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Abstract. A new kind of cryptanalytic attacks, targeted directly at the
weaknesses of a cryptographic algorithm’s physical implementation, has
recently attracted great attention. Examples are timing, glitch, or power-
analysis attacks. Whereas in so-called simple power analysis (SPA for
short) only the power consumption of the device is analyzed, differential
power analysis (DPA) additionally requires knowledge of ciphertext out-
puts and is thus more costly. Previous investigations have indicated that
SPA is little threatening and moreover easy to prevent, leaving only DPA
as a serious menace to smartcard integrity. We show, however, that with
careful experimental technique, SPA allows for extracting sensitive in-
formation easily, requiring only a single power-consumption graph. This
even holds with respect to basic instructions such as register moves,
which have previously not been considered critical. Our results suggest
that SPA is an effective and easily implementable attack and, due to
its simplicity, potentially a more serious threat than DPA in many real
applications.

1 Introduction

It is the cryptanalyst’s objective to obtain as much critical information as possi-
ble out of a cryptosystem, while keeping his effort and the risk of being detected
at a minimum. In contrast to the design of a cryptographic algorithm, where
security constitutes the central purpose, its ultimate physical implementation
always depends on circuit implementation. Security aspects, as compared to ef-
ficiency, simplicity, or power consumption criteria, do still only play a marginal
role in circuit design.

Kocher et al. [4] have proposed the following two kinds of so-called power-
analysis attacks: simple power analysis (SPA), where the opponent tries to re-
cover information about the secret key by simply measuring the power consump-
tion of the computing device, and the more complex differential power analysis
(DPA). Whereas the difficulty in SPA remains in the necessity for the attacker
to know at which precise instant power consumption contains relevant informa-
tion, DPA is more demanding in terms of the supplementary information needed.
Above all, it requires a much larger number of experiments than does SPA.

In contrast to DPA, SPA merely requires the power consumption characteris-
tics of one execution of the algorithm. However, SPA was previously considered
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unrealistic due to the destructive effect of noise deteriorating the measured sig-
nal. It was believed that, if anything at all, only conditional jump instructions
testing for key bits might lead to successful SPA.

The results of our experiments, carried out on a smartcard-type micropro-
cessor, stand in contrast to these beliefs and show that simple power analysis is
an effective and easily implementable, hence serious, attack. This is even true for
much simpler instructions than previously speculated, such as move operations,
which cannot possibly be avoided by software countermeasures.

The outline of this paper is as follows. Section 2 provides an overview to the
state of the art in power analysis and positions our results in this context (Section
2.4). In Section 3, we describe our experimental technique and the obtained
results in detail. In Section 4, we draw the conclusions from the outcome of our
experiments.

2 Power-Analysis Attacks to Cryptosystems

Power analysis is a physical attack to smartcard-based cryptosystems. It exploits
the fact that the power dissipation of an electronic circuit depends on the actions
performed in it. More specifically, the current flowing through the power lines of
an operating microprocessor is dependent on the processed data. The following
paragraphs describe and compare the types of power analysis that are currently
examined. The hypotheses and results we discuss can be found in the recent
publications [4], [6], [3].

2.1 Simple Power Analysis and Differential Power Analysis

Power analysis differs from most physical attack methods (see [1] and [2]) in
many respects. First, it is not invasive and can thus be performed in a few in-
stants; therefore, it can be used if a card-based action performed by an ordinary
user is to be imitated by the eavesdropper, causing direct damage to the individ-
ual. Furthermore, the information side channel constituted by operation-related
consumption can be accessed quite easily and without requiring a lot of specific
knowledge about circuit or software implementation1.

Those reasons make power analysis a type of attack which must be consid-
ered as a menace in case the eavesdropper is able to extract some information
from the easily created side channel. Our objective has been to determine the
amount of that information.

Kocher et al. [4] describe the two techniques which use the power-dissipation
characteristics as a provider of side-channel information. Simple power analysis
implies that the cryptanalyst measures the power consumption of the device
operated during encryption or decryption, and evaluates the measured values
(sampled at adequate instants, whose timing must be known or found by the
1 Another question is how much information about the system is needed for exploiting

the consumption information properly, but for now we just discuss accessibility of
such a side channel.



80 Rita Mayer-Sommer

attacker) directly, in order to correlate them with the key itself. On the other
hand, differential power analysis is an attack which requires the availability of
multiple power-consumption characteristics and ciphertexts out of a large num-
ber of diverse plaintext inputs.

The main advantage of DPA over SPA, apart from the fact that the at-
tacker does not need to know implementational details of the target code (yet
he must provide himself with all the other information necessary for performing
DPA: a large number of ciphertexts and consumption graphs), is that the av-
eraging process reduces the noise energy in the measured consumption signals.
As the problem of extracting side-channel information from power-dissipation
characteristics mainly lies in the many orders of magnitude between the abso-
lute consumption values and the data-dependent differences between them, the
influence of noise on SPA measurements can present an obstacle. Nevertheless,
we could show that simple precautions in the measurement circuit, such as use
of shielded cables and avoidance of ground loops, can raise the signal-to-noise
ratio of the data obtained by SPA to an acceptable point.

The advantage of SPA over DPA is its low requirement in terms of amount of
experiments and degree of device corruption. It certainly requires some insight
into the structure of the implemented code, but extracting information about
the program code with the help of microprobing tools is not a big obstacle for
an experienced attacker (see [5] for details).

2.2 Physical Background of Simple Power Analysis

The power dissipation in CMOS cells such as logic gates, flip-flops, or latches
mainly depends on changes of components’ states rather than on the states
themselves; e.g., for an inverter whose input voltage, applied to the connected
gates of its cascaded PMOS and NMOS transistors, switches from high to low,
the establishment of a transient short-circuit is induced. The rise of current in
such a case is much larger than static dissipation. An in-depth analysis of short-
circuit power consumption for a simple inverter cell is made in [7].

From these considerations, one might conclude that not the actual contents
of the data bus, but rather the change in state of the internal registers from one
instruction to the next would be measurable by power analysis. Nevertheless,
our experiments enabled us to make both types of observations: the conductive
properties of the data bus disclosed information about the absolute Hamming
weight2 of the transported data, and the rise in current induced by a change
of state in internal registers was representative of the amount of bits that had
changed in the data stored at this location, i.e., the transition counts3. Those two
types of information are generated and retrieved independently, and combining
them for cryptanalytic means is definitely interesting.

2 The Hamming weight of a binary string is the number of ones that occur in it.
3 The transition count between two consecutively processed data strings is the Ham-

ming weight of their pointwise XOR-sum.
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2.3 Previous Results on Simple Power Analysis

Messerges, Dabbish, and Sloan [6] specifically indicate the dangers of SPA and
DPA on the DES encryption process. They provide an estimate on the reduction
of the brute-force search space for the eight DES key bytes, for the case where
the Hamming weights of these eight bytes are given, and also for the case where
additionally the eight parity bits are known: without any supplementary infor-
mation, there are 256 possibilities, compared to about 245 in the first and about
238 in the second case.

They acknowledge that finding out the Hamming weights alone may be of
little help, especially when larger keys than in DES are employed, but that this
type of knowledge can get quite useful as soon as the key bytes are shifted, like
during DES encryption.

In [6], the dangers are mentioned that may arise from knowledge of transi-
tion counts between key data and the data bus’ contents previously to key data
being transferred onto it. It is indicated that an attacker might easily find out
what was written on the bus right before it was loaded with the crucial key
byte, because this data is usually some fixed address or an instruction opcode.
In this concern, our cryptanalytic methods – observing different but compara-
ble processes (as are typical for execution of the encryption rounds), possibly
separated by many instructions, and extracting the differences between them
– take a different turn. What is proposed in [6] is an “instantaneous” analysis
where real-time transitions are observed and evaluated. In [6], it is claimed that
in such a case, the attacker requires some detailed knowledge about the source
code of the algorithm’s implementation (more precisely, that not only the code
structure, but also the addresses of accessed registers and memory have to be
known4).

The measurements exposed in [6] reflect the change in power dissipation when
a bus which at first contains a memory address is loaded with various data val-
ues. Our results extend those measurements by showing that it is not necessary,
nor at all helpful, to know storage addresses in order to find absolute Hamming
weight values of data.

In our view, it must be proven that Hamming weight information for key
bytes can be found by SPA. The two papers we discussed so far make this as-
sumption and affirm that in principle “it can be done”. Yet, they also claim that
SPA is only possible for conditional branching instructions. Still, the correspond-
ing quantitative results are not exposed. This triggered our desire to determine
how effectively Hamming weights, and not merely transition counts, really can
be found.

4 We observe that those addresses could be generated randomly for every single smart-
card (a kind of “fingerprint” addressing); to find out which addresses a certain card
uses, it would thus be necessary to extract its specific source code – not always an
easy task. It is more likely that the attacker is merely informed about the general
structure of the code.
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Biham and Shamir [3] propose a method which enables the attacker to iden-
tify the key-scheduling process during encryption by simple power measure-
ments, when he has no access to information about algorithm implementation or
timing. They show that the reasons for the vulnerability of DES, SAFER, and
SAFER+ to this attack are uneven cyclic shifts and the way original key bits are
grouped into subkey bytes. The authors found that during the key-scheduling
process in DES, knowledge of the Hamming weights of the subkey bytes provides
the key in a direct manner.

An important point is the implicit statement in [3] that SPA is an attack at
least as dangerous as DPA if the cryptographic algorithm is designed in a way
which makes it vulnerable to an attacker who has Hamming-weight information
(and not just in the case where the implementor of the algorithm is not cautious
about power analysis, and may create conditional jumps testing for key bits).

2.4 Our Results

We implemented the very simplest kind of power-analysis attack by observing
the chip’s power dissipation directly. Our main aim hereby was the extraction
of information about data arguments of instructions. The method we employed
to obtain maximum information from a microprocessor’s power consumption
characteristic was to compare a number of data-related processes identical except
for one of the data or instruction properties we wished to examine (e.g., Hamming
weight or Hamming-weight change, transition count, or absolute value of data
or storage location; types of instructions or contents of instruction arguments;
number of bits changing from high to low and inversely; more generally, the
different types of changes that may take place). Then, we had to find out which
of those properties could be at the origin of the observed variations.

In [4], it is claimed that SPA is easily made impossible by avoiding the use of
key bits in conditional branching or jump instructions, whose dissipation char-
acteristics distinguish themselves clearly from other operations. Yet, our results,
obtained without involving conditional branching on sensitive data, indicate that
even simple move instructions can reveal critical information.

Additionally, our results show that if the device is operated at sufficiently
low frequency and high supply voltage5, it is not even necessary to average noise
out of the consumption characteristics in order to obtain key information. This
implies that indeed a single experiment delivers enough insight to obtain key-
relevant information.

Although DPA can represent a powerful attack on cryptosystems, as it di-
rectly aims at obtaining key bits, it is not necessarily a “very low cost” attack in
the sense of easy feasibility. As the menace constituted by an attack is inversely
proportional to the expense required for its performance, successful SPA should
be regarded as especially dangerous due to its low cost.

5 In an SPA scenario, operating frequency and supply voltage are considered to be
under the control of the attacker.
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3 Experimental Method

We chose the PIC16C84 chip [8] as the processor for our experiments, which
were run at 4 MHz and 4.5 V supply voltage. This particular processor is similar
in structure to most of the microprocessors in use for smartcard systems.

The method we used to investigate data dependency of the PIC’s power dissi-
pation was to design test routines in the processor’s assembly language, making it
perform certain instructions with varying data arguments. We then acquired the
power-consumption characteristics generated during program execution; in the
next step, we found “zones” of high correlation between data and consumption,
which we further investigated. The conclusions drawn from these investigations
constitute the results of our query.

3.1 Data Dependency in Move Instructions

In order to evaluate changes in power dissipation due to writing different data
values into a certain memory location or register, we executed the following
assembly-language program (see [8] for details) as an infinite loop:

; define registers VAL, PORTB, PORTA, REG:
VAL equ 0x08
PORTA equ 0x05
PORTB equ 0x06 ; PORTA, PORTB: output ports
REG equ 0x0c

start
clrf REG
movlw D’255’
movwf VAL ; 0: move 255 to source value register

loopstart
movfw VAL, 0 ; 1: move new value to accumulator
nop ; 2
nop ; 3
movwf REG ; 4: ! move value from accumulator
nop ; 5 to internal register !
nop ; 6
movwf PORTB ; 7: move value to PORTB
bsf PORTA, 0 ; 8: set strobe bit (LSB of PORTA)
bcf PORTA, 0 ; 9: clear strobe bit
clrf PORTB ;10: clear data in port B
decfsz VAL ;11: decrease value,
goto loopstart ;12 back to loopstart if !=0
decf VAL ;13: set value to 255
goto start
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This way, the numbers which are consecutively written into REG range from
255 to 0 (cf. instruction 4), decreasing by steps of one. We also examined variants
of this program, where the transferred values were either increased by steps of
3, or decreased by steps of 1. Additionally, we ran the same program structure,
replacing the movwf in instruction 4 by other commands combining moves and
logical operations.

3.2 Finding Data Dependency

We acquired analog data representing the processor’s power dissipation, sam-
pled at 200 MHz (i.e., 50 samples per card cycle), by measuring the voltage over
a probing resistor connected between the microprocessor’s ground pin and the
overall circuit’s ground. We then wanted to find the instants during execution
of the previously described program loops where data dependency of power con-
sumption could be observed. At this point, assumptions were drawn as to what
changes in which properties of data could induce measurable variations in power
dissipation.

We investigated the data dependency of the acquired voltage samples in
the following way: for every data value (as we examined an eight-bit processor,
those values range from 0 to 255), one loop of the test program was run. Data
dependency is likely to occur at several instants, e.g., those where data is written
to the output ports of the processor; yet, this process is much less interesting
than the write operation triggered by the movwf-instruction, which transfers
a value from the accumulator to one of the internal registers, or inversely. In
order to see clearly at what exact instant during the execution of this command
the dependency between power dissipation and data is maximal, a correlation
factor (correlating the measured values to the investigated data properties) was
computed for every list of length 256, containing a measure of power dissipation
at a certain stage of the loop execution for every data value. Thus, for every
sampling moment k (the range of k is dependent on the number of assembly
instructions per loop and sampling rate) during the loop execution, there exists
a list vk,

vk = [vk(0), vk(1), . . . , vk(255)],

where vk(j) is the voltage measured over the probing resistor at the moment of
the kth sample during execution of the loop with data argument j. We are now
interested in correlations between vk(j) and certain properties p(j) of the data
j for fixed k.

There are various ways to compute correlations between two quantities. For
instance, one might be in the situation of wanting to evaluate the degree of cor-
relation between two sets of data samples with an unknown joint distribution.
However, in the present case, numerous data sets are compared against one an-
other, so the relative rather than the absolute value of correlation is interesting;
we were primarily interested in detection of local maxima. Therefore, setting the
average current consumption at the moment of the kth sample and the average of
the investigated data property over all data arguments to vk and p respectively,
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we simply computed the Pearson correlation factor rk,

rk =

∑
j(vk(j) − vk) · (p(j) − p)√∑

j(vk(j) − vk)2 ·
√∑

j(p(j) − p)2

and compared the correlation factors for different moments k during program
loop execution.

In accordance with our expectations, we found that correlation between
power dissipation and Hamming weight of processed data indeed occurs. This
fact can be stated after inspection of the different correlation graphs which have
been drawn with respect to direct data, Hamming weight, and transition counts.
The second type of correlation graph contains valuable information in the sense
of clear peaks indicating high correlation during the movwf-instruction. In ad-
dition, inspecting the transition-counts correlation graph we found that in the
same instruction, there is also an instant where power consumption is propor-
tional to the number of bits that were inverted from the previously transferred
data value to the current one. But we may not yet be led to the conclusion that
Hamming weights and transition counts are the only data properties correlated
to consumption; it is always possible that we “overlooked” certain other kinds
of correlation.

A typical graph of correlation values with respect to Hamming weight is
shown in Figure 1. From the correlation graph, we extracted local peaks, in-
dicating that “something interesting” might be happening at the kth instant
during loop execution. We then inspected the corresponding vk and evaluated if
indeed data dependency could be observed. Examples of typical vk’s, extracted
in the described manner, are given in Figures 2-10.

3.3 Noise Level of the Acquired Signals

Figures 2-10 indicate the striking similarities between the components of vk and
the Hamming weights (Fig. 2-4, 7-10) or the transitions counts (Fig. 5, 6) of
the sequence of processed data. Yet, the visualization of this similarity is just an
intuitive hint that Hamming information is leaked; the noise level of the obtained
signal still had to be examined.

Thus, we now evaluated whether the quality of the extracted measurement
data was at all high enough for making assumptions about Hamming weights of
the processed instruction arguments. In the given case, this evaluation primarily
consisted of the question whether the data consumption values could be grouped
in a unique manner, so that they would form clusters of points which could
be assigned a single Hamming weight, and whether the noise induced by the
measurement was low enough in order to make those attributions in a correct
manner.

We made the separation into nine clusters of points and observed that the
averages of every cluster are separated by voltages of about ∆V ≈ 5 mV . Those
cluster distances remain constant for all Hamming-weight values except for zero,
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Fig. 1. Pearson correlation factors during program loop execution. Variation of
correlation factors can be observed during the last five loop instructions: two
nop’s, movwf[data], two nop’s (200 samples per instruction).

which induces much lower consumption. Thus, the maximum admitted noise
level is nmax = ∆V/2; every noise contribution higher than this will lead to an
erroneous conclusion about the Hamming weight of processed data.

In our experiments, we were indeed able to locate vk’s where Hamming weight
attribution could be done in an unequivocal manner. For a real attacker things
are different: unless he already knows the timing of the investigated process,
he cannot find the proper instant k without the help of correlations. Yet, we
found that power dissipation at this crucial instant (where best indication of
Hamming weights is given) is characterized by maximal correlation between
current consumption and data, minimal distortion of power consumption by
processes other that the loading of key bytes on the internal data bus, and
minimum variance among the clusters of consumption samples. Thus, even if
the attacker is a priori unable to locate the desired instant k, he might reach
this aim by using those properties of the acquired data.

4 Concluding Remarks

We have shown that SPA can be done with extremely simple infrastructure
and adequate experimental technique. Even basic assembly instructions such as
register moves provide information about Hamming weights of on-bus data and
transition counts between data items written into memory locations or registers.
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Fig. 2. Voltage values for 256 loop executions. Here, vk is extracted at the instant
of highest correlation between Hamming weight of the data sequence and power
dissipation (during instruction 4). x-axis: data values j; y-axis: vk(j) in [V]. A
zoom-in is shown in Figure 3.
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Fig. 3. The values vk(j) for j ranging from 180 to 256, increasing by steps of 1.
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Fig. 4. For comparison, this figure gives the computed Hamming weights of the
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Fig. 5. Measured voltage values at instants of highest correlation between tran-
sition counts and power consumption, for j going from 180 to 255, increasing by
steps of 1.
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Fig. 6. Computed transition counts for data going from 180 to 255, increasing
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Fig. 7. The values vk(j) for data j transferred by the move-instruction ranging
from 76 down to 0, decreasing by steps of 1.
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Fig. 8. Computed Hamming weights for data ranging from 76 down to 0, de-
creasing by steps of 1.

Fig. 9. Measured voltage values for transferred data j ranging from 228 to 0,
decreasing by steps of 3.
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Fig. 10. Computed Hamming weights for data ranging from 228 to 0, decreasing
by steps of 3.

The SPA attacker does not require conditional jumps on sensitive data in order
to obtain this information, contrary to what was supposed until now. Using
appropriate noise shielding, we could show that a single experiment suffices in
order to draw the desired key information from the power consumption of a
smartcard processor performing cryptographic operations.

When examining instructions other than movwf, we have observed that the
extracted values sequence is identical, and hence independent of the instruction
type; thus, iorwf, xorwf, rrf, subwf all yield resembling vk’s when corre-
lated to Hamming weight and transition count. In order to explain this, we
indicate that the “crude” data is transferred over the internal bus before getting
involved with mathematical or logical operations in the ALU. This data transfer
is, at certain instants, the sole reason for characteristic power consumption val-
ues; whatever takes place inside the arithmetic and logic unit of course causes
data- and operation-dependent power dissipation, but it is not easily possible
nor at all necessary to analyze the power consumption of this type of activity.

It was our objective to find out whether Hamming weights and transition
counts are really yielded by SPA, and the question can be answered by a clear
yes. Even if we assume that nothing but what we found can be found at all,
this still is a menace to smartcard holders’ security if the attacker is able to
synchronize with the implemented software.
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