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EXTENDED ABSTRACT* 

This abstract discusses a stream cipher based on a simple one-dimensional cellular automaton. 
The cellular automaton consists of a circular register with N cells, each having a value ai equal to 0 or 
1. The values are updated synchronously in discrete time steps according to the rule 

(la) a,' = ~ i - 1  XOR (u; OR ~ i + l )  , 

a,' = (a,-l + a, + a,+, + u,ui+,) mod 2 . 

or, equivalently, 

(1b) 

The initial state of the register is used as a seed or key. The values a(') attained by a particular cell 
through time can then serve as a random sequence. Ciphertext C can be obtained from binary plaintext 
P as usual according to Ci = Pi XOR uo; the plaintext can be recovered by repeating the same opera- 
tion, but only if the sequence a(') is known. 

Cellular automata such as (1) have been investigated in studies of the origins of randomness in 
physical system [2] .  They are related to non-linear feedback shift registers, but have slightly different 
boundary conditions. 

Figure I shows the pattern of cell values produced by (1) with a seed consisting of a single 
nonzero cell in a large register. The time sequence of values of the centre cell shows no statistical 
regularities under the tests of ref. [3] (for sequence lengths up to 219z5x16). Some definite spacetime 
patterns are nevertheless produced by the cellular automaton rule. 

In the limit N+m, the cellular automaton evolution is like an iterated continuous mapping of the 
Cantor set, and can be studied using dynamical systems theory [4]. One result is that the evolution is 
unstable with respect to small perturbations in the initial seed. A change produced by reversing a s k i -  
gle cell value typically expands at a rate given b y  Lyapunov expnentc, equal to 0.25 on the left, and 1 

* Many more details are given in ref. [I]. 
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on the right. Length 7‘ time sequences of cell values are found however to be affected on average Only 
by about 1.19T initial values. 

Iterations of the cellular automaton rule (1) can be considered as Boolean functions of initial cell 
values. Disjunctive normal forms (minimized using [ 5 ] )  for these functions are found to increase in size 
roughly as 4°.6s’, giving some indication of the complexity of the cellular automaton evolution. 

Figure 2 shows the complete state transition diagram for the cellular automaton (1) in a register 
of size N=ll. For large N ,  an overwhelming fraction of states lie m the longest cycle. But there are 
also shorter cycles, often corresponding to states with special symmetries. Figure 3 shows the length of 
the longest cycle as a function of N .  The results (up to N=53, which gives cycle length 40114679273) 
fit approximately 2°.61N. The mapping (1) is not a bijection, but is almost so; only a fraction 
(~!2)%0.85~ of states do not have unique predecessols [6] (IC is the real mt of 49-29-14).  

The security of a cryptographic system based on (1) relies on the difficulty of finding the seed 
from a time sequence of cell values. This problem is in the class NP. No systematic algorithm for its 
solution is currently known that takes a time less than exponential in N. No statistical regularities have 
been found in sequences shorter than the cycle length. 

One approach to the problem of finding the seed [6] uses the near linearity of the rule (1). Equa- 
tion (1) can be written in the alternative form = a[ XOR (a, OR a,+l). Given the values of ceh in 
two adjacent columns, this allows the values of all cells in a mangle to the left to be reconstructed But 
the sequence provided gives only one column. Values in the other column can be guessed, and then 
determined from the consistency of Boolean equations for the seed. But in disjunctive normal form the 
number of terms in these equations increases linearly with N ,  presumably making their solution take a 
time more than polynomial in N. 

The cellular automaton (1) can be implemented efficiently on an integrated circuit; it requires less 
than ten gate delay times to generate each output bit, and can thus potentially be used in a variety of 
high-bandwidth cryptographic applications. 

Much of the work summarized here was done while I was consulting at Thinking Machines Cor- 
poration (Cambridge, MA). I am grateful for discussions with many people, including Persi Diaconis, 
Carl Feynman, Richard Feynman, Shafi Goldwasser, Erica Jen and John Milnor. 
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Figure 1. Pattern produced by evolution according the cellular automaton of eqn. (1) from a simple seed 
containing a single nonzero bit. 250 successive states of an arbiuarily large register are shown; black 
squares represent nonzero cells. Columns of cell values, say in the centre, seem random for practical 
purposes- 
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Figure 3. Length IT,., of the longest cycle as a function of register size h. 
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Figure 2. Complete state transition diagram for the cellular automaton of q n .  (1) in a circular register 
of size N=ll .  There are states, each represented by do& Evolurion from any state leads eventually 
to one of the cycles shown. 


