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Abstract. We investigate several alternate characterizations of pseudo-
random functions (PRFs) and pseudorandom permutations (PRPs) in
a concrete security setting. By analyzing the concrete complexity of the
reductions between the standard notions and the alternate ones, we show
that the latter, while equivalent under polynomial-time reductions, are
weaker in the concrete security sense. With these alternate notions, we
argue that it is possible to get better concrete security bounds for certain
PRF/PRP-based schemes. As an example, we show how using an alter-
nate characterization of a PRF could result in tighter security bounds for
some types of message authentication codes. We also use this method to
give a simple concrete security analysis of the counter mode of encryp-
tion. In addition, our results provide some insight into how injectivity
impacts pseudorandomness.

1 Introduction

Pseudorandom functions (PRFs) and pseudorandom permutations (PRPs) are
extremely useful and widely used tools in cryptographic protocol design, partic-
ularly in the setting of private-key cryptography. In this paper, we study several
different notions of security for these objects. Specifically, we study these notions
in a concrete security framework, and we show how different characterizations
may be used to derive better security bounds for some commonly used private-
key cryptographic protocols.

1.1 Descriptions of Notions

The notion of a PRF family was proposed by Goldreich, Goldwasser and Micali
[8]. In such a family, each function is specified by a short key, and can be easily
computed given the key. Yet it has the property that telling apart a function
sampled from the PRF family and one from a random function family, given
adaptive access to the function as a black-box, is computationally infeasible (for
someone who does not know the key). This is the standard notion of a PRF,
and (to distinguish it from alternate notions) we refer to it in this paper as the
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PRF notion. Luby and Rackoff extended the above to permutation families by
introducing the notion of a PRP family [11]. The reference family for defining
the security of a PRP family can be that of random functions, as in [11], or that
of random permutations, a practice started by Bellare, Kilian and Rogaway [5].
We adopt the definition of [5] and refer to it here as the PRP notion.

Alternate characterizations. PRFs may be characterized in several ways
other than the standard notion. We are particularly interested in one way sug-
gested in the very paper that introduced the standard notion [8]. This alternate
notion can be described informally through the following interactive protocol:
a distinguisher who is given adaptive oracle access to the function obtains the
output of the function on some points of its choice through oracle queries. It then
outputs a point that has not yet been queried and gets back, based on a hidden
coin flip, either the output of the function on that point or a uniformly dis-
tributed point in the range of the function. It should be computationally infeasi-
ble for the distinguisher to guess which of the two possibilities it was presented.
We call this notion indistinguishable-uniform functions or IUF, to distinguish it
from the standard notion PRF. A similar notion may be defined for permutation
families, and we call this IUP for indistinguishable-uniform permutations.

We also consider another notion that is normally associated with the secu-
rity of encryption schemes. In this notion too, the distinguisher is given adaptive
oracle access to the function. It then outputs two new points and, based on a
hidden coin flip, is presented with the output of the function on one of them.
We require that a computationally-restricted distinguisher have negligible suc-
cess in telling apart the two cases. In this paper, we refer to this notion as IPF,
for indistinguishable-point functions. We show that this notion does not imply
pseudorandomness for functions. However, when we consider the analogous no-
tion for permutations, which we call IPP (indistinguishable-point permutations),
we find that pseudorandomness is captured.

1.2 Concrete Security and Reductions Among the Notions

Making a break from the traditional approach of presenting PRF families in an
asymptotic way, Bellare, Kilian and Rogaway began the practice of explicitly
specifying the resources determining security and paying particular attention
to the quality of security reductions [5]. This approach forms the basis of con-
crete security analysis and has been used in many subsequent works [4,2,3]. One
benefit of this approach is that it enables the comparison (and classification as
weaker or stronger) of polynomially-equivalent notions in cryptography. Paying
attention to the concrete complexity of reductions between notions is impor-
tant in practice, as inefficient reductions translate to a penalty either in security
assurance or in running time.

Reductions Among the Notions. Under polynomial-time reductions, the
equivalence between the notions of PRF and IUF has been established by Gol-
dreich et al [8]. (In fact, the concrete security bounds we derive in our reductions
between these notions are implicit in theirs.) We establish that our reductions
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Fig. 1. Relating the notions. A solid arrow from notion A to notion B means that
there is a security-preserving reduction from A to B. A broken arrow indicates
a reduction that is not security-preserving. The arrows are labeled by the loss-
factor of the reduction. A hatched arrow means that there is no polynomial-time
reduction.

are tight. Additionally, we relate the notions of PRP and IUP. The reductions
between these two permutation notions are the same as those between the cor-
responding notions for functions.

Furthermore, we show that IUP and IPP are equivalent, up to a small constant
factor in the reduction. However, as mentioned above, a different picture emerges
when we look at the corresponding notions for functions. It turns out that IPF
and IUF (or PRF) are not equivalent, even in just an asymptotic sense. We show
that IPF is a strictly weaker notion, in that there are function families which are
secure in the IPF sense, but completely insecure in the IUF sense. A summary of
the reductions is given in Figure 1.

1.3 Motivation: Tighter Security Analyses

Our demonstration that the alternate notions we consider here are weaker in
the concrete security sense than the standard notions might be seen as an ar-
gument against using any of them. Yet we will recommend their use in certain
circumstances (to complement, rather than replace the standard notions).

In a concrete security analysis of a protocol which is based on a particular
primitive, the security of the protocol is related to that of the underlying prim-
itive in a precise way. If we know the concrete security of a protocol in terms of
the security of the underlying primitive under one notion, it is easy to translate
this to the security of the protocol in terms of the security of the primitive un-
der a weaker notion. We simply use the appropriate security reduction between
the notions. We then see a drop in the translated security, reflecting the gap
in the reduction between the notions. However, we show that it is sometimes
possible to directly reduce the security of the protocol to that of the underlying
primitive under a weaker notion without the expected drop in security. Such
a situation exists when the weaker notion somehow “meshes” better with the
notion of security for the protocol.
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We make the above discussion more concrete with two examples: message
authentication codes and symmetric encryption schemes. The security of (de-
terministic) message authentication codes (MACs) is captured by the notion of
unpredictable functions [10,1,12]. In the context of MACs, this means that an
adversary who is given valid MACs on some messages of its choice will be un-
likely to succeed in outputting a “new” message (that is, one different from those
whose MACs it was been given) along with a valid MAC on that message. It is
well-known that any PRF is unpredictable (i.e. a secure MAC) [8]. Moreover,
the reduction from unpredictable functions to PRFs is almost tight [5]. We show
that using a direct reduction from unpredictable functions to IUF, one can obtain
exactly the same bounds. This represents a tightening of the analysis, as we
expect security of a PRF in the IUF sense to be smaller than the security in the
standard PRF sense. (Our reductions show that the security in the IUF sense will
never be more than a constant factor of 2 greater than the security in the PRF
sense and will typically be a quantitative factor less.)

Now let us examine in what sense IUF “meshes” better with the notion of
unpredictable functions. The quantitative drop in security in the reduction from
PRF to IUF can be traced to the fact that under IUF the distinguisher must decide
given one challenge whereas, under PRF, every response to a query potentially
constitutes a “challenge”. Like IUF, the notion of unpredictable functions also has
a single distinguished challenge. In the reduction to PRF, however, we cannot
really take any advantage of the source of the strength of this notion, and hence
the bounds derived are not as tight as what could be achieved otherwise.

Another example of a notion with a distinguished challenge phase is the stan-
dard indistinguishability of encryptions notion of security for encryption schemes
[9,3]. Here again, using the notion of IUF instead of the standard PRF, we can
hope to tighten analysis of PRF-based encryption schemes. We do this for the
counter mode of encryption.

1.4 Related Work

We have already mentioned the foundational work on PRFs and PRPs [8,11]
and the concrete security analysis of these objects [5,4]. Our approach in this
work follows that of Bellare et al [3], who compared and classified notions of
security for symmetric encryption schemes according to the concrete complex-
ity of reductions. A concrete security analysis of various symmetric encryption
schemes, including the counter mode, is given in that paper. Naor and Reingold
have explored the relationship between unpredictable functions and PRFs under
different attack models [12].

2 Definitions and Notation

We describe different notions of security for (finite) function families in this
section. A function family is a keyed multi-set F of functions where all functions
have the same domain and range. To pick a function f from family F means to
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pick a key a, uniformly from key space Keys(F ) of F , and let f = Fa. A family F
has input length l and output length L if each f ∈ F maps {0, 1}l to {0, 1}L.

We let Rl,L denote the function family consisting of all functions with input
length l and output length L. Similarly, we let Pl denote the set of all permuta-
tions on l-bit strings.

A function family F is pseudorandom if the input-output behavior of Fa is
indistinguishable from the behavior of a random function of the same domain
and range. This is formalized via the notion of statistical tests of Goldreich et
al [8]. Our concrete security formalizations follow those of Bellare et al [5].

We first informally describe the two additional notions (IUF and IPF) for
function families considered in this paper. The corresponding notions for per-
mutation families (IUP and IPP) are analogous to these, and so we skip their
description. At the end of this section, we formally define all these notions (for
both function and permutation families).

Indistinguishable-Uniform Functions. This is an adaptation of a notion
given by Goldreich et al [8]. The idea is that a distinguisher should not be able
to distinguish the output of the PRF from a uniformly distributed value in the
range of the function. The formalization considers two different experiments. In
both experiments we start by choosing a random key a ← Keys(F ), specifying
a function Fa. In the first phase, the distinguisher is given an oracle for Fa and
allowed to query this oracle on points of its choice. It then outputs a point x that
has not been queried yet and some state information s that it may want to pre-
serve for use during the second phase. In one experiment, it receives in response
the value Fa(x). In the other experiment, it receives a uniformly distributed value
in the range of F . The PRF family is “good” if no “reasonable” distinguisher
can obtain significant advantage in distinguishing the two experiments.

Indistinguishable-Point Functions. This is an adaptation of the indis-
tinguishability of encryptions notion of security for encryption schemes. Here
again we imagine a distinguisher A that runs in two phases. In the find phase,
given adaptive access to an oracle for the function, it comes up with a pair of
points x0, x1 that it has not queried yet and some state information s. In the
guess phase, given the output of the function y on one of these points and s, it
must identify which of the two points goes with y.

It is interesting that the notion IPP does capture pseudorandomness for per-
mutation families. For most other primitives, we find that an indistinguishable-
point-based characterization is weaker than an indistinguishable-uniform-based
characterization. This is true for encryption schemes and turns out to be true
for function families, as well. Observe that, for encryption schemes, we are usu-
ally concerned with this weaker characterization, because it captures the desired
security requirements.

Formal Definitions. For each of the six notions we consider in this paper, we
give definitions using the experiments defined in Figure 2. First, we consider the
function family notions: PRF, IUF, and IPF.
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PRF: ExpPRF
F (A, b)
a← Keys(F )
O0 ← Fa;O1 ← Rl,L

d← AOb

return d

PRP: ExpPRP
F (A, b)
a← Keys(F )
O0 ← Fa;O1 ← Pl

d← AOb

return d

IUF: ExpIUF
F (A, b)
a← Keys(F )

(x, s)← AFa(find)†

y0 ← Fa(x); y1
R← {0, 1}L

d← A(guess, yb, s)
return d

† x not queried to Fa

IUP: ExpIUP
F (A, b)
a← Keys(F )

(x, s)← AFa(find)†

y0 ← Fa(x); y1
R← {0, 1}l

d← A(guess, yb, s)
return d

† x not queried to Fa

IPF: ExpIPF
F (A, b)
a← Keys(F )

(x0, x1, s)← AFa(find)†

y ← Fa(xb)
d← A(guess, y, s)
return d

† x0, x1 not queried to Fa

IPP: ExpIPP
F (A, b)
a← Keys(F )

(x0, x1, s)← AFa(find)†

y ← Fa(xb)
d← A(guess, y, s)
return d

† x0, x1 not queried to Fa

Fig. 2. Experiments defining each of the notions considered in this paper.

Definition 1. For each notion N ∈ {PRF, IUF, IPF}, let F : Keys(F )×{0, 1}l →
{0, 1}L be a finite function family. For an adversary A and b = 0, 1 define the
experiment ExpN

F (A, b), as given in Figure 2. Define the advantage of A and the
advantage function of F , respectfully, as follows. For any integers t, q ≥ 0,

AdvN
F (A) = Pr[ExpN

F (A, 0) = 0 ]− Pr[ExpN
F (A, 1) = 0 ]

AdvN
F (t, q) = max

A
{AdvN

F (A) }

where the maximum is over all A with time complexity t, making ≤ q queries.

Here the “time-complexity” is the worst-case total execution time of the exper-
iment, plus the size of the code of the adversary, in some fixed RAM model of
computation. This convention is used for all definitions in this paper.

Next, we turn our attention to the definitions for the corresponding permutation
family notions: PRP, IUP, and IPP.

Definition 2. For each notion N ∈ {PRP, IUP, IPP}, let F : Keys(F )×{0, 1}l →
{0, 1}l be a finite permutation family. For an adversary A and b = 0, 1 define
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the experiment ExpN
F (A, b), as given in Figure 2. Define the advantage of A and

the advantage function of F , respectfully, as follows. For any integers t, q ≥ 0,

AdvN
F (A) = Pr[ExpN

F (A, 0) = 0 ]− Pr[ExpN
F (A, 1) = 0 ]

AdvN
F (t, q) = max

A
{AdvN

F (A) }

where the maximum is over all A with time complexity t, making ≤ q queries.

3 Reductions Among the Notions

In this section, we formally state the relations shown in Figure 1. The proofs for
these results are given in the full version of this paper [7].

We use the notation A⇒ B to indicate a security-preserving reduction from
notion A to notion B. A → B indicates a reduction (not necessarily security-
preserving) from A to B. A �⇒ B and A �→ B are the natural interpretations
given the above. This convention is followed for all reductions given in this paper.

3.1 Function Family Notions

The first theorem says that if a function family has certain security in the stan-
dard PRF sense, then it has essentially the same security in the IUF sense.

Theorem 1. [PRF⇒ IUF] For any function family F and integers t, q ≥ 1,

AdvIUF
F (t, q) ≤ 2 · AdvPRF

F (t′, q)

where t′ = t + O(l + L).

Our next theorem says that if a function family is secure in the IUF sense, then
it is also secure in the PRF sense, but the security is quantitatively lower.

Theorem 2. [IUF→ PRF] For any function family F and integers t, q ≥ 1,

AdvPRF
F (t, q) ≤ q · AdvIUF

F (t′, q)

where t′ = t + O(l + L).

The following proposition establishes that the drop in security in the previous
theorem was not due to any weakness of our reduction but is, in fact, intrinsic
to the notions. We give a concrete example of a function family that has higher
security in the PRF sense, with a gap of the same order as in Theorem 2.

Proposition 1. [IUF �⇒ PRF] There exists a function family F such that

AdvPRF
F (t, q) ≥ 1

2
and AdvIUF

F (t, q) ≤ 1
q

for any integers t ≥ 1 and 1 ≤ q ≤ 2L−1.
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Our next two results demonstrate that the IPF notion is weaker than the other
two notions we have considered, and hence does not capture pseudorandomness.

Theorem 3. [IUF⇒ IPF] For any function family F and integers t, q ≥ 1,

AdvIPF
F (t, q) ≤ 2 · AdvIUF

F (t′, q)

where t′ = t + O(l + L).

Proposition 2. [IPF �⇒ IUF] There exists a function family F such that,

AdvIUF
F (t, q) ≥ 1− 2−qL and AdvIPF

F (t, q) = 0

for any integers t, q ≥ 1.

3.2 Permutation Family Notions

We first give the reductions between PRP and IUP. Our next three claims show
that the security bounds we had derived between the notions for function families
also hold between the corresponding notions for permutation families.

Theorem 4. [PRP⇒ IUP] For any permutation family F and integers t, q ≥ 1,

AdvIUP
F (t, q) ≤ 2 · AdvPRP

F (t′, q)

where t′ = t + O(l).

Theorem 5. [IUP→ PRP] For any permutation family F and integers t, q ≥ 1,

AdvPRP
F (t, q) ≤ q · AdvIUP

F (t′, q)

where t′ = t + O(l).

Proposition 3. [IUP �⇒ PRP] There exists a permutation family F such that

AdvPRP
F (t, q) ≥ 1

2
and AdvIUP

F (t, q) ≤ 1
q

for any integers t ≥ 1 and 1 ≤ q ≤ 2L−1.

Next, we establish that IUP and IPP are of essentially equivalent strength. Note
that this is a departure from the relationship that exists between the correspond-
ing function family notions.

Theorem 6. [IUP⇒ IPP] For any permutation family F and integers t, q ≥ 1,

AdvIPP
F (t, q) ≤ 2 · AdvIUP

F (t′, q)

where t′ = t + O(l).

Theorem 7. [IPP⇒ IUP] For any permutation family F and integers t, q ≥ 1,

AdvIUP
F (t, q) ≤ AdvIPP

F (t′, q)

where t′ = t + O(l).
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4 Applications

Here, we give some motivation for the use of the IUF characterization of PRF
families. As discussed in Section 1, use of this notion gives tighter security bounds
for certain cryptographic protocols. We give two such examples in this section.

4.1 The Case of Message Authentication Codes

A message authentication code (MAC) enables two parties who share a secret key
to authenticate their transmissions. To be secure, MACs must resist existential
forgery under chosen-message attacks [10,5]. For deterministic MACs, this notion
matches that of unpredictable functions (UPF) [1,12].

Formally, the notion is captured by allowing a distinguisher A to query a
MAC oracle, Fa, where F is a function family and a is a random MAC key.
A must then output a point x that has not been queried yet, along with its
prediction y for the value of Fa(x).

Definition 3. [Message authentication security: UPF] Let F : Keys(F )×{0, 1}l →
{0, 1}L be a MAC. For an adversary A define the following experiment:

Experiment ExpUPF
F (A)

a← Keys(F ); (x, y)← AFa //where x is a point that A has not queried
If y = Fa(x) then d← 0 else d← 1; Return d.

Define the advantage of A and the advantage function of F , respectfully, as
follows. For any integers t, q ≥ 0,

AdvUPF
F (A) = Pr[ExpUPF

F (A) = 0 ]

AdvUPF
F (t, q) = max

A
{AdvUPF

F (A) }

where the maximum is over all A with time complexity t, making ≤ q queries.

PRF families are more well-studied than unpredictable function families and,
moreover, are widely available. Hence, the observation that a PRF family con-
stitutes a secure MAC [8] has proven very useful in practice. The following exact
security reduction is already known [5].

Proposition 4. [PRF⇒ UPF] For any function family F and integers t, q ≥ 1,

AdvUPF
F (t, q) ≤ AdvPRF

F (t′, q) + 2−L

where t′ = t + O(l + L).

The reduction is almost tight. Consider now translating the above, to get security
as a MAC in terms of the security as a PRF family in the IUF sense. Using
Theorem 2 will lead to a drop in security by a factor q. However, by applying a
direct reduction, we avoid this expected loss.
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Proposition 5. [IUF⇒ UPF] For any function family F and integers t, q ≥ 1,

AdvUPF
F (t, q) ≤ AdvIUF

F (t′, q) + 2−L

where t′ = t + O(l + L).

Proof. The reduction is standard. Let A be a forger attacking the MAC F ,
making at most q oracle queries and running in time at most t, in the experi-
ment ExpUPF

F (A). We construct a distinguisher A′, making at most q queries and
running in time at most t′, using the forger A as a subroutine.

Let Of be A′’s oracle. A′Of will run A using Of to provide an appropriate
simulation of A’s oracle, as indicated below.

Algorithm A′Of

(1) Run A, answering any query u with Of (u).
(2) Let (x, y)← A.
(3) Output (x, y) and receive y′ as the challenge.
(4) If y′ = y then output 0, else output 1.

For simplicity, we assume that A makes exactly q queries in ExpUPF
F (A). It is easy

to check that the time and query complexity are as claimed. Next, we compute
the advantage of A′.

AdvIUF
F (A′) = Pr[ExpIUF

F (A′, 0) = 0 ]− Pr[ExpIUF
F (A′, 1) = 0 ]

= Pr[ExpUPF
F (A) = 0 ]− 2−L = AdvUPF

F (A)− 2−L

Given that A was any arbitrary forger, the claimed relation follows.

We say that Proposition 5 represents a tightening of the security bounds given
in Proposition 4 since, from Theorems 1 and 2, we know that AdvIUF

F (t′, q) is at
most 2 · AdvPRF

F (t′, q) and can be as small as 1
q · AdvPRF

F (t′, q).

4.2 The Case of Symmetric Encryption Schemes

In the following discussion, we use the standard syntax and notion of security
for encryption schemes given by Bellare et al [3], which is an adaptation of one
given by Goldwasser and Micali [9]. In the indistinguishability of encryptions un-
der chosen-plaintext attack (IND) notion, the adversary A is imagined to run in
two phases. In the find phase, given adaptive access to an encryption oracle, A
produces a pair of equal-length messages x0, x1, along with some state informa-
tion s. In the guess phase, given the encryption y of one of the messages and s,
it must identify which of the two messages goes with y.

Definition 4. [Symmetric encryption security: IND] Let Π = (K, E ,D) be an
encryption scheme. For an adversary A and b = 0, 1 define the experiment:

Experiment ExpIND
Π (A, b)

a← K; (x0, x1, s)← AEa(find); y ← Ea(xb); d← AEa(guess, y, s); Return d.
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It is mandated that |x0| = |x1| above. Define the advantage of A and the advan-
tage function of Π, respectfully, as follows. For any integers t, q, µ ≥ 0,

AdvIND
Π (A) = Pr[ExpIND

Π (A, 0) = 0 ]− Pr[ExpIND
Π (A, 1) = 0 ]

AdvIND
Π (t, q, µ) = max

A
{AdvIND

Π (A) }

where the maximum is over all A with time complexity t, making ≤ q oracle
queries which total ≤ µ bits.

We analyze the counter mode of encryption based on a finite PRF. In practice,
the finite PRF may be instantiated by a block cipher. For a finite PRF F , the
counter mode CTR(F ) = (E-CTR,D-CTR,K-CTR) can be described as follows.
The key generation algorithm K-CTR outputs a random key a for the underlying
PRF family F , thereby specifying a function f = Fa of l-bits to L-bits. The
sender maintains a l bit counter ctr that is initially −1 and is incremented
after each encryption by the number of blocks encrypted. The message x to
be encrypted is regarded as a sequence of L-bit blocks (padding is done first,
if necessary), x = x1 · · ·xn. We define E-CTRa(x, ctr) = E-CTRFa(x, ctr ) and
D-CTRa(z) = D-CTRFa(z), where:

Algorithm E-CTRf (x, ctr)
for i = 1, . . . , n do

yi = f(ctr + i)⊕xi

ctr ← ctr + n
return (ctr , y1y2 · · · yn)

Algorithm D-CTRf (z)
Parse z as ctr , y1 · · · yn

for i = 1, . . . , n do
xi = f(ctr + i)⊕yi

return x = x1 · · ·xn

We show that CTR(F ) is secure in the IND sense if F is secure in the IUF sense.
As with our previous example, the reduction achieves the same concrete security
bounds as those possible using the standard notion of PRF families.

Theorem 8. [Security of CTR using an IUF function family] For any
function family F and integers t, q ≥ 1 and L ≤ µ ≤ L2l,

AdvIND
CTR(F )(t, q, µ) ≤ 2 · AdvIUF

F (t′, q′)

where t′ = t + O( µ
L(l + L)) and q′ = µ

L .

Proof. We want to show that if CTR(F ) is not secure in the IND sense, then it
must be the case that F is not secure in the IUF sense. Let A be an adversary
attacking the CTR(F ), running in time at most t and making at most q oracle
queries, these totalling at most µ bits, in the experiment ExpIND

CTR(F )(A). We
construct a distinguisher A′, making at most q′ queries and running in time at
most t′, using the adversary A as a subroutine.

Let Of be A′’s oracle. A′Of will run A using Of to provide an appropriate
simulation of A’s encryption oracle. We assume, for the sake of simplicity of the
exposition, that the two messages A outputs at the end of its first phase are
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exactly L bits in length (i.e. of the size of one block). In the following, µG < µ,
is the amount of ciphertext A needs to see in its guess phase.

Algorithm A′Of

(1) Initialize counter: ctr ← −1.
(2) Run A(find), answering any query u with E-CTROf (u).

(3) Let (x0, x1, s)← A(find).

(4) Let the current value of the counter be ctr0.

(5) Compute F = {Of (ctr0 + i) : 1 ≤ i ≤ µG

L }.
(6) Let s′ = (s, x0, x1, ctr0,F).
(7) Output (ctr0, s

′) and receive y as the challenge.

(8) Let d← {0, 1}.
(9) Run A(guess, y⊕xd, s), answering any query u, using F , with E-CTR(u).
(10) Let d′ ← A(guess, y⊕xd, s).

(11) If d = d′ then output 0, else output 1.

In the reduction above, A′ maintains the counter ctr , incrementing it appropri-
ately. It is important here that A′ can implement E-CTRf (·, ctr) given an oracle
for f . At the end of the find phase queries of A, it picks the current value of
counter ctr0 to be the output of its own find phase, along with the state infor-
mation. A slight problem that comes up here is that A′ does not have access
to Of in its guess phase but it will still need to provide a simulation of the
encryption oracle during A’s guess phase queries. We get around this by hav-
ing A′ pre-compute the value of Of on as many points as necessary, starting
from ctr0 + 1, to answer all of A’s guess phase encryption oracle queries. These
pre-computed values are in the set F which is passed to A′’s guess phase via
state information s. Note that it is important that A′ did not query Of with
ctr0, since otherwise it could not output ctr0 as the point on which it gets its
challenge. The counter mode guarantees that, as long as fewer than µ

L queries
are made (i.e the counter does not loop around), the function will always be
invoked on a new point.
The total number of oracle queries made by A′ is at most µ

L , which by assumption
is q′. Given this, one can check that the running time of A′ is as claimed. The
advantage of A′ is given by,

AdvIUF
F (A′) = Pr[ExpIUF

F (A′, 0) = 0 ]− Pr[ExpIUF
F (A′, 1) = 0 ]

= Pr[ExpIND
CTR(F )(A, 0) = 0 ] + Pr[ExpIND

CTR(F )(A, 1) = 1 ]− 1
2

=
1
2
(1 + AdvIND

CTR(F )(A))− 1
2

=
1
2
· AdvIND

CTR(F )(A)

Given that A is an arbitrary adversary, the claimed relation follows.
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5 Discussion

We stress that the benefits of tighter security analyses, such as those we have
presented here, are real. For example, using the standard notion of a PRF, the
security of a protocol may appear to be marginal, prompting the use of a larger
security parameter. However, using a tighter characterization, such as IUF, the
security might have been determined to be adequate.

In criticism to our approach to getting tighter bounds for MACs and sym-
metric encryption schemes, one may suggest that we are looking at the wrong
notions of security for these protocols. Indeed, there are alternate notions for
which our gains would disappear. However, the notions of security we consider
for both MACs and symmetric encryption are, in practice, the notions which are
most widely used.

Future Directions. Unlike the case with the counter mode of encryption, in
our first example we view the entire MAC as being the primitive, when in fact
it too may be built on a PRF (for example, the CBC-MAC based on a block
cipher). While it seems unlikely that we can achieve a tighter security analysis
for the CBC-MAC scheme using the same approach, it may be possible for other
message authentication schemes. Then there are other schemes, besides those for
message authentication and symmetric encryption, to which our techniques could
be applied. For example, it may be possible to improve the security bounds of
variable-length input pseudorandom functions (VI-PRFs) [2] and variable-input-
length ciphers [6].

Using similar techniques as above, we can also get tighter bounds for PRP-
based protocols. In a sense, this is more interesting, given that PRP families
provide a more natural model for block ciphers [5]. Viewing a block cipher as a
PRP family rather than a PRF family itself can lead to tighter security bounds.
However, our examples were motivated by the fact that analysis of a block-
cipher-based scheme is, as far as possible, done modeling the block cipher as a
PRF. This is because the analysis using PRFs is usually significantly simpler.

We remark that it seems somewhat significant that, in the indistinguishability
of points characterization, there is a difference between function and permutation
families. This seems to be the first such distinction, as far as we know, when
asymptotic measures are used. It may be interesting to investigate further the
impact of injectivity upon pseudorandomness.

Acknowledgements

We are grateful to Mihir Bellare for his advice and assistance with this work. We
also thank the Asiacrypt 2000 program committee for their helpful comments.

This work was completed while the first author was a student at the Univer-
sity of California at San Diego, USA. Both authors were supported in part by
Mihir Bellare’s 1996 Packard Foundation Fellowship in Science and Engineering
and NSF CAREER Award CCR-9624439.



516 Anand Desai and Sara Miner

References

1. M. Bellare, R. Canetti and H. Krawczyk, “Keying hash functions for mes-
sage authentication,” Advances in Cryptology - Crypto ’96, LNCS Vol. 1109,
N. Koblitz ed., Springer-Verlag, 1996.

2. M. Bellare, R. Canetti and H. Krawczyk, “Pseudorandom functions revis-
ited: The cascade construction and its concrete security,” Proceedings of the 37th
Symposium on Foundations of Computer Science, IEEE, 1996.

3. M. Bellare, A. Desai, E. Jokipii and P. Rogaway, “A concrete security
treatment of symmetric encryption: Analysis of the DES modes of operation,”
Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE,
1997.
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