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Abstract. Clustering in Metric Spaces can be conveniently performed
by the so called k-medians method. It consists of a variant of the popu-
lar k-means algorithm in which cluster medians (most centered cluster
points) are used instead of the conventional cluster means. Two main
aspects of the k-medians algorithm deserve special attention: computing
efficiency and initialization. Efficiency issues have been studied in pre-
vious works. Here we focus on initialization. Four techniques are studied:
Random selection, Supervised selection, the Greedy-Interchange algo-
rithm and the Maxmin algorithm. The capabilities of these techniques
are assessed through experiments in two typical applications of Cluste-
ring; namely, Exploratory Data Analysis and Unsupervised Prototype
Selection. Results clearly show the importance of a good initialization of
the k-medians algorithm in all the cases. Random initialization too often
leads to bad final partitions, while best results are generally obtained
using Supervised selection. The Greedy-Interchange and the Maxmin al-
gorithms generally lead to partitions of high quality, without the manual
effort of Supervised selection. From these algorithms, the latter is gene-
rally preferred because of its better computational behaviour.

Key words: Clustering, Metric Spaces, K-Medians algorithm, K-Medi-
ans initialization, Greedy-Interchange algorithm, Maxmin algorithm

1 Introduction

One of the most popular clustering techniques is the so-called k-means, c-means
or basic ISODATA algorithm [Tf3]. It aims to partition the data into k clu-
sters so that the sum of squared Euclidean distances between samples and their
corresponding cluster means is minimized. Given k initial estimates of cluster
means, it alternates two basic steps under an iterative scheme. These steps are
the classification of samples in accordance with their nearest cluster means, and
the computation of new cluster means. Each new partition decreases the sum
of squared distances between samples and their corresponding cluster means.
Although the k-means algorithm is suboptimal, it generally achieves good ap-
proximate solutions at the expense of a moderate computational cost.
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It is easy to modify the k-means algorithm for the case where data cannot be
adequately represented in a suitable vector space, though a metric is available to
measure the dissimilarity between data points. To do this, each cluster mean is
approximated by a “most centered sample” or median; that is, a sample whose
sum of distances to all cluster samples is minimum. We call this strictly distance-
based clustering technique k-medians or k-centroids [5].

Practically speaking, there are two major aspects of the k-medians algorithm
which deserve special attention: its computing cost and its initialization. Com-
putational aspects have been carefully studied in previous works [5/6]. In [5] we
proposed a fast version of the k-medians algorithm which basically consists of
introducing a fast Nearest-Neighbour search technique for efficiently computing
the closest median of a sample. On the other hand, in [6] we proposed a fast
median search technique which can be used to reduce the complexity associated
with the computation of cluster medians.

Initialization issues are studied in this paper. We compare four initialization
techniques for the k-medians algorithm: random selection, supervised selection,
greedy-interchange algorithm and mazmin algorithm. Random selection simply
consists of picking k cluster seeds at random. This is an efficient standard in-
itialization technique, but it often selects seeds that are close together and thus
low quality partitions. Supervised selection assumes that a small subset of sam-
ples can be labeled in accordance with a tentative classification scheme. If such
assumption is reasonable, seeds can be selected class by class to ensure better
dispersion than in the case of random selection. This is the same purpose of the
greedy-interchange and maxmin algorithms, though manual effort is replaced by
computing cost in this case. The former consists of two time consuming heuri-
stics for the k-medians clustering problem which are applied consecutively. The
latter is a slightly modified version of an efficient initialization technique for the
k-means algorithm [g].

The greedy-interchange and maxmin algorithms are described in sections
and [B] respectively. Experiments are aimed at assessing the capabilities of the
different initialization techniques in two typical applications of clustering; na-
mely, exploratory data analysis and unsupervised prototype selection. Results
with synthetic data (Gaussian mixtures) as well as real data (human banded
chromosomes) are reported in section Ml Conclusions are summarized in sec-
tion [B.

2 The Greedy-Interchange Algorithm

K-medians clustering can be properly stated as a combinatorial optimization
problem. Given a metric space (E, d), a finite set of data points or “prototypes”
P C E and a positive integer k, we seek a subset of k cluster “representatives”,
@ C P, for which the following criterion is minimized:

2Q) = min d(p,q) (1)

peP
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Note that there are k("~*) different ways to assign n — k non-representative
prototypes to the same k representatives but, among them, we are only inte-
rested in the partition which results from assigning each prototype to its nearest
representative. Criterion (Il) measures the sum of distances associated with such
minimum distance partition.

The k-medians clustering problem, well-known as a prototype location pro-
blem [10], is NP-Hard [7]. Despite of this negative result, there are quite a few
heuristics other than the k-medians algorithm that provide good approximate
solutions [10]. Most of these heuristics, however, cannot be used for clustering
large data sets because of their high complexity. Two of the fastest heuristics
are the greedy and interchange algorithms described below.

2.1 The Greedy Algorithm

As its name indicates, this algorithm follows a greedy strategy to draw k repre-
sentatives from the prototypes. In iteration ¢, the set of t — 1 previously selected
representatives is enlarged with a prototype that leads to a maximum decrease
of (@). That is, the set of representatives selected in iteration ¢, 0 <t < k, is:

0 ift=0
Q= ) " where ¢ = argmin z(Q" ' U{p
Qt—l U {Qt} lf t > O t peprifl ( { })

This algorithm computes the criterion function (n — k)k times approxima-
tely, and hence a direct implementation makes (n—k)?k? distance computations.
Fortunately, this computing cost can be notably reduced by simply introducing
an auxiliary array of distances between prototypes and their nearest representa-
tives (see fig. [). Its complexity is of (n — k)?k distance computations approxi-
mately.

Algorithm greedy(P, d, k; Q C P)

Variable: D € R” /* auxiliary array: D, = mingeg d(p, q) */
Method: Q = 0; D = (c0)”
fort =1 to k do /* compute ¢ = ¢ and add it to Q */
minz = oo
Vpe P—(Q do
2= Zp/ePfQ min(Dp/,d(p'7p)) />|< 2= Z(Qtil U {p}) */

if 2/ < minz then minz =2';qg=p
Q=QU{q}; Vp€ P—Q do D, = min(D,,d(p,q))

Fig. 1. Greedy algorithm.
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2.2 The Interchange Algorithm

The interchange algorithm starts from a given set of representatives and tries
to improve it iteratively. In each iteration, the algorithm searches for a pair
(representative, prototype) whose interchange leads to a minimum increase of (),

(¢7.q") = argmin 2(Q—{q} U{7})
(¢DEQxP-Q

If (M) decreases by interchanging ¢~ and g™, then such interchange is carried
out and the algorithm begins a new iteration; otherwise, the algorithm stops.

There are (n — k)k possible interchanges in each iteration, and each inter-
change requires evaluation of (). Therefore, a straightforward implementation
of this algorithm computes (n — k)2k? distances per iteration. As in the case of
the greedy algorithm, it is possible to reduce this complexity by introducing a
simple algorithmic refinement (see fig. [2)).

Algorithm interchange(P, d, k, Q° C P; Q C P)
Variable: D € R”
Method: Q = Q°

repeat
interchange = false; minz = oo
Vg € Q do /* explore possible interchanges with ¢ */
Vpe P—QU{q} do Dy, = mingeg_(q d(p,q")
Vpe P—Q do
Z = ZP’EP—Q—{p}U{q} min(Dy, d(p', )
if 2/ < minz then minz =2; ¢~ =q; ¢" =p
if 2(Q —{¢ }uU{¢"}) < 2(Q) then /* advantageous interchange */

interchange = true; @ = Q — {g” U {¢"}
until —interchange

Fig. 2. Interchange algorithm.

For each representative ¢, the refined method efficiently explores all possi-
ble interchanges with ¢ by introducing an auxiliary array, D. For each non-
representative prototype p, the minimum distance between p and all representa-
tives except ¢ is computed and stored in D. In this way, evaluation of the n — k
possible interchanges with ¢ can be performed by computing (n — k)? distances.
In total, the number of distance computations per iteration coincides with that
of the greedy algorithm (i.e. (n — k)2k).

2.3 Combination: The Greedy-Interchange Algorithm

We call greedy-interchange combination (algorithm) to the consecutive applica-
tion of both algorithms. Despite of the computational improvements discussed
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above, the complexity of this combination is too high for clustering of a large
data set. Nevertheless, it is still possible to use this combination with a (random)
subset of moderate size so as to obtain an initial solution for the k-medians algo-
rithm. In this case, the greedy-interchange algorithm can be efficiently applied
by preprocessing the matrix of pairwise distances between prototypes.

3 The Maxmin Algorithm

The maxmin algorithm is a slightly modified version of an efficient initialization
technique for the k-means algorithm [8]. It can also be seen as a fast approxi-
mate greedy algorithm. As this technique does, the maxmin algorithm iteratively
selects one representative at a time. In iteration ¢, the set of t — 1 previously
selected representatives is enlarged with the prototype whose distance to its clo-
sest representative is maximum. That is, the set of representatives selected in
iteration ¢, 1 <t < k, is:

bit P) ift=1
Qt = Wt zlrary( ) 1 " where ¢ = argmax min d(p,q)
Q' uU {qt} ift>1 pEP—Qt—1qEQ!!

A detailed description of this algorithm is shown in fig. Bl This description
includes an auxiliary array which is used just as the auxiliary array included in
the greedy algorithm (fig.[). The number of distances computed by the maxmin
algorithm is approximately (n — k)k. Note that this number is very small in
comparison with that of the greedy algorithm.

Algorithm maxmin(P, d, k; Q C P)
Variable: D € R” /* auxiliary array: D, = mingeq d(p, q) */
Method: Q = 0; D = (00)”; ¢ = arbitrary(P)
fort=1to k do
Q = QU{q}; mazmin =0
Vpe P—Q do
dpq = d(p, q)
if dpg < D, then D, = dpq
if D, > maxmin then g = p; mazmin = D,

Fig. 3. Maxmin algorithm.

4 Experiments

As in the case of the k-means algorithm, the k-medians algorithm can be used
both for data exploration and to provide prototypes for use in supervised classi-
fiers. Assume that prototypes are grouped into k* compact, well-separated clu-
sters of similar a priori probabilities, and that each cluster can be appropriately
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modeled by a single representative. Then, application of the k-medians algorithm
with &k = k* should discover the natural groups and provide an optimal set of
representatives. Although this is a rather unrealistic assumption in many cases,
much effort can be saved in early stages of classifier design if such assumption
can be assessed. If not, application of the k-medians algorithm is still advan-
tageous when a large set of unlabeled prototypes is available but only a small
fraction of the prototypes is to be used for (re)training a classifier. In this case,
the unconditional distribution of the whole set can be adequately approximated
with the set of representatives selected by the k-medians algorithm.

The experiments reported hereafter have been designed to study the perfor-
mance of the k-medians algorithm as: a) an exploratory data analysis technique;
and b) a procedure for unsupervised selection of prototypes. As we will see, this
performance depends very much on the initialization technique.

4.1 Exploratory Data Analysis

To study the k-medians algorithm as an exploratory data analysis technique, a
simple classification problem has been chosen. It involves 10 equally-probable
classes of 8-dimensional normal densities, with well-separated means, and com-
mon covariance matrix X = 0.0307 I. Two sets of 10, 000 independent prototypes
each were drawn from this mixture for training and test purposes.

The Bayes classifier for this problem is linear and can be implemented as a
minimum Euclidean distance classifier by using the true class means as prototy-
pes. Its empirical error rate is 2.1%. This error rate is also achieved when true
class means are replaced by their empirical estimates, but it reaches 2.8% when
means are approximated by class medians. If these class medians are used to in-
itialize the k-medians algorithm, then a set of representatives is obtained whose
associated minimum distance classification error rate is 3.0%. On the other hand,
the nearest-neighbour rule based on the whole training set missclassifies 4.0% of
the test prototypes.

Taking into account these figures, the application of the k-medians algorithm
should be considered “successful” if, with & = 10, it provides a “quasi-optimal”
set of representatives; that is, one whose associated minimum distance classifi-
cation error rate is 3.0%. As it will be seen, success is closely related with good
initialization: if the algorithm is not appropriately initialized, then it will fail
to pick one representative of each class and hence the error rate is expected to
increase dramatically. This is certainly true if values of k smaller than 10 are
tried. On the other hand, this undesirable behaviour is expected to be reduced
by using larger values of k.

The k-medians algorithm was executed 50 times for each one of the four initia-
lization techniques previously discussed and each k € {5,6,...,30}. Although
we always used the same training set of 10,000 training prototypes in these exe-
cutions, a different initial set of representatives was obtained each time: supervi-
sed selection was based on randomly selected class seeds; the greedy-interchange
algorithm was tested on randomly chosen subsets of 100 prototypes; and the
maxmin algorithm was started from a prototype also chosen at random. We
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never took advantage of the prototypes coordinates; only Euclidean distances
were used. Results are shown in figure[4. This figure encompasses eight panels
distributed in four rows and two columns. Each row is associated with a dif-
ferent initialization technique, while the left and right columns correspond to
initial and k-medians-optimized sets of representatives, respectively. Each plot-
ted point in these panels represents the error rate (E) of the nearest neighbour
classifier based on a different set of representatives. An average error rate curve
is included in each panel to help with interpretation of results.

As expected, the performance of the k-medians algorithm depends very much
on the initialization technique used. The better the initial solutions are, the more
quasi-optimal solutions are found. This tendency is quite clear when comparing
random selection with the other initialization techniques. Random selection al-
most always fails to provide good initial sets of representatives and, in conse-
quence, it often leads to clearly suboptimal solutions (E > 10%). On the con-
trary, the initial solutions provided by the other techniques hardly ever lead to
such suboptimal results. A finer analysis reveals, however, that minor differences
in quality do exist among these techniques. Although the best results correspond
to supervised selection, they are very similar to those obtained by the greedy-
interchange combination. This excellent outcome confirms that spending manual
effort does not pay off when techniques are available that can do the same job
at the expense of computing cost. In fact, even better results were observed for
the greedy-interchange algorithm in further experiments (not reported here for
brevity) testing this algorithm on random subsets of more than 100 prototypes.
Unfortunately, its high complexity renders this technique useless for clustering
large sets. In such case, the maxmin algorithm is perhaps the best choice. Despite
the fact that this technique generates slightly worse results than those provided
by the greedy-interchange combination, its complexity matches well with that
of the k-medians algorithm. On the other hand, suboptimal solutions can be
eventually circumvented by testing several sets of representatives or using values
of k larger than the number of natural groups. As expected, it is observed that
chances of being trapped in a suboptimal solution rapidly decrease as larger va-
lues of k are tried. However, this alternative should be used with caution since
misleading results can be derived when a natural group is “dissected” which
would otherwise be appropriately modeled by a single prototype. Moreover, an
undesirable side effect has been also found in the experiment: the average error
rate increases with k& and quickly approximates that of the nearest-neighbour
classifier based on the whole training set (4.0%).

Apart from using the error rate associated with a set of representatives as
a measure of its quality, we also used the average Euclidean distance between
the prototypes and their closest representatives; that is, a normalized version
of the k-medians clustering criterion (). As in the case of the error rate, this
parameter was estimated from the 10, 000 test prototypes instead of the training
prototypes to assure better statistical independence. Results, omitted here for
the sake of brevity, show basically the same tendencies as those of fig. @
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Fig. 4. Results obtained whith the k-medians algorithm tested as an exploratory data
analysis technique. Each row of panels is associated with a different initialization tech-
nique; left and right columns of panels correspond to initial and optimized sets of
representatives, respectively. Each plotted point in these panels represents the error
rate of the nearest neighbour classifier based on a different set of representatives.
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4.2 Unsupervised Selection of Prototypes

Two classification problems have been considered so as to test the k-medians
algorithm as a procedure for unsupervised selection of prototypes. As in the
case of the simple problem considered in the previous section, the first classifica-
tion task involves 10 Gaussian equally-probable classes. Now, however, we have
chosen 10-dimensional normal densities of different means and also different co-
variance matrices. A total of 20, 000 independent prototypes were extracted from
this mixture; half for training and half for testing. Some error rates computed
from these prototypes are: 9.9% for the Bayes classifier implemented as a Gaus-
sian classifier from the true parameters of the densities; 22.3% for the minimum
Euclidean distance classifier based on empirical class means; 31.5% for the same
classifier based on empirical class medians; and 21.7% for the nearest neighbour
classifier designed from the whole set of 10,000 training prototypes. Clearly, this
task is much more difficult than the previous simple problem. The error rate of
a nearest neighbour classifier based on the prototypes selected by the k-medians
algorithm will heavily depend on the value of k used. The larger value of k is
used, the smaller error rate is expected. For instance, if a small value such as
k = 10 is used, then an error rate not smaller than 31.5% should be expected.
On the other hand, it is clear that rates close to 21.7% will be obtained for values
of k approximating the number of available training prototypes.

The second task consists of classifying human banded chromosomes represen-
ted as strings. The data used for this task was extracted from a database of ap-
proximately 7,000 chromosomes that where classified by cytogenetic experts [9].
Each digitized chromosome image was preprocessed through a procedure that
starts obtaining an idealized, one-dimensional density profile that emphasizes
the band pattern along the chromosome. The idealized profile is then mapped
nonlinearly into a string composed of symbols over a certain alphabet. A total of
4400 samples was collected, 200 samples of each of the 22 non-sex chromosome
types [2]. The standard procedure for estimating the error rate of a classifier
applied to this task is a 2-fold cross-validation in which both sets are chosen to
have 100 samples of each of the 22 non-sex chromosome types. Following this
procedure, we have recently obtained an excellent error rate of 4.9% by appli-
cation of the 12-nearest neighbours decision rule based on a time consuming
normalized edit distance [4].

Three techniques have been compared in both tasks: a) random selection
alone; b) random selection followed by the k-medians algorithm; and c) the k-
medians algorithm initialized by the randomly started maxmin method. Supervi-
sed selection and the greedy-interchange combination have not been considered
because of their high cost. For the first task, the three techniques considered
have been executed 50 times for each k& € {10, 20, 50, 100, 200, 500, 1000, 2000,
5000, 10000}. The same training set of 10,000 training prototypes and the Euc-
lidean distance were always used in these executions. The average error rate of
the nearest neighbour classifier based on the representatives selected is shown
in the panel at the left of figure [ as a function of k. For the second task, va-
lues of k € {22, 44, 88,220,440, 880,2200} have been tried. For each technique
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and each of these values, an estimate of the error rate associated with the k-
representatives-based 12-nearest neighbours classifier was obtained by averaging
over the estimates computed from 5 executions of the 2-fold cross-validation pro-
cedure discussed above. Results are shown in the panel at the right of figure[5
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Fig. 5. Results provided by three techniques for unsupervised selection of prototypes
tested on two classification tasks involving synthetic (left) and real (right) data. The
average error rate of the k' —nearest neighbour classifier (left: k¥’ = 1; right: k' = 12) is
shown as a function of the number of representatives selected (k).

From the results of figure [3] it is clear that random selection is significantly
improved by using the k-medians algorithm, and this is particularly true when
the maxmin algorithm is used as initialization technique. For instance, in the
second task, random selection leads to an error rate of 7.6% for & = 880, while
the maxmin initialization reduces this figure to 5.8%. Although these results are
quite satisfactory, they are not as good as one would expect. It would be nicer
to see error rate curves ending with large nearly flat shapes but, in contrast,
they markedly decay until the largest values of k tried. Obviously, larger sets of
training prototypes would compensate for the slow rate of convergence showed
by the (k’—)nearest neighbour(s) decision rule. On the other hand, this slow
rate of convergence might be accelerated through optimization of the standard
decision rule from the data.

5 Conclusions

Four initialization techniques for the k-medians clustering algorithm have been
compared: random selection, supervised selection, the greedy-interchange algo-
rithm and the mazmin algorithm. The capabilities of these techniques have been
assessed through experiments in two typical applications of clustering; namely,
exploratory data analysis and unsupervised prototype selection. Results clearly
show the importance of a good initialization of the k-medians algorithm in all the
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cases. Random initialization too often leads to bad final partitions, while best
results are generally obtained using supervised selection. The greedy-interchange
and the maxmin algorithms generally lead to partitions of high quality, without
the manual effort of supervised selection. From these algorithms, the latter is
generally preferred because of its better computational behaviour.
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