
Javelin 2.0: Java-Based Parallel Computing on

the Internet

Michael O. Neary, Alan Phipps, Steven Richman, and Peter Cappello

Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA 93106
{neary, evodius, joy, cappello}@cs.ucsb.edu

Abstract. This paper presents Javelin 2.0. It presents architectural en-
hancements that facilitate aggregating larger sets of host processors. It
then presents: a branch-and-bound computational model, the supporting
architecture, a scalable task scheduler using distributed work stealing, a
distributed eager scheduler implementing fault tolerance, and the results
of performance experiments. Javelin 2.0 frees application developers from
concerns about complex interprocessor communication and fault toler-
ance among Internetworked hosts. When all or part of their application
can be cast as a piecework or a branch-and-bound computation, Javelin
2.0 allows developers to focus on the underlying application.

1 Introduction

Our goal is to harness the Internet’s vast, growing, computational capacity for
ultra-large, coarse-grained parallel applications. By providing a portable, secure
programming system, Java holds the promise of harnessing this large heteroge-
neous computer network as a single, homogeneous, multi-user multiprocessor [1].
Some research projects that are designed to exploit this include Charlotte [4],
Atlas [3], Popcorn [6], Javelin [7], Bayanihan [12], Manta [13], Ajents [8], and
Globe [2]. Javelin 2.0 is designed to achieve two goals: 1) Obtain the performance
of a massively parallel implementation; 2) Provide a simple API, allowing design-
ers to focus on a recursive decomposition/composition of the parallelizable part
of the computation. The application programmer gets the performance benefits
of massive parallelism, without adulterating the application logic with interpro-
cessor communication details and fault tolerance schemes. The resulting code
should run well on a set of processors that changes during execution. Javelin 2.0
handles all interprocessor communication and fault tolerance for the application
programmer, when the parallelizable computation can be cast as a branch-and-
bound (or piecework) computation. This is a broad class of computations. We
focus here on 2 fundamental issues:

– Scalable Performance — If there is no niche where Java-based global com-
puting outperforms existing multiprocessor systems, then there is no reason
to use it. The architecture must scale to a higher degree than existing mul-
tiprocessor architectures, such as networks of workstations.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 1231–1238, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



1232 Michael O. Neary et al.

– Fault tolerance — An architecture that scales to thousands of hosts must be
fault tolerant, particularly when hosts, in addition to failing, may dynami-
cally disassociate from an ongoing computation.

Javelin 2.0 extends the piecework computational model to a branch-and-bound
model, which is implemented using a weak form of shared memory that itself is
implemented via the pipelined RAM [9] model of cache consistency. This shared
memory model is strong enough to support branch-and-bound computation (in
particular, bound propagation), but weak enough to be fast. Using this cache
consistency model, we present a high-performance, scalable, fault tolerant Inter-
net architecture for branch-and-bound computations, such as are used to solve
NP-complete problems. For such an architecture to succeed, the architects must
be diligently cognizant of the central technical constraint: On the Internet, com-
munication latency is large.

2 Model of Computation

The branch-and-bound method, which generalizes the piecework model of com-
putation [10], intelligently enumerates all feasible points of a combinatorial op-
timization problem: not all feasible solutions are examined. Branch-and-bound,
in effect, proves that the best solution is found without necessarily examin-
ing all feasible solutions. The method successively partitions the solution space
(branches), and prunes a subspace, when there is sufficient information to infer
that none of the subspace’s solutions are as good as a current solution (bound).
(See Papadimitriou and Steiglitz [11] for a more complete discussion of branch-
and-bound.) The computational model implies the following requirements: 1)
Tasks (elements of the activeset) are generated during the host computation; 2)
When a host discovers a new best cost, it propagates it to the other hosts; 3) De-
tecting termination in a distributed implementation requires knowing when all
subspaces (children) have been either fully examined or killed. The challenge, in
sum, is, with a minimum of communication, to enable: a) hosts to create tasks,
which subsequently can be stolen; b) hosts to propagate new bounds rapidly to
all hosts; c) the eager scheduler to detect tasks that have been completed or
killed. The last item is needed not just for termination detection, but for fault
tolerance, to determine which tasks need to be rescheduled.

3 Architecture

The Javelin 2.0 system architecture retains the basic structure of its predecessors,
Javelin [7] and Javelin++ [10]. There are three system entities — clients, brokers,
and hosts. A client is a process seeking computing resources; a host is a process
offering computing resources; a broker is a process that coordinates the allocation
of computing resources.



Javelin 2.0: Java-Based Parallel Computing on the Internet 1233

3.1 Javelin Broker Name Service

When a host (or client) wants to connect to Javelin, it first must find a broker
that is willing to serve it. The JavelinBNS system is a scalable, fault tolerant
directory service that enables the discovery of a nearby Javelin broker, without
any prior knowledge of the broker network structure. It is designed not only to
aid hosts who are searching for brokers, but also to aid brokers who are looking
for neighboring brokers.

A JavelinBNS system consists of at least two fully replicated JavelinBNS
servers. Each server is responsible for managing a list of available brokers, re-
sponding to broker lookup requests, and ensuring that the other JavelinBNS
nodes contain the same information. The JavelinBNS system thus serves as an
information backbone for the entire Javelin 2.0 system. Since the information
stored for each broker is relatively small, the service will scale to a very large
number of brokers. A small number of BNS servers will therefore be capable of
administering thousands of broker entries, so a fully connected network of BNS
servers will not be a bottleneck. At regular intervals, information is exchanged by
the BNS servers. If a BNS server crashes and subsequently restarts, it can simply
reload its tables with the information from its neighbors, thus providing for fault
tolerance. Figure 1 shows the steps involved in a broker lookup operation.

Broker

BNS

Host

1. Register with BNS

2. BNS lookup 3. Broker list

4. Ping brokers

5. Connect to
selected broker

Fig. 1. JavelinBNS lookup sequence.

3.2 Broker Network & Host Tree Management

The topology of the broker network is an unrestricted graph of bounded degree.
Thus, at any time a broker can only communicate with a constant number of
other brokers. Similarly, a broker can only handle a constant number of hosts.
If that limit is exceeded adequate steps must be taken to redirect hosts to other
brokers. The bounds on both types of connection give the broker network the
potential to scale to arbitrary numbers of participants. At the same time, the
degree of connectivity is higher than in a tree-based topology.

When a host connects to a broker, the broker enters the host in a logical tree
structure. The top-level host in the tree will not receive a parent; instead it will



1234 Michael O. Neary et al.

later become a child of the client. This way, the broker maintains a preorganized
tree of hosts which are set on standby until a client becomes active. When a client
connects, or client information is remotely received from a neighboring broker,
the whole tree is activated in a single operation and the client information is
passed to the hosts. Brokers can individually set the branching factors of their
trees, and decide how many hosts they can administer. In case of a host failure,
the failed node is detected by its children and the broker restructures the tree
in a heap-like operation (for details, see [10]).

4 Scalable Computation & Fault Tolerance

4.1 The Scheduler

The fundamental concept underlying our approach to task scheduling is work
stealing, a distributed scheduling scheme made popular by the Cilk project [5].
Work stealing is entirely demand driven — when a host runs out of work it
requests work from some host that it knows. Work stealing balances the compu-
tational load, as long as the number of tasks is high relative to the number of
hosts — a property well suited for adaptively parallel systems.

In Javelin 2.0, tasks get split in a double-ended task queue until a certain
minimum granularity — determined by the application — is reached. Then, they
are processed. When a host runs out of local tasks, it selects a neighboring host
and requests work from that host. Since the hosts are organized as a tree, the
selection of the host to steal work from follows a deterministic algorithm based
on the tree structure. Initially, each host retrieves work from its parent, and
computes one task at a time. When a host finishes all the work in its deque, it
attempts to steal work, first from its children, if any, and, if that fails, from its
parent. This strategy ensures that all the work assigned to the subtree rooted
at a host gets done before that host requests new work from its parent. Work
stealing helps each host get a quantity of work that is commensurate with its
capabilities. The client is the root of its tree of hosts.

4.2 Shared Memory

For branch-and-bound computation, only a small amount of shared memory is
needed and a weak shared memory model suffices. The small amount is because
only one integer is needed to represent a solution’s cost. The weak model suffices
because if a host’s copy of best cost is stale, correctness is unaffected. Only
performance may suffer — we might search a subspace that could be pruned.
It thus suffices to implement the shared memory using a pipelined RAM (aka
PRAM) model of cache consistency. This weak cache consistency model can be
implemented with scalable performance, even in an Internet setting.

There are several methods to propagate bounds among hosts. We use the
following: When a host discovers a solution with a better cost than its cached
best cost, it sends this solution to the client. If the client agrees that this indeed



Javelin 2.0: Java-Based Parallel Computing on the Internet 1235

is a new best cost solution (it may not be, due to certain race conditions), it
updates its cached best cost solution, and “broadcasts” the new best cost to its
entire tree of hosts. That is, it propagates the new best cost to its children, who
in turn propagate it to their children, level by level down the host tree.

4.3 Fault Tolerance

Eager scheduling reschedules a task to an idle processor in case its result has not
been reported. It was introduced and made popular by the Charlotte project [4],
and also has been used successfully in Bayanihan [12]. Javelin++ [10] also uses
eager scheduling to achieve fault tolerance and load balancing. It efficiently and
relentlessly progresses towards the overall solution in the presence of host and
link failures, and varying host processing speeds.

The Javelin 2.0 eager scheduler is located on the client. Although this may
seem like a bottleneck with respect to scalability, it is not, as we shall explain
below. Eager scheduling, however, is more challenging for branch-and-bound
computation (as compared to piecework computation). Besides detecting positive
results, (i.e., new best cost solutions), the eager scheduler must detect negative
results: solution [subspaces] that have been examined and do not contain a new
best cost solution, and solution subspaces that have been pruned. Performance,
though, requires avoiding unnecessary communication and computation.

In a branch-and-bound computation, the size of the feasible solution space
is exponential in the size of the input. In principle, the algorithm may need
to examine all of these exponentially many feasible solutions to find the mini-
mum cost solution. In practice, a partial solution, p, is “killed” (a subspace is
pruned) when the lower bound on the cost of any feasible solution that is an
extension of p must be more costly than the currently known minimum cost so-
lution. The algorithm nonetheless must gather sufficient information to detect
that the minimum cost solution has indeed been found. This implies that killed
nodes and sub-optimal solutions must be detected by the eager scheduler. If a
separate communication is required to detect each such event, the overall quan-
tity of communication would nullify the benefits of parallelism. We cope with
this communication overload by aggregating portions of the search space into
atomic tasks, and similarly aggregating negative results into one communication
per atomic task. This lets the eager scheduler know that this part of the prob-
lem tree has been searched, and hence need not be rescheduled. The number of
negative communications consequently is equal to or less than the number of
atomic tasks. In practice, it is much less than the number of atomic tasks; many
are killed. We can adjust the computation/communication ratio by adjusting
the size of atomic tasks, in order to decrease the overall run time. Performance
is quite sensitive to atomic task size, so finding good size values is important.
For performance reasons, we balance the computational size of the hosts’ atomic
tasks with the client’s computation of result handling and eager scheduling, so
that neither the client nor the hosts have to wait for one another. Additionally,
we want the number of atomic tasks to be much larger than the number of hosts,
to keep them all well utilized, even when some are much faster than others.



1236 Michael O. Neary et al.

5 Experimental Results

All experiments were run in campus computer labs under a typical workload.
The heterogeneous test environment consists of 4 Sun Enterprise 450 dual/quad-
processors with a processor speed of 400 MHz; 49 Celeron 466/500 MHz pro-
cessors; and a Beowulf cluster of 42 nodes, with 6 Pentium III 500 MHz quad-
processors, and 36 Pentium II 400 MHz dual processors. The cluster is running
Red Hat Linux 6.0. All other machines are running Solaris 2.7. We used JDK
1.2 with active JIT for our experiments.

We tested the performance of Javelin 2.0 with a TSP application. The test
graphs are complete, undirected, weighted graphs of 22 and 24 nodes, with ran-
domly generated integer edge weights. These graphs are complex enough to jus-
tify parallel computing, but small enough to enable us to run tests in a reasonable
amount of time. The 22-node graph took approximately 3 hours to process on a
Sun E450. The 24-node graph took just under 10 hours on the same processor.

The term “speedup” is somewhat confusing here. Traditionally, speedup is
measured on a dedicated multiprocessor, where all processors are homogeneous in
hardware and software configuration, and varying workloads between processors
do not exist. Thus, speedup is well defined as T1/Tp, where T1 is the time a
program takes on one processor and Tp is the time the same program takes on
p processors. Therefore, strictly speaking, in a heterogeneous environment like
ours the term speedup cannot be used anymore. Even if one tries to run tests in
as homogeneous a hardware setup as possible, the varying workloads on both the
OS and the network can amount to big differences in the individual performance
of hosts. However, from a practical standpoint, a user running an application on
Javelin 2.0 with a large set of hosts will definitely see “speedup”; the application
will run faster than on a single machine. We will use the term practical speedup
to distinguish between the two scenarios. In the following, we may omit the word
“practical” when the meaning is clear from the context.

We now give a more formal definition of our notion of practical speedup:
Let M1, . . . , Mk denote k different processor types. Let T1(i) denote the time
to complete the problem using 1 processor of type Mi. Conventional speedup,
using p processors of type Mi can be defined as T1(i)/Tp(i). To compute speedup
when we have more than one type of processor, we generalize this formula. Let
a problem be solved concurrently using k types of processors, where there are pi

processors of type Mi: The total number of processors is p = p1 + · · · + pk. Let
Tp(p1, . . . , pk) denote the execution time when using this mix of p processors.
We define a composite base case that reflects this mix of processors:

T1(p1, . . . , pk) =
p1T1(1) + · · · + pkT1(k)

p1 + · · · + pk
.

Finally, we define the speedup S as

S = T1(p1, . . . , pk)/Tp(p1, . . . , pk).

While this definition does not incorporate machine and network load factors, it
does reflect the heterogeneous nature of the set of machines.



Javelin 2.0: Java-Based Parallel Computing on the Internet 1237

Figure 2 shows the speedup we measured in our experiments and calculated
according to the above formula. For the 22-node graph, speedup was superlinear
at first, until it topped out at 77.26 for 100 hosts, when communication became
a significant bottleneck. To observe superlinear speedup for the parallel TSP is
quite common, due to the inherent irregularity of the input graph. The results
for the 24-node graph illustrate this even further. Here, speedup was nowhere
near as good, reaching only 23.35 for 80 hosts. However, the curve still shows
a steady rate of improvement, and the larger graph has the potential to scale
better due to its higher computation complexity.

0

20

40

60

80

100

0 20 40 60 80 100

Processors

S
p

ee
d

u
p graph22

ideal
graph24

Fig. 2. Practical Speedup for TSP on Javelin 2.0.

To sum up, a graph that took about 3 hours to calculate on a single computer
took just under 3 minutes on 100 processors under their normal workloads. These
results are encouraging, although they need to be evaluated with different input
graphs and more hosts.

6 Conclusion

To enlarge the set of applications that can benefit from Javelin, Javelin 2.0
extends Javelin++’s piecework model of computation to a branch-and-bound
model. The technical challenge is to implement a distributed shared memory
that enables hosts to share bounds. We implemented the pipelined RAM model
of cache consistency among hosts sharing the bound. Our experiments indicate
that limited use of this weak shared memory poses no performance problem.

To facilitate aggregating large numbers of hosts, Javelin 2.0 enhances host
registration: The host can request the broker name system to return k broker
names, where k is chosen by the host. Currently, the host then pings these brokers
to discover the “nearest”. In Javelin 2.0, with but one Java RMI call on a broker,
a client gets a handle to the broker’s entire preorganized host tree. Other brokers
convey their host trees with a similar economy of communication.



1238 Michael O. Neary et al.

The TSP experiments suggest that branch-and-bound can be sped up effi-
ciently, even with large numbers of Internetworked hosts. Many combinatorial
optimization versions of NP-hard problems are solved with branch-and-bound.

Our distributed deterministic work stealing scheduler integrates smoothly,
not only with bound caching, but also with the distributed eager scheduler,
which provides essential fault tolerance.

References

[1] A. Alexandrov, M. Ibel, K. E. Schauser, and C. Scheiman. SuperWeb: Research
Issues in Java-Based Global Computing. Concurrency: Practice and Experience,
9(6):535–553, June 1997.

[2] A. Bakker, M. van Steen, and A. S. Tanenbaum. From Remote Object to Phys-
ically Distributed Objects. In Proc. 7th IEEE Workshop on Future Trends of
Distributed Computing Systems, Cape Town, South Africa, Dec. 1999.

[3] J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer. ATLAS: An Infrastructure
for Global Computing. In Proceedings of the Seventh ACM SIGOPS European
Workshop on System Support for Worldwide Applications, 1996.

[4] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Charlotte: Metacomputing
on the Web. In Proceedings of the 9th Conference on Parallel and Distributed
Computing Systems, 1996.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. In 5th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (PPOPP
’95), pages 207–216, Santa Barbara, CA, July 1995.

[6] N. Camiel, S. London, N. Nisan, and O. Regev. The POPCORN Project: Dis-
tributed Computation over the Internet in Java. In 6th International World Wide
Web Conference, Apr. 1997.

[7] B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, K. E. Schauser, and
D. Wu. Javelin: Internet-Based Parallel Computing Using Java. Concurrency:
Practice and Experience, 9(11):1139–1160, Nov. 1997.

[8] M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an Environment for Parallel,
Distributed and Mobile Java Applications. In ACM 1999 Java Grande Conference,
pages 15–24, San Francisco, June 1999.

[9] Lipton and Sandberg. PRAM: A scalable shared memory. Technical report,
Princeton University: Computer Science Department, CS-TR-180-88, Sept. 1988.

[10] M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, and P. Cappello. Javelin++:
Scalability Issues in Global Computing. Concurrency: Practice and Experience,
to appear, 2000.

[11] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

[12] L. F. G. Sarmenta and S. Hirano. Bayanihan: Building and Studying Web-Based
Volunteer Computing Systems Using Java. Future Generation Computer Systems,
15(5-6):675–686, Oct. 1999.

[13] R. van Nieupoort, J. Maassen, H. E. Bal, T. Kielmann, and R. Veldema. Wide-
Area Parallel Computing in Java. In ACM 1999 Java Grande Conference, pages
8–14, San Francisco, June 1999.


	Introduction
	Model of Computation
	Architecture
	Javelin Broker Name Service
	Broker Network & Host Tree Management

	Scalable Computation & Fault Tolerance
	The Scheduler
	Shared Memory
	Fault Tolerance

	Experimental Results
	Conclusion

