). An edge (p0, γ0)

R−−→(p′0, γ′
0)

stands for the set of edges (p0, g, γ0, l)−→(p′0, g
′, γ′

0, l
′) such that (g, l, g′, l′) ∈ R.

Unfortunately, when R is symbolically represented Tarjan’s algorithm cannot be
applied. A straightforward approach is to “saturate” SG instead according to
the following two rules:

– If (p0, γ0)
R−−→(p′′0 , γ′′

0) R′−−→(p′0, γ′
0), then add (p0, γ0)

R′′−−→(p′0, γ′
0), where

R′′:={((g, l), (g′, l′)) | ∃(g′′, l′′) : ((g, l), (g′′, l′′)) ∈ R∧((g′′, l′′), (g′, l′)) ∈ R′}.
– If (p0, γ0)

R−−→(p′0, γ
′
0) and (p0, γ0)

R′−−→(p′0, γ
′
0), then replace these two arcs by

(p0, γ0)
R∪R′−−−−→(p′0, γ

′
0)

The saturation procedure terminates when a fixpoint is reached. It is easy to
see that this algorithm has complexity O(n ·m) where n and m are the number

330 Javier Esparza and Stefan Schwoon

of nodes and edges of G. Using this method, the model-checking problem for
symbolic systems has a worse asymptotic complexity than for normal systems.

In practice, this disadvantage can be made up for, mainly due to the more
succinct representation. Moreover, the straightforward approach can be replaced
with more refined strategies that work better in practice (see the discussion in
Section 5).

4.3 Computing Successors

Given an automaton A accepting the set C, we modify it to an automaton
accepting post∗(C). Again we assume that A has no transitions leading to initial
states, and moreover, that |w| ≤ 2 holds for all rules 〈p, γ〉 R↪−−→ 〈p′, w〉. This is
not an essential restriction, as all systems can be transformed into one of this
form with only a linear increase in size.

In the ordinary case, we allow ε-moves in the automaton. We write
γ

=⇒ for

the relation (ε−→)∗ γ−→(ε−→)∗. The algorithm works in two steps [4]:

– If 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆, add a state (p′, γ′) and a transition (p′, γ′, (p′, γ′)).
– Add new transitions to A according to the following saturation rules:

If 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ and p
γ

=⇒ q in the current automaton,

add a transition (p′, ε, q).

If 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ and p
γ

=⇒ q in the current automaton,

add a transition (p′, γ′, q).

If r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆ and p
γ

=⇒ q in the current automaton,

add a transition ((p, γ), γ′′, q).

For the symbolic case, the corresponding first step looks like this: For each
symbolic rule 〈p, γ〉 R

↪−−→ 〈p′, y′y′′〉 we add a new state (p′, γ′). We must adjust
the symbolic transition relation slightly for these new states; e.g. when q and q′

are such states, then δS(q, γ, q′) is a subset of (G×L)×L×(G×L). Moreover, for
each such rule we add a transition t = (p′, y′, (p′, y′)) s.t. δS(t) = { (g′, l′, (g′, l′)) |
∃(g, l, g′, l′, l′′) ∈ R }. Concerning ε-transitions, δS(q, ε, q′) is a subset of G × G.
In the second step, we proceed as follows:

If 〈p, γ〉 R↪−−→ 〈p′, ε〉 ∈ ∆S and p
γ

=⇒
R′

q in the current automaton,

add to δS(p′, ε, q) the set { (g′, g′′) | ∃(g, l, g′) ∈ R, (g, l, g′′) ∈ R′ }.
If 〈p, γ〉 R

↪−−→ 〈p′, γ′〉 ∈ ∆S and p
γ

=⇒
R′

q in the current automaton,

add to δS(p′, γ′, q) the set { (g′, l′, g′′) | ∃(g, l, g′, l′) ∈ R, (g, l, g′′) ∈ R′ }.
If 〈p, γ〉 R↪−−→ 〈p′, γ′γ′′〉 ∈ ∆S and p

γ
=⇒
R′

q, add to δS((p′, γ′), γ′′, q)

the set { ((g′, l′), l′′, g′′) | ∃(g, l, g′, l′, l′′) ∈ R, (g, l, g′′) ∈ R′ }.

In [5] we present an efficient implementation of these rules.

A BDD-Based Model Checker for Recursive Programs 331

4.4 Complexity Analysis

Let P = (P, Γ, c0, ∆) be an ordinary pushdown system, and let B be a Büchi
automaton corresponding to the negation of an LTL formula ϕ. Then, according
to [4], the model-checking problem for P and B can be solved in O(|P |2 ·|∆|·|B|3)
time and O(|P | · |∆| · |B|2) space.

Consider a pushdown system representing a sequential program with proce-
dures. Let n be the size of a program’s control flow, i.e. the number of statements.
Let m1 be the number of global (boolean) variables, and let m2 be the maximum
number of local (boolean) variables in any procedure. Assuming that the pro-
grams use deterministic assignments to variables, each statement translates to
2m1+m2 different pushdown rules. Since the number of control locations is 2m1 ,
we would get an O(n · 23m1+m2 · |B|3) time and O(n · 22m1+m2 · |B|2) space
algorithm by translating the program to an ordinary pushdown system.

When we use symbolic system, the complexity gets worse. The graph SG has
O(|∆|) nodes and O(|P | · |∆|) edges. So our symbolic algorithm for computing
the SCCs has complexity O(|P | · |∆|2). We therefore get O(n2 · 23m1+2m2 · |B|3)
time in the symbolic case. (The space complexity remains the same.) However,
as mentioned before, the more compact representation in the symbolic case com-
pensates for this disadvantage in the examples we tried.

5 Efficient Implementation

We have implemented the algorithms of Section 4 in a model-checking tool.
Three refinements with respect to the abstract description of the algorithms are
essential for efficiency.

Procedure for the Model-Checking Problem. As mentioned in section 2.2, the
model-checking problem reduces to (a) checking whether c0 ∈ pre∗(Rh Γ ∗), or
(b) checking whether post∗({c0})∩Rh Γ ∗ 6= ∅. In order to compute (b) symbol-
ically, we first compute the reachable configurations (i.e., post∗({c0})). Then, in
each symbolic rule 〈p, γ〉 R↪−−→ 〈p′, γ1 . . . γn〉 we replace R by a new relation Rreach

defined as follows: (g, l, g′, l1, . . . ln) ∈ Rreach if (g, l, g′, l1, . . . ln) ∈ R and some
configuration 〈(p, g), (γ, l)w〉 is reachable from c0. This dramatically reduces the
efforts needed for some computations if the number of reachable variable val-
uations is much smaller than the number of possible valuations. In this case,
much of the work in (a) would be spent on finding cycles among unreachable
valuations.

Efficient Computation of the Repeating Heads. As mentioned in section 4.2, the
computation of the repeating heads reduces to determining the SCCs of a graph
symbolically represented as a labelled graph SG. The nodes of SG are elements
of P0 × Γ0, and its edges are annotated with a relation R ⊆ (G × L)2 (and a
boolean). In our implementation, we first compute the components “roughly”,
i.e., ignoring the Rs in the edges, using Tarjan’s algorithm. Then we refine the
search (including the Rs) within the components. For this problem a number
of different approaches could be tried. The algorithm of Section 4.2 corresponds

332 Javier Esparza and Stefan Schwoon

to computing the transitive closure of the edges. The transitive closure can be
computed using a stepwise computation or iterative squaring (see also [7]); the
stepwise method seems to work better in general. Xie and Beerel [10] suggest a
more sophisticated approach for searching the components in a symbolic setting.
Moreover, these possibilities can be combined with a preprocessing of the edge
relation. The preprocessing looks for BDD variables that can change their values
from only 0 to 1 (or vice versa), but not in the other direction and removes such
edges for such variables, effectively limiting the length of the paths in the graph.

Variable Ordering. It is well known that the performance of BDD-based algo-
rithms is very sensitive to the variable ordering. When checking the Quicksort
example (see below) we found that a useful variable ordering was to place the
inputs (i.e. the array of data to be sorted) at the end and the ‘control variables’
(i.e. indices into the array) at the beginning. Our intuition for this is that every
instruction changes at most two elements of the array, and that such changes
can be described with small BDDs. So we need one such BDD for each of the
(relatively few) possible valuations of the control variables. If the input data
was placed at the beginning, the BDDs would first branch into the (relatively
many) possible valuations of the input data. While it is difficult to make a gen-
eral assessment of variable orderings, there is hope that this ordering would also
be useful in other examples where the same division between inputs and con-
trol variables can be made. Since the inputs are stored in global variables, this
criterion corresponds to placing the local variables before the global variables.

In the rest of the section we give an idea of the performance of the algorithm
by applying it to some versions of Quicksort. Then we show the impact of the
three improvements listed above by presenting the running times when one of
the improvements is switched off. All computations were carried out on an Ul-
trasparc 60 with 1.5 GB memory. Operations on BDDs were implemented using
the CUDD package [8].

5.1 Quicksort

We intend to sort the global array a in ascending order; a call to the quicksort
function in figure 2 should sort the fragment of the array starting at index left
and ending at index right. The program is parametrised by two variables: n, the
number of bits used to represent the integer variables, and m, the number of array
entries. We are interested in two properties: first, all executions of the program
should terminate, and secondly, all of them should sort the array correctly.

Termination. For this property we can abstract from the actual array contents
and just regard the local variables. The program in figure 2 is faulty; it is not
guaranteed to terminate (finding the fault is left as an exercise to the reader). A
corrected version (containing one more integer variable) is easy to obtain from
the counterexample provided by our checker. Figure 2 lists some experimental
results. For each n, we list the number of resulting local variables in terms of
booleans. Since the array contents are abstracted away here, there are no global
variables, and m does not play a rôle.

A BDD-Based Model Checker for Recursive Programs 333

void quicksort (int left,int right)

{
int lo,hi,piv;

if (left >= right) return;

piv = a[right]; lo = left; hi = right;

while (lo <= hi) {
if (a[hi] > piv) {
hi--;

} else {
swap a[lo],a[hi];

lo++;

}
}
quicksort(left,hi);

quicksort(lo,right);

}

n locals time memory

faulty version

3 12 0.14 s 4.6 M
4 16 0.39 s 5.3 M
5 20 1.37 s 7.2 M
6 24 6.86 s 10.5 M
7 28 53 s 12.3 M
8 32 592 s 14.6 M
9 36 > 3600 s –

corrected version

3 15 0.22 s 4.8 M
4 20 0.67 s 6.1 M
5 25 3.63 s 9.4 M
6 30 48.67 s 14.7 M
7 35 1238 s 15.1 M
8 40 > 3600 s –

Fig. 2. Left: Faulty Version of Quicksort. Right: Results for Termination Check.

normal randomised

n m globals locals time memory time memory

3 4 12 18 1 s 7.2 M 1 s 8.0M
3 5 15 18 4 s 14.5 M 8 s 15.2 M
3 6 18 18 38 s 22.3 M 82 s 29.9 M
4 4 16 24 3 s 12.1 M 6 s 12.3 M
4 5 20 24 24 s 18.7 M 48 s 25.1 M
4 6 24 24 193 s 77.4 M 531 s 134 M
4 7 28 24 1742 s 414 M >3600 s –

Fig. 3. Results for Correctness of Sorting.

Correctness of the Sorting. In this case we also need to model the array contents
as global variables. Figure 3 lists the results for the corrected version of the
algorithm in figure 2, as well as for a variant in which the pivot element is
chosen randomly.

Impact of the Improvements. Figure 4 shows the impact of the three improve-
ments in the task of checking the correctness of Quicksort. We consider the
non-randomised version with n = 3, and m = 4. The line NONE contains the
reference values when all improvements are present. The lines VORD and PROC
give the time and space consumption when the improvements concerning variable
ordering and procedure for solving the model-checking problem are “switched
off”, respectively. More precisely, in the VORD line we use a BDD ordering
corresponding to the order left , right , lo, hi , piv (i.e. all BDD variables used for
representing left before and after a program step come before those for repre-

334 Javier Esparza and Stefan Schwoon

time memory

NONE 1.02 s 7.2M
VORD 49 s 6.8M
PROC 624 s 60.6 M

with w/o
preprocessing

closure 0.40 s 213 s
method of [10] 35 s 14 s

Fig. 4. Impact of the Improvements.

senting right etc.) plus automatic reordering. In the PROC line we compute
pre∗(Rh Γ ∗) instead of post∗({c0}) ∩ Rh Γ ∗.

In the right part of the figure we show results for different methods of comput-
ing the repeating heads. In all cases we first computed the ‘rough’ components
based on control flow information. We tried the transitive closure approach and
the method of [10], both with and without the preprocessing described earlier.
The times are for the computation of the heads only. In these experiments,
the preprocessing combined with a transitive closure computation worked best,
followed by the method of [10] without preprocessing; interestingly, using [10]
combined with preprocessing led to worse results.

In this example, the times achieved by the model checker would not be possi-
ble without the symbolic representation of the variables. The translation into a
normal pushdown system would create thousands or even millions of rules, and
in a test we made just creating these took far longer than the model-checking
with the symbolic approach.

6 Comparison with Bebop

In [1], Ball and Rajamani used the following example (see figure 5) to test
their reachability checker Bebop. The example consists of one main function
and n functions called leveli, 1 ≤ i ≤ n, for some n > 0. There is one global
variable g. Function main calls level1 twice. Every function leveli checks g; if
it is true, it increments a 3-bit counter to 7, otherwise it calls leveli+1 twice.
Before returning, leveli negates g. The checker is asked to find out if the labelled
statement in main is reachable, i.e. if g can end with a value of false. Since g is
not initialised, the checker has to consider both possibilities.

Despite the example’s simplicity, some its features are worth pointing out.
There is no recursion in the program, and so its state space is finite. However,
typical finite-state approaches would flatten the procedure call hierarchy, blowing
up the program to an exponential size. Moreover, the program has exponentially
many states, yet we can solve the reachability question in time linear in n. Finally,
there are O(n) different variables in the program; however, only two of them are
in scope at any given time. For this reason, we can keep the stack alphabet very
small, exploiting the locality inherent in the program’s structure.

Running times for different values of n are listed in table 5. In [1] a running
time of four and a half minutes using the CUDD package and one and a half
minutes with the CMU package is reported for n = 800, but unfortunately

A BDD-Based Model Checker for Recursive Programs 335

bool g; void leveli() {
int (0..7) i;

void main() { if (g) {
level1(); i = 0;

level1(); while (i < 7) i++;

if (!g) { } else if (i < n) {
reach: skip; leveli+1();

} leveli+1();

} }
g = !g;

}

n time

200 0.50 s
400 0.94 s
600 1.46 s
800 1.99 s

1000 2.41 s
2000 4.85 s
5000 13.63 s

Fig. 5. Left: The Example Program. Right: Experimental Results.

the paper does not say on which machine. More significant is the comparison of
space consumption. We have a peak number of 155 live BDD nodes, independent
of n. On the contrary, Bebop’s space consumption for BDDs increases linearly,
reaching more than 200,000 live BDD nodes for n = 800. The reason of this
difference is that our BDDs require 4 variables (one for the global variable g and
three for the 3-bit counter in scope), while Bebop’s BDDs require 2401 variables
(one variable for g and 2400 for the 800 3-bit counters). Since [1] does not describe
the model checking algorithm in detail, we cannot say if this difference in the
number of BDD variables is inherent to the algorithms or due to a suboptimal
implementation.

7 Conclusions

We have presented a model-checker to verify arbitrary LTL-properties of boolean
programs with (possibly recursive) procedures. To the best of our knowledge this
is the first checker able to deal with liveness properties. The Bebop model checker
by Ball and Rajamani, the closest to ours, can also deal with recursive boolean
programs, but it can only check safety properties [1].

Our checker works on a model called symbolic pushdown systems (SPDSs).
While this model is definitely more abstract than Bebop’s input language, a
translation of the former into the latter is simple (see Section 3).

Moreover, having SPDSs as input allows us to make use of the efficient
automata-based algorithms described in [4], which leads to some efficiency ad-
vantages. In particular, the maximal number of variables in our BDDs depends
only on the maximal number of local variables of the procedures, and not on the
recursion depth of the program.

Another interesting feature of the reachability algorithms of our checker is
that they can be used to compute the set of reachable configurations of the
program, i.e. we obtain a complete description of all the reachable pairs of the
form (control point, stack content). This makes them applicable to some security
problems of Java programs which require precisely this feature [6]. Even more

336 Javier Esparza and Stefan Schwoon

generally, we can compute the set of reachable configurations from any regular
set of initial configurations.

Acknowledgements

Many thanks to Ahmed Bouajjani for helpful discussions on how to obtain sym-
bolic versions of the algorithms of [4], and to one anonymous referee for inter-
esting comments and suggestions.

References

1. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean pro-
grams. In SPIN 00: SPIN Workshop, LNCS 1885, pages 113–130, 2000.

2. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties
of interfaces. Technical report, 2001.

3. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In Proceedings of CONCUR ’97, LNCS
1243, pages 135–150, 1997.

4. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Proceedings of CAV ’00, LNCS 1855, 2000.

5. J. Esparza and S. Schwoon. A BDD-based Model Checker for Recursive Programs.
Technical report, Institut für Informatik, Technische Universität München, 2001.
Available at http://www7.in.tum.de/gruppen/theorie/publications/.

6. T. Jensen, D. L. Métayer, and T. Thorn. Verification of control flow based security
properties. In Proceedings of 1999 IEEE Symposium on Security and Privacy,
IEEE Press, 1999.

7. J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, and D.L. Dill. Symbolic
model checking for sequential circuit verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 13(4):401–424, 1994.

8. F. Somenzi. Colorado University Decision Diagram Package. Technical report,
University of Colorado, Boulder, 1998.

9. R. E. Tarjan. Depth first search and linear graph algorithms. In SICOMP 1, pages
146–160, 1972.

10. A. Xie and P. A. Beerel. Implicit enumeration of strongly connected components.
In Proceedings of ICCAD, pages 37–40, San Jose, CA, 1999.

http://www7.in.tum.de/gruppen/theorie/publications/

	Introduction
	Basic Definitions
	Pushdown Systems
	The Model-Checking Problem for LTL

	Modelling Programs as Symbolic Pushdown Systems
	Algorithms
	Computing Predecessors
	Computing the Repeating Heads
	Computing Successors
	Complexity Analysis

	Efficient Implementation
	Quicksort

	Comparison with Bebop
	Conclusions

