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ABSTRACT 

Given a primitive element g of a finite field G F ( q ) ,  the discrete logarithm of a nonzero element 
u E G F ( q )  is that integer k, 1 < k Q q-1, for which u = gk. The well-known problem of 
computing discrete logarithms in finite fields has acquired additional importance in recent years due 
to its applicability in cryptography. Several cryptographic systems would become insecure if an 
efficient discrete logarithm algorithm were discovered. This paper surveys and analyzes known 
algorithms in this area, with special attention devoted to algorithms for the fields GF(2").  It 
appears that in order to be safe from attacks using these algorithms, the value of n for which 
GF(2") is used in a cryptosystem has to be very large and carefully chosen. Due in large part to 
recent discoveries, discrete logarithms in fields GF(2")  are much easier to compute than in fields 
G F ( p )  with p prime. Hence the fields GF(2") ought to be avoided in all cryptographic 
applications. On the other hand, the fields G F G )  with p prime appear to offer relatively high levels 
of security. 
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Discrete logarithms in finite fields and tbeir cryptographic significance 

A. M .  Odlyzko 

AT&T Bell Laboratories 
Murray Hill, New Jersey 07974 

1. Introduction 

The multiplicative subgroup of any finite field G F ( q ) ,  q a prime power, is cyclic, and the 

elements g E G F ( q )  that generate this subgroup are referred to as primitive elements. Given a 

primitive element g F G F ( q )  and any u E G F ( q ) *  - G F ( q ) - ( O ] ,  the discrete logarithm of u with 

respect to g is that integer k, 0 B k B q-1, for which 

We will write k - log, u .  The discrete logarithm of u is sometimes referred to as the index of u .  

Aside from the intrinsic interest that the problem of computing discrete logarithms has, i t  is of 

considerable importance in cryptography. An efficient algorithm for discrete logarithms would make 

several authentication and key-exchange systems insecure. This paper briefly surveys (in Section 2) 

these cryptosystems, and then analyzes the known algorithms for computing discrete logarithms. As 

it turns out, some of them, including the most powerful general purpose algorithm in this area, have 

not been analyzed in complete detail before. Moreover, some of the analyses in the literature deal 

only with fields G F ( p ) ,  where p is a prime. In cryptographic applications, on the other hand, 

attention has been focused on the fields GF(2") ,  since arithmetic in them is much easier to 

implement, with respect to both software and hardware. Therefore we concentrate on the fields 

GF(2") .  

Several proposed algorithms for computing discrete logarithms are known. We briefly discuss 

most of them (including some unsuccessful ones) in Section 3. In Section 4 we present the most 

powerful general purpose algorithm that is known today, called the index-calculus algorithm, and 

analyze its asymptotic performance. Recently a dramatic improvement in its performance in fields 

GF(2")  was made by Coppersmith [18,191, and we discuss it in detail. In Section 5 we discuss 
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several technical issues that are important to the performance of the index-calculus algorithm, such 

as rapid methods to solve the systems of linear equations that arise in it. In that section we also 

present several suggested modifications to the Coppersmith algorithm which appear to be 

unimportant asymptotically, but are of substantial importance in practice. We discuss them in order 

to obtain a reasonable estimate of how fast this algorithm could be made to run in practice. In 

Section 6 we estimate the running time of that algorithm for fields GF(2") that might actually be 

used in cryptography. In Section 7 we briefly discuss the performance of the index-calculus 

algorithms in fields G F b )  for p a prime. Finally, we discuss the implications of these algorithms 

for cryptography in Section 8. I t  turns out, for example, that the MITRE scheme 138,591 and the 

Hewlett-Packard chip 1691. both of which use the field GF(2'*'), are very insecure. Depending on 

the level of security that is desired, it seems that fields CF(2") to be used ought to have n large, no 

smaller than 800 and preferably a t  least 1500. Furthermore, these values of n have to be very 

carefully chosen. On the other hand, it appears at this moment that the fields G F b ) ,  where p is a 

prime, offer a much higher level of security, with p 2 2'O0 adequate for many applications and 

p 2 2'Oo0 being sufficient even for extreme situations. The fields G F b )  appear at this moment to 

offer security comparable to that of the RSA scheme with modulus of size p .  

It has to be stressed that this survey presents the current state of the art of computing discrete 

logarithms. Since the state of the art has been advancing very rapidly recently, this paper has 

already gone through several revisions. The most important of the new developments has certainly 

been the Coppersmith breakthrough in fields GF(2" ) .  Even more recently, there has been much less 

spectacular but still important progress in fields G F ( p ) ,  which is briefly described in Section 7, and 

in methods for dealing with sparse systems of equations, which are discussed in Section 5, and which 

are crucial for the indexcalculus algorithms. It is quite likely that further progress will take place 

in discrete logarithm algorithms and so the cryptographic schemes described below will require the 

use of even larger fields than are being recommended right now. 
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2. Cryptographic systems related to discrete logarithms 

One of the first published cryptosystems whose security depends on discrete logarithms being 

difficult to compute appears to be an authentication scheme. In many computer systems, users' 

passwords are stored in a special file, which has the disadvantage that anyone who gets access to 

that file is able to freely impersonate any legitimate user. Therefore that file has to be specially 

protected by the operating system. It has been known for a long time (cf. [541) that one can 

eliminate the need for any secrecy by eliminating the storage of passwords themselves. Instead, one 

utilizes a function f that is hard to invert (i.e., such that given a y in the range o f f ,  it is hard to 

find an x in the domain o f f  such that f ( x >  = y )  and creates a file containing pairs ( i , f ( p i ) ) ,  

where i denotes a user's login name and p i  the password of that user. This file can then be made 

public. The security of this scheme clearly depends on the function f being hard to invert. One 

early candidate for such a function was discrete exponentiation; a field GFIq)  and a primitive 

element g E GF (q )  are chosen (and made public), and for x an integer, one defines 

f ( x )  - g" . 

Anyone trying to get access to a computer while pretending to be user i would have to find pi 

knowing only the value of p; i.e., he would have to solve the discrete logarithm problem in the field 

G F ( q ) .  

Public key cryptography suffers from the defect that the systems that seem safe are rather slow. 

This disadvantage can be overcome to a large extent by using a public key cryptosystem only to 

distribute keys for a classical cryptosystem, which can then be used to transmit data a t  high speeds. 

Diffie and Hellman [231 have invented a key-exchange system based on exponentiation in finite 

fields. (This apparently was the very first public key cryptosystem that was proposed.) In it, a finite 

field G F ( q )  and a primitive element g E G F ( q )  are chosen and made public. Users A and B ,  who 

wish to communicate using some standard encryption method, such as DES, but who do not have a 

common key for that system, choose random integers a and b,  respectively, with 2 < a ,  b < q--2. 

Then user A transmits go to B over a public channel, while user B transmits gb to A .  The 
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common key is then taken to be g*, which A can compute by raising the received gb  to the (I 

power (which only he knows), and which B forms by raising go to the b power. It is clear that an 

efficient discrete logarithm algorithm would make this scheme insecure, since the publicly 

transmitted g" would enable the cryptanalyst to determine u ,  and he could then determine the key 

used by A and B .  Diffie and Hellman [231 have even conjectured that breaking their scheme is 

equivalent in difficulty to computing discrete logarithms. This conjecture remains unproved, and SO 

we cannot exclude the possibility that there might be some way to generate gd from knowledge of 

g" and g b  only, without computing either a or b ,  although it seems unlikely that such a method 

exists. 

The Diffie-Hellman key-exchange scheme seems very attractive, and it has actually been 

implemented in several systems, such as a MITRE Corp. system 138,591. Moreover, Hewlett- 

Packard has built a special purpose VLSI chip which implements this scheme [691. However, these 

implementations have turned out to be easily breakable. It appears possible, though, to build a 

Diffie - Hellman scheme that is about as secure as an RSA scheme of comparable key size. This 

will be discussed at some length in Section 8. 

Systems that use exponentiation in finite fields to transmit information have also been proposed. 

One is based on an idea due to Shamir 137; pp. 345-3461 and has been advocated in the context of 

discrete exponentiation by Massey and Omura [63]. For example, suppose user A wishes to send a 

message rn (which we may regard as a nonzero element of the publicly known field G F ( q ) )  to user 

B .  Then A chooses a random integer c ,  1 < c < q-1, (c,q-I) = I ,  and transmits x - rnc to B .  

User B then chooses a random integer d ,  1 < d < q-1, (d,q-l) = 1, and transmits y-xd - mcd 

to A .  User A now forms z - yc '  where cc' I 1 (mod q-11, and transmits z to B .  Since 

B only has to compute zd' to recover m .  where dd' 1 (mod q- l ) ,  since 

In this scheme it is again clear that an efficient method for computing discrete logarithms over 
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G F ( q )  would enable a cryptanalyst to recover the plaintext message m from the transmitted 

ciphertext messages mc, mcd, and m d .  

Another scheme for transmission of information has been proposed by T. ElGamal 1261 and is in 

essence a variant of the Diffie-Hellman key distribution scheme. User A publishes a public key 

g' E G F ( q ) ,  where the field GF(q)  and a primitive root g are known (either they a re  also 

published by A or else they are used by everyone in a given system). but keeps u secret. User B, 

who wishes to send rn E G F ( q )  to A, selects k a t  random, 1 < k 6 q-2 (a different k has to be 

chosen for each m) and transmits the pair (gk,mgak) to A. User A knows u and therefore can 

compute gak - (gk)' and recover m .  An efficient discrete logarithm algorithm would enable a 

cryptanalyst to compute either a or k, and would therefore make this scheme insecure also. 

T. ElGarnal [261 has also proposed a novel signature scheme that uses exponentiation in fields 

G F ( p ) ,  p a prime. User A, who wishes to sign messages electronically, publishes a prime p ,  a 

primitive root g modulo p .  and an integer y ,  1 <y <p-1, which is generated by choosing a random 

integer u, which is kept secret, and setting y = g". (The prime p and the primitive root g can be 

the same for all the users of the system, in which case only y is special to user A.) To sign a 

message m, 1 < rn d p-1, user A provides a pair of integers (rJs), 1 Q r,s < p-1, such that 

g" E y r  r' (mod p ) .  (2.1) 

To generate r and s, user A chooses a random integer k with ( k , p - l )  - 1 and computes 

r - g k  

Since y - go, this means that s has to satisfy 

(mod p )  , gm gar + b 

which is equivalent to 

(2.2) 

m G or + ks (mod p - 1 ) .  (2.3) 

Since (k, p-1) = 1. there is a unique solution to (2.3) modulo p-I, and this solution is easy to find 

for user A, who knows a ,  I, and k. An efficient discrete logarithm algorithm would make this 
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scheme insecure, since it would enable the cryptanalyst to compute a from y .  No way has been 

found for breaking this scheme without the ability to compute discrete logarithms, and SO the 

scheme appears quite attractive. It is not as fast as the Ong-SchnorrShamir signature scheme 1501. 

but since several versions of that scheme were recently broken'by Pollard, it should not be 

considered for use at the present time. The ElGamal scheme appears to be about as secure as the 

RSA scheme for moduli of the same length, as we will see later, although it does expand bandwidth, 

with the signature being twice as long as the message. 

The presumed intractability of the discrete logarithm problem is crucial also for the Blum-Micali 

construction [91 of a cryptographically strong random number generator. What they show is that it 

is possible to compute a long sequence that is obtained deterministically from a short random 

sequence, and in which successive bits cannot be predicted efficiently from the preceding ones 

without the ability to compute discrete logarithms efficiently. 

A scheme whose security is essentially equivalent to that of the Diffie - Hellman scheme was 

recently published by Odoni, Varadharajan, and Sanders [491. These authors proposed taking a 

matrix B over G F b )  which is the companion matrix of an irreducible polynomial f ( x )  of degree 

rn over G F ( p ) .  The Diffie - Hellman scheme would then be implemented by replacing the primitive 

element g by the matrix B ,  so that pairs of users would transmit matrices B" and Bb to each other, 

where a and 6 are the two random integers chosen by the two users. However, the matrix ring 

generated by B is isomorphic to the field C F ( p m ) ,  so this scheme does not provide any additional 

security. The more sophisticated scheme proposed in [49], with the matrix B being obtained from 

several companion matrices of irreducible polynomials of degrees m,, . . . , m, can also be shown to 

be reducible to the problem of computing discrete logarithms in the fields GF(p"') separately. 

Finally, we mention that the ability to compute quantities generalizing discrete logarithms in 

rings of integers modulo composite integers would lead to efficient integer factorization 

algorithms [5,40,45,52]. 
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3. Some special algorithms 

In this section we discuss briefly some algorithms that apparently don't work very well and then 

we discuss a very useful algorithm that works well only when all the prime divisors of q-1 arc of 

moderate size. 

The first method we discuss was not designed as an algorithm at  all. In a field G F ( p ) ,  p a 

prime, any function from the field to itself can be represented as a polynomial. Wells (641 has 

shown that for any u ,  1 Q u Q p-1, if g is a primitive rmt modulo p ,  then one can write 

(3.1) 
j-1 

This formula is clearly useless computationally, but it is interesting that such an explicit form for 

the discrete logarithm function exists. 

The Herlestam-Johannesson method [321 was designed to work over the fields GF(2"),  and was 

reported by those authors to work efficiently for fields as large as CF(23'). However, the heuristics 

used by those authors in arguing that the method ought to work efficiently in larger fields as well 

seem to be very questionable. As usual, GF(2") is represented as polynomials over GF(2)  modulo 

some fixed irreducible polynomial f ( x )  of degree n over GF(2) .  In order to compute the logarithm 

of h h )  to base x, Herlestam and Johannesson proposed to apply a combination of the 

transformations 

SO as to minimize the Hamming weight of the resulting polynomial, and apply this procedure 

iteratively until an element of low weight, for which the logarithm was known, was reached. There 

is no reason to expect such a strategy to work, and considerable numerical evidence has b e a  

collected which shows that this method is not efficient [13,67], and is not much better than a 

random walk through the field. However, some unusual phenomena related to the algorithm have 

been found whose significance is not yet understood [13,57]. In particular, the algorithm does not 
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always behave like a random walk, and its performance appears to depend on the choice of the 

polynomial defining the field. These observations may be due to the small size of the fields that 

were investigated, in which case their significance would be slight. 

Another approach to computing discrete logarithms in fields GF(2") was taken by Arazi [31. 

He noted that if one can determine the parity of the discrete logarithm of u ,  then one can quickly 

determine the discrete logarithm itself. Arazi showed that one can determine the parity of discrete 

logarithms to base g fast if g satisfies some rather complicated conditions. Since being able to 

compute discrete logarithms to one base enables one to compute them to any other base about 

equally fast (as will be discussed in Section 5 ) .  it would suffice to find any g that satisfies Arazi's 

condition. However, so far no algorithm has been found for finding such primitive elements g in 

large fields GF(2") ,  nor even a proof that any such elements exist. It was shown by this author that 

primitive elements g satisfying another set of conditions originally proposed by Arazi, which were 

more stringent than those of [31, do exist in fields GF(2" )  for 2 < n 6 5, but not for 6 Q n Q 9. 

Thus while the ideas of 131 are interesting and may be useful in future work, they appear to be of 

little practical utility a t  this moment. 

We next discuss a very important algorithm that was published by Pohlig and Hellman [511, and 

whose earlier independent discovery they credit to Roland Silver. This algorithm computes discrete 

logarithms over G F ( q )  using on the order of 4 operations and a comparable amount of storage, 

where p is the largest prime factor of q-1. In fact, there is a time-memory tradeoff that can be 

exploited, and Pohlig and Hellman [511 showed that if 

(3.2) 

where the pi are distinct primes, and if rlr . . . ,?k are any real numbers with 0 < Ti < 1, then 

logarithms over G F ( q )  can be computed in 

k 
O ( Z  nj(log q+pi'-"(l+log pi ' ) ) )  

i-l 

field operations, using 
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bits of memory, provided that a precomputation requiring 

field operations is carried out first. 

We now present a sketch of the above algorithm. Suppose that g is some primitive element of 

G F ( q ) ,  x E GF(q) - (O] ,  and we wish to find an integer a ,  1 < II < q-I ,  such that 

x - g o .  (3.3) 

Because of the Chinese Remainder Theorem, we only need to determine u modulo each of the p p .  

Suppose that p - pi and n - ni for some i .  Let 

To determine bo, we raise x to the ( q - l ) / p  power: 

and note that y is one of only p elements, namely 

ho = 1, h ' ,  h 2  ,..., hP-' ~ 

where 

h = g 4 - i ) / P  , 

How one determines bo we will describe below. Once we have determined bo, we can go on to 

determine b I by forming 

-b.) (4-Wp' - hb' , (xg 

and so one. 

The value of bo is determined using Shanks' "baby steps-giant steps" technique. We are given y ,  
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and we need to find m such that y = h m ,  0 Q m Q p-1. If r E R is given, 0 Q r Q 1, we form 

- IP'l . 

Then there exist integers e and d such that 

m - cu+d, 0 < d Q u-I, 

Hence finding m is equivalent to finding integers c and 

hd 3 yh-N . 

O Q c < p / u .  

in the above ranges whic- satisfy 

To find such c and d ,  we can precompute hd for 0 Q d Q n-1 and then sort the resulting values. 

We then compute yh-N for c = O,l, ..., and check each value for a match with the sorted table of 

values of y d .  The precomputation and sorting take O(p210gp) operations (note that these steps 

have to be done only once for any given field), and there are Ob'-') values of yh- to be 

computed. 

The Silver-Pohlig-Hellman algorithm is efficient whenever all the prime factors of q-1 are 

reasonably small. (It is most efficient in fields in which q is a Fermat prime, q - 2'"+l, for which 

there is another polynomial-time discrete logarithm method l411.1 Therefore great care has to be 

taken in selecting the fields G F ( q )  for use in cryptography. This question will be discussed further 

in Section 8. 

We conclude this section by mentioning two interesting randomized algorithms due to 

Pollard 1521. One of them computes discrete logarithms in fields G F ( q )  in time roughly q'". The 

other algorithm finds the discrete logarithm of an element in time roughly w'I2, if that logarithm is 

known to lie in an interval of size w .  

4. A subexponential discrete logarithm method 

This section presents the fastest known general purpose discrete logarithm method. The basic 

ideas are due to Western and Miller 1651 (see also [471). The algorithm was invented independently 

by Adleman 111,  Merkle [461, and Pollard 1521, and its computational complexity was partially 

analyzed by Adleman 111. We will refer to it as the index-calculus algorithm. Previous authors 
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were concerned largely with the fields G F ( p ) ,  where p is a prime. Here the method will be 

presented as it applies to the fields GF(2").  since they are of greatest cryptographic interest. An 

extensive asymptotic analysis of the running time of the algorithm in this and the related cases 

GF(p") with p fixed and n - 00 was given recently by Hellman and Reyneri 1301. As will be 

shown below, their estimates substantially overestimate the running time of this algorithm. 

Recently some improvements on the index-calculus method as it applies to the fields GF(2") 

were made by I. Blake, R. Fuji-Hara, R. Mullin, and S. Vanstone [Sl which make it much more 

efficient, although these improvements do not affect the asymptotics of the running time. Even more 

recently, D. Coppersmith [18,19] has come up with a dramatic improvement on the GF(2")  version 

of the algorithm (and more generally on the GF(p")  version with p tixed and n - =) which is 

much faster and even has ditferent asymptotic behavior. More recently, a whole series of 

improvements on the basic algorithm have been discovered [201. They do not approach the 

Coppersmith algorithm in asymptotic performance, but they do apply to fields G F b )  as well as 

GF(2") and they can be used to motivate Coppersmith's algorithm (although they did not perform 

this function, having come afterwards), so we briefly sketch them as well. 

The model of computation we will assume in this section is that of the Random Access Machine 

(RAM), with no parallel computation. In Section 6 we will discuss what effect lifting this 

restriction might have. The index-calculus algorithm, at  least in the form presented here is a 

probabilistic method in that the analysis of its running time relies on assumptions about randomness 

and independence of various polynomials which seem reasonable but at present cannot be proved. 

Before presenting the algorithm, it is necessary to specify the notation that will be used. As 

usual, we regard the field GF (2") as the ring of polynomials over GF ( 2 )  modulo some irreducible 

polynomial f (x)  of degree n. Hence all elements g E GF(2") can be regarded as polynomials 

g(x) over G F ( 2 )  of degree < n. 

One very important factor in analyzing the performance of the index-calculus algorithm over 

GF(2") is that polynomials over G F ( 2 )  are very easy to factor. Algorithms are known [7,16,36,551 
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that can factor g k )  in time polynomial in the degree of g k ) .  Since the running time of the 

index-calculus algorithm in GF(2") is much higher (of the form exp(c(n log n)'") for the basic 

version and of the form exp(c'nlD(log for the Coppersmith version), we will neglect the time 

needed to factor polynomials in this section, since we will be concerned here with asymptotic 

estimates. In Section 6 we will perform a more careful analysis for some specific values of n. 

Suppose that g ( x ) ,  a polynomial of degree < n over GF(21, is a primitive element of GF(2").  

The index-calculus method for computing discrete logarithms in GF(2") with respect to the base 

gk) consists of two stages. The first stage, which is by far the more time and space consuming, 

consists of the construction of a large data base. This stage only has to be carried out once for a n y  

given field. The second stage consists of the computation of the desired discrete logarithms. 

We now present the basic version of the index-calculus algorithm. The initial preprocessing 

stage, which will be described later, consists of the computation of the discrete logarithms (with 

respect to g ( x ) )  of a set S of chosen elements of GF(2").  The set S usually consists of all or 

almost all the irreducible polynomials over G F ( 2 )  of degrees < rn, where m is appropriately 

chosen. Once the preprocessing stage is completed, logarithms can be computed relatively rapidly. 

The basic idea is that given h - h (x), to find u E 2' such that 

one chooses a random integer s ,  1 Q s < 2"-1. and computes 

h* 3 h gs ( m o d j )  , deg h* < n . (4.1) 

The reduced polynomial h* is then factored into irreducible polynomials and if all its factors are 

elements of S ,  so that 

then 

(4.2) 

(4.3) 
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In the form in which we have presented it so far, it is possible to obtain a fully rigorous bound 

for the running time of the second stage. The polynomials h* in (4.1) behave like random 

polynomials over GF(2)  of degree < n. Let p ( k ,  m )  denote the probability that a polynomial over 

GF(2)  of degree exactly k has all its irreducible factors of degrees Q m ;  i.e., if N ( k , m )  is the 

number of polynomials w ( x )  E G F ( 2 ) [ x 1  such that deg w ( x )  - k and 

w (r) = n ui (x)", deg ui ( X I  Q m , 
i 

then 

(4.4) 

We expect that if S does consist of the irreducible polynomials of degrees < m ,  the reduced 

polynomial h* in (4.1) will factor as in (4.2) with probability approximately p(n,m) ,  and that 

approximately p (n,m)-' of the polynomials of the form (4.1) will have to be generated before the 

second stage of the algorithm succeeds in finding the discrete logarithm of h ( x ) .  (This reasoning 

explains why the set S is usually chosen to consist of all irreducible polynomials of degrees Q m for 

some fixed m ;  any other set of polynomials of equal cardinality is expected to have a smaller chance 

of producing a factorization of the form (4.21.) 

The function p ( n , m )  can be evaluated fairly easily both numerically and asymptotically. 

Appendix A presents the basic recurrences satisfied by N ( n , m )  (from which p(n,m)  follows 

immediately by (4.4)), and shows that as n - 00 and m - m in such a way that 

nI'lm Q m Q n99'1M), (which is the range of greatest interest in the index calculus algorithm), 

Appendix B consists of a table of p (n ,  m )  for a selection of values of n and m, which was 

computed using the recurrences in Appendix A. Approximations better than that of (4.5) for 

p ( n , m )  can be obtained with more work, but for practicnl purpases the table of Appendix B is 

likely to be quite adequate and is more accurate to boot. The analrjis of Hellrnan and Reyneri [30l 



238 

relied on an estimate of p h. rn) that was essentially equivalent to 

which while true, is much weaker than (4.5). 

The polynomials h* are always of degree < n - I ,  and have degree n-k with probability 2-‘. 

Hence the probability that h* factors in the form (4.2) is better approximated by 

n 

k-1 
2 2 - k p ( n - k ,  m) , 

which is approximately 

as follows from the results of Appendix A. The last quantity above is - p ( n ,  m> as n -. OD, 

nlllDO < 1 m < n99’1M). Hence asymptotically this effect is unimportant, although for small values of 

n and m it can make a dif’erence; for example, for n - 127 and rn = 17 we obtain l.Slp(127, 17) 

as the correct estimate of the probability that h* will factor in the form (4.2). 

The relation (4.5) shows that the expected running time of the second stage of the algorithm, as 

it has been presented so far, is approximately 

It was recently observed by Blake, Fuji-Hara, Mullin, and Vanstone [81 that this stage can be 

speeded up very substantially. although at  the cost of not being able to provide an equally rigorous 

bound for the running time. Their idea is not to factor the polynomial h* defined by (4.1) directly, 

but instead to find two polynomials w 1  and w 2  such that 

(4.7) 

and such that deg wi 5 n/2 for i - 1,2. Once that is done, the wi are factored, and if each is 

divisible only by irreducibles from S, say 
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then 

(4.9) 

The advantage of this approach is that if the wi behave like independently chosen random 

polynomials of degree - n / 2 ,  as seems reasonable, then the probability that both will factor into 

irreducibles of degrees f m is approximately p ( [ n / 2 ] . r n ) ' ,  and therefore the expected number of 

polynomials h* that have to be tested is on the order of 

This is smaller than the quality in (4.8) by a factor of approximately 2"Im, and so is very important, 

provided the wi can be generated fast. 

The polynomials Wi can be generated very rapidly (in time polynomial in n) by applying the 

extended Euclidean algorithm 136,421 to h* and f .  This algorithm produces polynomials a and fi  

over CF(2)  such that ah* + fif - 1 ,  the greatest common divisor of h* and f ,  and such that 

deg a < deg f = n, deg B < deg h* < n .  To do this, the algorithm actually computes a sequence 

of triples of polynomials (a ,J j , y j )  such that 

where the final (a,,fij,yj) - (a , f i , l ) ,  deg yI > deg y2 > ..., and where deg ai < n-1 - deg yj .  If 

we choose that j for which deg y j  is closest to n / 2 ,  then w ,  - yi and w 2  - aj will satisfy the 

congruence (4.71, and their degrees will be relatively close to n / 2  most of the time. These w1 and 

w2 are not completely independent (for example, they have to be relatively prime), but on the other 

hand their degrees will often be less than n / 2 ,  so on balance it is not unreasonable to expect that the 

probability of both having a factorization of the form (4.8) should be close to p ( [ n / 2 1 ,  m)'. 

The above observations justify the claim that the second stage of the index-calculus algorithm, as 

modified by Blake et a]., ought to take on the order of p ( [ n / 2 l , n 1 ) - ~  operations on polynomials of 
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degree < n over GF(2) .  where each such polynomial operation might involve on the order of n3 bit 

operations. For small values of n, p ([n/2],m) can be found in Appendix B. while for very large n. 

the quantity on the right side of (4.10) ought to be a reasonable approximation to the running time 

of the second stage. 

It is clear that the running time of the second stage can be decreased by increasing m .  Doing 

that, however, increases both storage requirements and the running time of the first (preprocessing) 

stage of the algorithm. It is well known (see Appendix A) that the number of irreducible 

polynomials of degree < m is very close to m-12m+', and for each one it is necessary to store 

roughly n bits, namely its logarithm (which is in the range [1,2"-11). This already puts a limit on 

how large m can be, but this limit is not very stringent, since these discrete logarithms can be stored 

on slow storage devices, such as tape. This is due to the fact that they are needed only once in the 

computation of each discrete logarithm by stage two, when both of the polynomials w, are 

discovered to have factorizations of the form (4.8). Thus this argument does not exclude the use of 

values of m on the order of 40. 

A much more severe limitation on the size of m and n is placed by the preprocessing first stage, 

which we now discuss. The basic idea there is to choose a random integer s, 1 6 s < 2"-1, form 

the polynomial 

h* g' (modf), deg h* < n .  

and check whether h* factors into irreducible factors from S. If it does, say 

(4.12) 

then we obtain the congruence 

s 3 I; bv(h*)log, v (mod 2"-1) . (4.1 3) 
v E S  

Once we obtain slightly more than /SI such congruences, we expect that they will determine the 

log, v ,  vES,  uniquely modulo 2"-1, and the first stage will be completed. There is a complication 

here in that 2"-1 is not in general a prime, so that solving the system (4.13) might require working 
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separately modulo the different prime power divisors of 2"-I and using the Chinese Remainder 

Theorem to reconstruct the values of log, v .  This complication is not very serious, and if it does 

occur, it should lead to a speedup in the performance of the algorithm, since arithmetic would have 

to be done on smaller numbers. In any case this complication does not arise when 2"-1 is a prime. 

A general linear system of the form (4.13) for the logg v takes on the order of IS13 steps to solve if 

we use straightforward gaussian elimination. (We neglect here multiplicative factors on the order of 

O(n2).)  This can be lowered to IS)' for r - 2.495548 ... using known fast matrix multiplication 

algorithms [211, but those are  not practical for reasonably sized ISI. The use of Strassen's matrix 

multiplication algorithm 1101 might be practical for large n ,  and would lower the runnifig time to 

about ISI' with r = log2 7 - 2.807 ... . However, the systems of linear equations that arise in the 

index-calculus algorithms are quite special in that they are quite sparse. Le., there are only a few 

nonzero coefficients). It was only recently discovered that this sparseness can be effectively 

exploited, and systems (4.13) can be solved in time essentially /S12. This development will be 

described in Section 5.7. 

Generation of IS1 congruences of the form (4.13) takes about 

steps if we use the algorithm as described above. If instead we use the Blake et al. modification 

described in connection with the second stage, in which instead of factoring h* right away, we first 

express it in the form (4.7) with deg wi <, n/2, i - 1.2, and then factor the wir then generation of 

IS I of the congruences (4.13) ought to take on the order of 

(4.14) 

steps, where each step takes a polynomial number (in n) of bit operations. Thus the first stage of 

the algorithm takes on the order of 

(4.15) 

steps. Hence using our approximations to p (k, rn) and IS 1 and discarding polynomial factors yields 

an estimate of the running time of the form 
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(4.16) 

(To be precise, the exponents in (4.16) should be multiplied by l+o(l).) The quantity 

is minimized approximately for m - cl(n log,n)lD, where 

c, = (2 l0&2)-'/* = 0.8493 ... , 

in which case 

where 

(4.17) 

~2 CI log2 2+(2~1)-l = (2 lo& 2)'" = 1.1774 ... . 

For m - cl(n log,n)'n, 22m is also of the form (4.171, so the time to solve the system of linear 

equations is of the same asymptotic form as the time needed to generate them. 

If we modify the notation used by Pomerance [531 in his survey of integer factorization and let 

M - M ( n )  represent any quantity satisfying 

M - exp(( l+o(l))  (n log, n)'") as n -. CQ , 

then our analysis shows that the first stage of the basic index-calcuius algorithm can be carried out 

in time M'"'~ .  

The time required by the second stage of the index-calculus algorithm to compute a single 

discrete logarithm is 

This running time estimate is much lower than for the first stage. The space requirements of the 

second stage are essentially negligible. It is necessary to have access to the logarithms of the 

elements of S, which requires 
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bits of storage, but these logarithms are needed only once, and so they can be stored on a cheap 

slow-access device, such as tape. 

Our estimates for the running time of the basic index-calculus algorithm for the fields CF(2") 

are substantially smaller than those of Hellman and Reyneri [301. This i s  due primarily to our use 

of a more accurate estimate for p (n, m). The Blake et al. innovation which replaces the polynomial 

h* by the quotient of two polynomials, each of roughly half the degree of h* turns out not to affect 

the asymptotic estimate, since it improves the running time only by the factor 2""", which is Mo(') 

for m - c ( n  log, n)"*. However, for values of n that might be of practical interest, say 

200 Q n Q 1000, and best possible choices of m, this factor 2"'m is very important, speeding up the 

algorithm by between two and ten orders of magnitude. 

We next describe several algorithms that improve on the asymptotic performance of the basic 

index-calculus algorithm to an extent greater than the Blake et al. [81 modification. They are 

nowhere near as fast as the Coppersmith version, since they still run in time MC for some constant 

c > 0, but they have the property that c < c2. They are presented here very briefly in order to 

show the variety of methods that are available, and also to motivate the Coppersmith algorithm. 

Like the Coppersmith method, these variants depend on the polynomial f(x) that defines the field 

being of a somewhat special form, namely 

/ ( x )  = x" + f , ( x )  , (4.18) 

where the degree of f l ( x )  is small. Since approximately one polynomial of degree n out of n is 

irreducible (cf. Appendix A), we can expect to find f ( x )  of the form (4.18) with 

deg f l ( x )  5 log2 n. (The f l ( x )  of smallest degrees for which x" + fl(x) is irreducible for some 

interesting values of n are f lk )  - x + l  for n = 127, j l ( x )  - x9+x6+x5+x3+x+1 for n - 521. 

f,(x) = X ~ + X ~ + X ~ + X ~ + X + ~  for n - 607, and f l ( x )  - ~ ~ ~ + x ~ + x * + x ~ + x ~ + x ~ + x + 1  for 

n = 1279.) As is explained in Section 5.2, this is not a severe restriction, since being able to 

compute logarithms rapidly in one representation of a field enables one to compute logarithms in any 
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other representation just about as fast. 

The first algorithm we discuss is one of several that have the same asymptotic performance. 

(The other algorithms in this group are described in [201, at least in the form applicable to fields 

GF(pl.1 It is basically an adaptation of the Schroeppel factorization algorithm [20,531. We assume 

that f ( x )  is of the form (4.18) with d e g f ( x )  Q n / 2 ,  say. This time we let S - S1 U S2, where 

SI consists of the irreducible polynomials of degrees Qm, and S2 of polynomials of the form 

x' + g ( x ) ,  deg g ( x )  < M ,  (4.19) 

where k = [n/21 is the least integer > n / 2 .  Consider any h ~ ( x ) ,  hz(x) e S2. If 

then, if we write 2k = n+o, u = 0 or 1, we have 

and so the polynomial on the right side of (4.20) is of degree roughly n/2 (for rn - o ( n ) ,  as will be 

the case). If that polynomial, call it h' (XI, factors into irreducible polynomials of degrees G M ,  say 

then (4.20) yields a linear equation for the logarithms of the elements of S :  

log, h ,  + log, h2 2 b,(h') log, v (mod 2"-1) 
v d ,  

(4.21) 

Since each of SI and S 2  has on the order of 2"' elements, once we obtain about 2"' equation of the 

form (4.211, we ought to be able to solve them and obtain the discrete logarithms of the elements of 

SI, which is what is desired. Now there are approximately 2h different pairs hl ,hz  that can be 

tested, and if the h' behave like random polynomials of degrees about n/2. each will factor into 

irreducibles of degrees < m  with probability approximately p([n/21, m). Hence we will have to 

perform about 22m polynomial time factorizations and obtain about 22m p([n/21, rn) equations of 
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the form (4.21). Therefore we need 

22” p([n/21, m) >_ 2m, (4.22) 

and the work we do is on the order of 22m, since the linear equations can also be solved in this much 

time. To minimize the running time, we choose the smallest m for which (4.22) is satisfied, and a 

brief computation shows -that the right choice is M - c,(n lo& n)’” as n - 00, with 

c3 - (4 log, 2)-lrZ, so that the running time of the first stage of this algorithm is 

fi I p . 8 3 2 5  ... , c4 = (log, 2) ’D . (4.23) 

The improvement in the exponent of M is the running time estimate of the first stage from 

1.177 ... in the basic algorithm to 0.832 ... in the version above was due to the fact that this time, in 

order to obtain a linear equation we only had to wait for a single polynomial of degree about n/2 to 

split into low degree irreducibles, instead of a single polynomial of degree n or two polynomials of 

degree n/2. In the next algorithm, we obtain a further improvement by reducing to the problem of 

a single polynomial of degree about n/3 splitting into low degree irreducibles. The method is an 

adaptation of the so-called “cubic sieve” for factoring integers, which was invented by J. Reyneri 

some years ago and rediscovered independently several times since then (see [201 for further 

details). This time we assume that f ( x )  has the form (4.18) with degf l (x)  < n/3 .  We set 

k - [ n / 3 1  and let S - S1 U S l  with S1 consisting of the irreducible polynomials of degrees 6 m  

and S2 of polynomials of the form x k  + h ( X I ,  deg h ( x )  d m. We consider pairs h l k )  and 

h z ( x )  with each h i ( x )  of degree <m, and let 

and since 

(4.24) 

(4.25) 

x3’ x u f l ( x )  (mod f ( x ) )  

for some a, 0 Q o < 2, we find that h ’ ( x )  is of degree about k - n/3 if m - o ( n ) .  If h ’ k )  is 
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divisible only by irreducibles in SI, we obtain a linear equation relating logarithms of three elements 

of S2 to those of elements of SI. There are about 2h pairs hlG),h2G) to test, and so if the h’(x)  

behave like random polynomials of degrees - n/3, we expect to obtain about 22” p([n/31, m) 

equations. Since there are about 2’” elements of S, we therefore need to choose rn so that 

The time to run the algorithm is (within polynomial factors of n )  22”, both to form and factor the 

polynomials h ’ ( x ) ,  and to solve the system of linear equations. A simple computation shows that 

the smallest m that satisfies (4.26) has m - c5(n log, n)1’2, where c5 - (6 log, 2)-’”, and the 

running time of the first phase of this algorithm is 

The running times of the second phases of the two algorithms presented above can be improved 

beyond what is obtained by using the strategy of the basic variant, but we will not discuss that 

subject. Details can be found in 1201, in the case of fields G F b ) ,  p a prime, and it is easy to adapt 

those methods to the fields GF(2”). 

The variants of the index-calculus algorithm presented above raise the question of whether they 

can be generalized so as to give even faster algorithms. The obvious idea is to use more than three 

factors and choose those factors in such a way that the product will reduce modulo fb) to a 

polynomial of low degree. A very clever way to do this was found by Coppersmith [l8,191. 

However, his work was motivated by different considerations. 

We next present the Coppersmith variation I18.191 on the index-calculus algorithm. Unlike the 

basic algorithm, which runs in time roughly of the form exp(n’”) in fields GF(2”), this new 

variation runs in time which is roughly of the form e~p(n’ ’~) .  Unlike the basic version, though, the 

Coppersmith variant does not apply to the fields GFb) with p prime. Just like the algorithms 

presented above, the Coppersmith algorithm relies on several unproved assumptions. Since these 

assumptions are supported by both heuristic reasoning and empirical evidence, though, there seems 

to be no reason to doubt the validity of the algorithm. 
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The Coppersmith algorithm was inspired to a large extent by the’Blake et al. [81 method of 

systematic equations, which is explained in Section 5.1, and which yields many linear equations 

involving logarithms a t  very low cost. Like the systematic equations method, it depends on the 

polynomial f ( x )  being of a the special form (4.18) with f lh) of very’low degree. 

We now discuss the first stage of the Coppersmith variant of the indexcalculus algorithm. We 

assume that the field GF(2”)  is defined by a polynomial f C r >  that is of the form (4.18) with 

degfl(x)  5 log2 n .  The first stage consists again of the computation of logarithms of v E S ,  

where S consists of irreducible polynomials of degrees < M ,  but now m will be much smaller, on 

the order of n1/3(log, nlu3. We will also assume that g ( x )  E S ,  since it follows from Section 5.2 

that this restriction does not affect the running time of the algorithm. 

The essence of the Blake et al. 181 improvement of the basic index-calculus algorithm is that it 

replaced the factorization of a single polynomial of degree about n by the factorization of two 

polynomials of degrees about n / 2  each. The essence of the two improvements discussed above was 

that they rely on the factorization of polynomials of degrees about n/2 and n/3, respectively, into 

low degree irreducibles. The essence of the Coppersmith [18,191 improvement is that it instead 

relies on factorization of two polynomials of degrees on the order of nu3 each. The lower the degree 

of the polynomials being factored, the greater the probability that they will consist only of small 

degree irreducible factors. To accomplish this lowering of the degree, take k E 2’ (k will be 

chosen later so that 2‘ is on the order of n”3(log, n ) - 1 / 3 )  and define 

h - Ln2-kJ + 1 .  (4.28) 

Pick u I ( x )  and u z ( x )  of degrees Q B (B will be chosen later to be on the order of n1/3(lo& n)u3) 

with ( u I ( x ) ,  u z ( x ) )  = 1, and set 

Next let 

(4.29) 

(4.30) 
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We then have 

If B and 2k are on the order of r ~ ' ' ~ ,  then h is on the order of nm, h 2&-n is on the order of nl", 

and SO both w l ( x )  and w z ( x )  have degrees on the order of nw3. Since 

if both w , ( x )  and w 2 ( x )  have all their irreducible factors in S we obtain a linear equation for the 

log, v ,  v E S .  (The restriction ( u , ( x ) ,  u 2 ( x ) )  - 1 serves to eliminate duplicate equations, since 

the pairs u l ( x ) ,  u , (x )  and u l ( x ) t ( x ) ,  u 2 ( x ) t ( x )  produce the same equations.) 

We next consider the Coppersmith algorithm in greater detail. We need to obtain about IS1 

linear equations for the log, v ,  v E S. Now 

deg w l ( x )  < B+h , 

deg w z ( x )  Q B . 2'( + 2k + deg flk) , 

so if w , ( x )  and w Z k )  behave like independent random polynomials of those degrees, then the 

probability that both w l ( x )  and w 2 ( x )  have all their irreducible factors in S is approximately 

p ( B + h ,  m ) ~ U ? 2 ~ + 2 & ,  m) . (4.32) 

Of course W ~ ( X )  and w , ( x )  are neither independent nor random. However, as far as their 

factorizations are concerned, it does not appear unreasonable to expect that they will behave like 

independent random polynomials, and this does turn out to hold in the case n - 127 studied by 

Coppersmith 118,191. Therefore to obtain 1st - m-'2"+' equations we need to satisfy 

22E p ( B + h ,  r n ) ~ ( B 2 ~ + 2 ' ,  m )  2 2" . (4.33) 

The work involved consists of generating approximately 2= polynomials w I  ( x )  and testing whether 

both w , ( x )  and w 2 b )  have all their irreducible factors in S .  Once these roughly 2"' equations are 

generated, it becomes necessary to solve them, which takes about 2*"' operations. The estimate 

(4.5) shows that to minimize the running time, which is approximately 
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228 + 22" , 

subject to (4.331, it is necessary to take 

2' - a n1/3 (lo& n1-113 , 

m - B nil3 (lo& n P 3  , 

(4.34a) 

(4.34b) 

(4.34c) B - y n1/3 (lo& n P 3  , 

as n - 00, where a, B, and y are bounded away from both zero and infinity. Under these conditions 

we find that the running time of the first stage of the algorithm is 

K2? lok + K28 lo& (4.35) 

where K - K (n) denotes any quantity that satisfies 

and this is subject to the condition 

(4.37) 

Let us now regard a, 8, and y as continuous variables. Since the estimate (4.35) does not depend 

on a, we can choose a freely. The quantity on the left side of (4.37) is maximized for 

a I y-'/2 (4.38) 

and for this choice of a, (4.37) reduces to (after neglecting the Ifo (1) factor) 

(4.39) 2y IO& 2 > 0 log, 2 + - 2 f!?-'y'/2 . 
3 

To minimize the asymptotic running time of the algorithm, we have to c h m e  8 and y so that (4.39) 

is satisfied and max (27, 2s) is minimjzed. A short calculation shows that the optimal choice is 

obtained when y - B and equality holds in (4.33, which yields 

.8 = 22'33-"3 (log, 2)-u3 - 0.9743 ... . (4.40) 

The running time for this choice is 
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and the space required is K8’% - ly0.6753-... 
The analysis above assumed that a, 8, and y could all be treated as continuous variables. This is 

essentially true in the case of 8 and 7,  but not in the case of a, since (4.34a) has to hold with k a 

positive integer. Since the analysis is straightforward but tedious, we do not discuss the general 

situation in detail but only mention that the running time of the Coppersmith algorithm and the 

space required are of the form K”, where u is a function of log2 (n”3 (log, n)2’3) which is periodic 

with period 1. The minimal value of u is 28 log, 2, with ,8 given by (4.401, while the maximal 

value of u is 3u38 log, 2 - (2.08008 ...I 8 log, 2. Thus we are faced with the not uncommon 

situation in which the running time of the algorithm does not satisfy a simple asymptotic relation 

but exhibits periodic oscillations. 

We next discuss the second stage of the Coppersmith algorithm, which computes logarithms of 

arbitrary elements. It is somewhat more involved than the second stage of the basic version of the 

algorithm. If h is a polynomial whose logarithm is to be determined, then Coppersmith’s second 

stage consists of a sequence of steps which replace h by a squence of polynomials of decreasing 

degrees. The first step is similar to the second stage of the basic algorithm and consists of selecting 

a random integer s, forming h’ as in (4.11, and checking whether h’ has all its irreducible factors 

of degrees Q n2I3 (log, r ~ ) ” ~ ,  say. (In practice, one would again replace h’ by wI/w2, where the 

degrees of the wi are 5 h / 2 ,  and the bound on the degrees of the irreducible factors might be 

somewhat different, but that is not very important.) The probability of success is approximately 

p ( n ,  n2’3(log, n)”3) ,  so we expect to succeed after 

trials. When we do succeed with some value of s,  we obtain 

where the u, are of degrees Q nu3 (log n)1’3 ,  and there are < n of them (since their product is a 
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polynomial of degree < n ) .  This then yields 

log, h 3 --s + 2 log, ~i (mod 2?-1) , 
I 

and so if we find the log, ui. we obtain log, h . 

(4.42) 

Suppose next that u is a polynomial of degree < B Q nu3 (log nI1 l3  (say one of the ui above, 

in which case E - n2I3 (log n)’’). We again reduce the problem of computing log, u to that of 

computing logarithms of several polynomials of lower degrees. We select 2k to be a power of 2 close 

to ( n / E ) ” 2  (precise choice to be specified later), and let 

d = \n2 -k ]  + 1 .  (4.43) 

Consider polynomials 

then (for b small) 

and thus w I ( x )  and w z ( x )  both have low degrees. If w l ( x ) / u G c )  and w 2 ( x )  both factor into 

irreducible polynomials of low degree, say 

then we obtain 

This reduces the computation of Log, u to the computation of thc log, r j  and the log, ui .  We next 
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analyze how much of a reduction this is. The probability that w , ( x ) / u  ( x )  and w 2 k )  both factor 

into irreducible polynomials of degrees Q M is approximately 

and the number of pairs of polynomials v,(x), v 2 k )  of degrees Q 6 with (vlb), vz(x)) - 1 and 

u (n) I w1 (XI is approximately 

22b-d" u G )  . 

(Divisibility by u ( x )  is determined by a set of deg u ( x )  linear equations for the coefficients of 

vl(x) and v~(x1.1 Hence to find vl(x) and v2(x) such that w,(x) and w z k )  factor in the desired 

fashion we select b to be approximately 

(n113 (log, nIU3(log, 2)-' + deg u ( x ) ) / 2  , (4.46) 

and select 2' to be the power of 2 nearest to (n/b)'l2. We then expect to obtain the desired 

factorization in time 

K - e ~ p ( ( l + o ( l ) ) n ' / ~ ( ~ o g ,  n)2/3)  , 

with M being the largest integer for which 

Kp(d+b-deg u ( x > ,  M)p(b2'+2'+degfl(x). M) 2 1 . (4.47) 

If B - n2l3(log, n ) 1 / 3  (as occurs in the first step of the second stage of the Coppersmith 

algorithm), we find that we can take M - cn'%og, n)3 /2 ,  and if 5 - cn'/2(logc nI3I2, then we can 

take M - c'n5/12(lo& n)25/12 .  More generally, it is also easy to show that if B 2 n'/3(l~g, n)2'39 

say, then we can take M < B/l . l ,  so that each iteration decreases the degrees of the polynomials 

whose logarithms we need to compute by a factor > 1.1, while raising the number of these 

polynomials by a factor Q n. When B Q (l.l)-'n1/3(10ge nIm, the polynomial uk) is already in 

our data base, and we only need to read off its logarithm. Thus we expect to perform 

iterations of this process, each iteration taking K steps. 
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We have shown that the second stage of the Coppersmith algorithm can compute individual 

logarithms in time K'.09*.-. In fact, with slightly more care the exponent of K can be lowered 

substantially. We do not do it here, since the main point we wish to make is that as in the basic 

algorithm, the second stage of the Coppersmith variant requires very little time and negligible space, 

compared to the first stage. 

This section was devoted almost exclusively to the asymptotic analysis of the index-calculus 

algorithms on a random access machine. In Section 6 we will consider the question of estimating 

the running time of this algorithm for some concrete values of n, including the possible effects of the 

use of parallel processors. In the next section we will discuss several variations on the algorithm as 

it has been presented so far. 

5. Further modifications of the index-calculus algorithm 

Section 4 was concerned largely with the asymptotic behavior of the index-calculus algorithm in 

fields GF(2") .  This section will discuss several technical issues related to both the basic algorithm 

and the Coppersmith version. The most important of them is that of efficient solutions to systems of 

linear equations, discussed in Section 5.7. The fact that the equations that occur in index-calculus 

algorithms can be solved fast is a recent discovery which affects the estimates of the running time 

both asymptotically and in practice. 

This section also presents a variety of modifications of both the basic algorithm and of the 

Coppersmith version, which do not affect the asymptotics of the running times very much, but which 

are very important in practice. The most significant of these variations is that of Section 5.6. That 

variation speeds up the first phase of the Coppersmith algorithm by two or three orders of 

magnitude in fields that might be of practical interest. The variations presented here are not 

analyzed in exhaustive detail because their exact contributions depend on the hardware and software 

in which the algorithm is implemented. The purpose here is to obtain rough estimates of the 

performance of the algorithm with the best currently conceivable techniques. These estimates will 

be used in the next section to evaluate how large n ought to be to offer a given level of security. 
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5.1 Systematic equations 

The first stage of the index-calculus algorithm involves the collection of slightly over IS1 linear 

equations for the logarithms of the polynomials v E S and then the solution of these equations. The 

reason the Coppersmith version is so much faster than the Blake et al. version is that by dealing 

with pairs of polynomials of degree around n2I3 as opposed of degree about n/2, it increases the 

probability of finding an additional equation for the log, v ,  v E S. In fact, for the fields GF(2”) ,  

Blake et al. had some methods for obtaining large numbers of equations at  very low cost per 

equation. They called the equations obtained this way “systematic.” They were able to obtain 

upwards of one half of the required number of equations that way, but never all. Their methods in 

fact inspired Coppersmith to invent his version of the algorithm. We will now explain the Blake et 

al. methods and explore their significance. These methods work best when the polynomial f ( x )  

which defines the field has the special property that it divides some polynomial of the form 

x2‘ + f , ( x ) ,  (5.1) 

where the degree of f lk )  is very small, and where the primitive element g - g k )  = x. In 

general, it appears likely that the degree of fl ( X I  will be relatively high, which will make these new 

approaches of Blake et al. of Little significance. In some cases, however, these methods produce 

startling improvements. This happens, for example, in the case of n - 127, when we take the 

defining polynomial to h f k )  = xI2’+x+l, since here 

x f ( x )  - x2’+x2+x , 

and f l  ( X I  has degree 2. 

The first of the observations made by Blake and his collaborators is that if fLk) is of low 

degree, the polynomials x * ,  1 < r < n-1, will often have low degree when reduced modulo f ( x > .  

When this degree is low enough to make that polynomial a product of polynomials from S ,  we 

obtain a linear equation of the desired kind, since Iog,x* - 2‘. As an example, for n - 127 and 

f ( x )  - x J 2 ’ + x + l ,  we find that for 7 < i 6 126, 



and repeated application of this result shows that each x T ,  0 Q r Q 126, can be expressed in the 

form 

and so the logarithms of all such elements can be quickly computed, and are of the form 2' for some 

r .  Furthermore, since 

one can also obtain the logarithms of all elements of the form 

6 

i -0  
L, + 2 Q X 2 ,  Ej  - 0, 1 . 

In particular, these will include the logarithms of 31 nonzero polynomials of degrees Q 16. In 

general, for other values of n, fl(x) will not have such a favorable form, and we can expect fewer 

usable equations. 

Another observation of Blake et  al., which is even more fruitful, is based on the fact that if u (x) 

is any irreducible polynomial over GF (2) of degree d ,  and v ( x )  is any polynomial over G F ( 2 ) ,  then 

the degrees of all irreducible factors of u ( v ( x ) )  are divisible by d .  To prove this, note that if w h) 

is an irreducible factor of u (vk)), and a is a root of w ( x )  = 0, then v ( a )  is a zero of u h), and 

thus is of degree d over GF(2) .  Since v ( x )  has its coefficients in GF(21, this means that a must 

generate an extension field of G F ( 2 d ) ,  which means that its degree must be divisible by d ,  as we 

wished to show. 

TO apply the above fact, Blake et a!. take an irreducible u (x) of low degree, u (x) E S ,  and 

note that by (5.11, 

If u (x)) factors into polynomials from S, one obtains another equation for the logarithms of the 

v E S .  The result proved in the preceding paragraph shows that all the factors of u ! f i ( x ) )  will 



have degrees divisible by deg u k), and not exceeding (deg ub))  (deg fi(x)). Blake and his 

collaborators noted that in many cases all the irreducible factors have degrees actually equal to 

deg u (x). We will now discuss the likelihood of this happening. 

Suppose that 

/ ( X I  I X ' + f l ( X )  . (5.2) 

We can assume without loss of generality that not all powers of x appearing in f l ( x )  are even, 

since if they were, sayf,Cr) - f2(x2> - f z ( x ) ' .  we would have 

f C r )  I x P + f z ( x ) 2  = ( X 2 ' - ' + f ' w ) *  , 

and since f (x) is irreducible, we would obtain 

f ( x >  I x P - ' + f 2 G )  , 

and we could replace f IGC) by f z ( x )  in (5.2). Therefore we will assume f l ( x )  does have terms of 

odd degree, and so f ;  G-) f 0. 

(5.3) 

is the product of all the irreducible polynomials of all degrees dividing d. When we substitute 

fl(x) for x in F d k ) ,  we obtain 

Fd (f 1 (XI) = f I (X I  Y+fl (x 1 - f (X' )+f i  (x  1 . 

But 

(5.4) 

and so each irreducible polynomial whose degree divides d has to divide some u (fib)) for another 

irreducible u (XI of degree dividing d. Since 

d 
dx - F d V I ( X ) )  - f i ( x )  

by (5.4). only a small number of irreducibles can divide Fd(fl(x)) to second or higher powers. 
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Hence we conclude that at most only about one in deg fib) of the irreducible polynomials u kc) of 

degree d can have the property that u(f,h)) factors into irreducible polynomials of degree d .  

Thus if we have only one pair ( k , f l ( x ) )  for which (5 .2)  holds, then we can expect a t  most about 

ISI/(degfl(x)) systematic equations from this method. We also obtain useful equations from all 

u ( x )  for which deg u ( f 1 d r ) )  Q m ,  but there are relatively few such polynomials ukc) .  If 

d e g f i G )  - 2 (as it is for n - 127, fk) - xi2'+x+l), it is easy to see that almost exactly one 

half of the irreducible polynomials u ( x )  of a given degree d will have the property that u (fib)) 

factors into irreducible polynomials of degree d. If d e g f 1 k )  > 2, the situation is more 

complicated, in that the u(flG)) can factor into products of irreducible polynomials of several 

degrees, and so the number of useful equations obtained this way is typically considerabIy smaller 

than ISl/(degfl(x)). 

One factor which is hard to predict is how small can one take the degree of f lG)  so that (5.2) 

holds for some k and some primitive polynomial f ( x )  of degree n. The situation for n - 127, 

where we can take fib) - x2+x, is extremely favorable. For some n, it is possible to take 

degf , (x)  = 1. Condition (5.2) with f l ( x )  - x is not useful, since it holds precisely for the 

irreducible polynomials of degrees dividing k, and the resulting discrete logarithm equations simply 

say that 

for d l k ,  d - deg v(x) ,  which is trivial. Condition (5.2) with f , ( x )  = x + l  is somewhat more 

interesting. If it holds, then 

and thus degf (x)  I 2k.  On the other hand, because of (5.21, degf(x)  1 k.  Thus this condition 

can hold only for even n ,  which, as we will argue later, ought to be avoided in cryptographic 

applications. For these even n ,  however, it gives relations of the form 

for all irreducible v ( x ) ,  where v'(x) - v(x+l), and then gives about lSl/Z useful equations. 
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In many cases it is impossible to find f ( x )  of a given degree such that (5.2) holds for some 

f l k )  of low degree. When such f G) can be found, it sometimes happens that (5.2) holds for 

several pairs (k, f l ( x ) ) .  For example, when n = 127, fk) = x12'+x+1, condition (5.2) holds for 

k = 7 , f l ( x )  = xz+x and also for k = 14,f,(x) 9 x4+x. 

The significance of these systematic equations is not completely clear. Our arguments indicate 

that unless (5.2) is satisfied with fl(x) of low degree, few systematic equations will be obtained. 

No method is currently known for finding primitive f ( x )  of a given degree n for which (5.2) is 

satisfied with some flk> of low degree. It is not even known whether there exist such f ( x )  for a 

given n. Even in the very favorable situation that arises for n - 127, f ( x )  = xi2'+x+l, Blake et 

al. [S l  found only 142 linearly independent systematic equations involving the 226 logarithms of the 

irreducible polynomials of degrees Q 10. (They reported a very large number of linear 

dependencies among the systematic equations they obtained.) Thus it seems that while systematic 

equations are a very important idea that has already led to the Coppersmith breakthrough and 

might lead to further developments, a t  this time they cannot be relied upon to produce much more 

than IS 1/2 equations, and in practice probably many fewer can be expected. 

5.2 Cbange of primitive element and field representation 

The Coppersmith algorithm requires that the polynomial f ( x )  that generates the field GF(2") 

be of the form (4.18) with j l ( x )  of low degree. Section 4.1 showed that if the f ( X I  satisfies (5.2) 

with / ] ( X I  if low degree, and x is a primitive element of the field, one can obtain many systematic 

equations. On the other hand, it is often desirable that /(XI satisfy other conditions. For example, 

if / ( X I  is an irreducible trinomial, 

f ( x )  - x"+xk+l  , (5 .5 )  

where we may take k < n/2,  since x " + x " - ~ + ~  is irreducible if and only if f ( x )  is, then reduction 

of polynomials modulo f (x) is very easy to implement; if 

2n-2 
h ( x )  = 2 a ix i  

i -0 
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(as might occur if h (XI is the product of two polynomials reduced modulof(x)), then 

a reduction that can be accomplished using two shifts and two exclusive or's of the coefficient 

strings, and another iteration of this procedure applied to the polynomial on the right side of (4.6) 

yields the fully reduced form of h (XI. It is often also desirable that f Gc) be primitive, since then x 

can be used as a primitive element of the field. (Extensive tables of primitive trinomials are 

available, see [28,71,721.) In some cases. of which n - 127 and f ( x )  = x12'+x+l is the example 

par excellence, it is possible to satisfy all these desirable conditions. In general, though, some kind 

of compromise might be necessary, and the choice to be made might depend both on n (and thus on 

what kinds of polynomials exist) and on the hardware and software that are being used. Our 

purpose here is to show that the security of a cryptosystem is essentially independent of the choices 

that are made; the cryptosystem designer and the cryptanalyst can choose whichever f ( x )  and g k )  

suit them best. 

To show that changing only the primitive element g(x) does not affect the security of a system. 

suppose that we have a way to compute discrete logarithms to base g k )  efficiently. If another 

primitive element gl (x) and a nonzero polynomial h (x) are given, and it is desired to compute the 

logarithm of h (x) to base g l k ) ,  we compute the logarithms of gl(x) and h ( x )  to base gk) .  say 

and obtain immediately 

h ( x )  = g l ( x ) " ' b  (mod j ( x ) )  , 

where a* is the integer with 1 Q u*  Q 2"-1 for which 

(Since g(x) and g,(x) are primitive, (u,2"-1) - 1, and so a* exists.) 
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Changing the representation of the field, so that it is given as polynomials modulo flh). as 

opposed to modulo fh), also does not affect the difficulty of computing discrete logarithms, as was 

first observed by Zierler 1701. The two fields are isomorphic, with the isomorphism being given by 

where 

Thus to construct the isomorphism we have to find a root h ( x )  of f1 ( x )  in the field of polynomials 

modulo fh). Such a root can be found in time polynomial in n [7,16,36,55,701, which establishes 

the isomorphism and enables one to transfer logarithm computations from one representation to 

another. 

5.3 Faster generation and processing of test polynomials 

As we described the basic index-calculus algorithm, the polynomials h' are generated (in the 

first stage of the algorithm, say) by selecting a random integer s and reducing g' modulo fh). 

Typically this involves on the order of 3n/2  polynomial multiplications and reductions modulo f k). 

This work can be substantially reduced by choosing the h' in succession, say h ;  - 1, h ; ,  h i ,  ..., with 

where v, is chosen at  random from S .  This requires only one polynomial multiplication (in which 

one factor, namely v,, is of low degree) and one reduction. Since each h; is of the form 

any time we find that both w 1  and w2 have all their irreducible factors in S, we obtain another 

equation for the log,v, Y E S. Heuristic arguments and some empirical evidence [58l indicate that 

the sequence h; ought to behave like a random walk in GF(2")\(0), which means that the modified 

algorithm ought to produce linear equations about as efficiently as the old one. 

Once h' is computed, the (wl, w2) pair that satisfies (4.7) is produced by the extended 
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Euclidean algorithm applied to the polynomials h' and f, which are each of degree about n .  It 

might be advantageous to decrease the cost of this relatively slow operation by generating several 

pairs ( w l .  w2) that satisfy (4.7). This can be done by choosing w I  = rj and w2 - ctj for several 

values of j such that (4.1 1) holds and the degrees of the wi are'not too far from n/2. As is shown 

in Appendix A, 

for s small compared to r (for example, p(l05, 18)p(95, 18) - 1.07XlO-*, while 

~ ( 1 0 0 ,  18)' = 1.09x10-8) so that if the neighboring pairs ( y j ,  a,) that satisfy (4.11) are 

independent with regard to factorization into small degree irreducible polynomials, as seems 

reasonable, we can cheaply obtain additional pairs ( w l ,  w,) satisfying (4.7) which will be just as 

good in producing additional equations. 

The two modifications suggested above can also be applied to the second stage of the basic 

index-calculus algorithm, where they will lead to a similar improvements in running time. They can 

also be used in the first step of the second stage of the Coppersmith algorithm. 

Blake et al. [81 used the Berlekamp algorithm [71 to factor the polynomials wi. However, what 

is really needed initially is only to check whether all the irreducible factors of the wi are of degrees 

Q m. The complete factorization of the wi is needed only when the wi are both composed of low 

degree factors, and this happens so infrequently that the time that is needed in those cases to factor 

the wi is an insignificant fraction of the total running time. Now to rapidly check whether a 

polynomial w ( x )  has all its irreducible factors of degrees < rn, we can proceed as follows. Since 

the greatest common divisor, ( w ' k ) ,  w ( x ) ) ,  of w ( x )  and its derivative equals 

where 

(5.7) 

and the yi (XI are distinct irreducible polynomials, we can compute 
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in a few greatest common divisor and square root operations. Then, for i = 1,2, ..., rn we compute 

Since x2"+ x is the product of all the irreducible polynomials of degrees dividing k .  w""'(x) = 1 if 

and only if all the irreducible factors of W O E )  are of degrees d m .  

The above procedure ought to be quite fast, since the greatest common divisor of two 

polynomials of degrees Q n can be computed using at  most n shifts and exclusive or's of their 

coefficient sequences and since the degrees of the w ( ~ )  are likely to decrease rapidly. The above 

procedure can be simplified some more by noting that it suffices to define w("(x)  - W ' ~ ' ( X )  for 

io  = [(m-1)/21 and apply (5 .8 )  for i - iO+l, ..., m, since any irreducible polynomial of degree d ,  

d f m. divides a t  least one of the x21+x, io+l Q i < M .  Furthermore, the x2+x do not have to 

be computed at each stage separately, but instead, if we save 

with u i ( x )  reduced modulo w ( ' - ' ) k ) ,  then 

and so 

which is a much simpler operation. 

Another fast way to test whether a polynomial w ( x )  has all its irreducible factors of degrees 

d m was suggested by Coppersmith [191. It consists of computing 

and checking whether the resulting polynomial is zero or not. This method avoids the need for 

many greatest common division computations, and so may be preferable in some implementations. 
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It is not completely foolproof, since polynomials in which all irreducible factors of degrees > m  

appear to even powers will pass the test. However, such false signals will occur very infrequently. 

and will not cause any confusion, since polynomials w Gc) that pass the Coppersmith test have to be 

factored in any case. 

5.4 Large irreducible factors 

This section discusses a variation on both the basic index-calculus algorithm and the 

Coppersmith variation that was inspired by the "large prime" variation on the continued fraction 

integer factoring method (cf. [531). In practice, as will be discussed in greater length later, the wi 

would probably be factored by removing from them all irreducible factors of degree C m, and 

discarding that pair (wl, w ~ )  if either one of the quotients is not 1. If one of the quotients, call it 

uk), is not 1, but has degree Q 2m, then it has to be irreducible. The new variation would use 

such pairs, provided the degree of u ( x )  is not too high ( G  m+6, say). The pair (w1, w2) that 

produced u (x) would be stored, indexed by u (x). Then, prior to the linear equation solving phase, 

a preprocessing phase would take place, in which for each irreducible u ( x ) ,  deg u ( x )  > m, the 

pairs (wI, w,) that are associated to it would be used to obtain additional linear equations involving 

logarithms of the v E S. For example, in the basic algorithm, if there are k pairs associated to 

u ( x ) ,  say 

where each ai - f l ,  then we can obtain k-1 equations for the logarithms of the v E S by 

considering the polynomials 

A similar method works with the Coppersmith variation. 

We now consider the question of how many equations we are likely to obtain by this method. 

Suppose that we generate N different pairs ( w l ,  w 2 ) ,  where each of the wi is of degree 

approximately M (which would be - n / 2  for the basic algorithm and on the order of n213 in the 
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Coppersmith variation). We then expect to obtain about 

pairs ( W I ,  W Z ) ,  where each of the wi factors into irreducibles from S.  Consider now some k > m. 

The probability that a random polynomial of degree - M has exactly one irreducible factor of 

degree k and all others of degrees Q m is about 

where I ( k )  is the number of irreducible polynomials of degree k .  Therefore we expect that the 

probability that exactly one of w I and w2 has one irreducible factor of degree k and all other factors 

of both W I  and w2 are of degrees < m is about 

(The probability that both w 1  and w2 have one irreducible factor of degree k and all others of 

degree Q m is negligible.) Hence among our N pairs ( w l ,  w2) we expect about 

pairs that would be preserved. The number of equations that we expect to obtain from these A’& 

pairs is Nk-hfk, where h f k  is the number of irreducible polynomials of degree k that appear in the 

stored list. 

To estimate Mk, we make the assumption that the irreducible polynomials u (x) of degree k that 

appear in the factorization of the wi behave as if they were drawn at random from the I ( k )  such 

polynomiak. When Nk balls are thrown at  random into I ( k )  buckets, the expected number of 

buckets that end up empty is I ( k )  times the probability that any single bucket ends up empty. 

Since the probability that a particular bucket ends up with no balls is 

the expected number of buckets that we expect to be occupied is 



Therefore we expect to obtain approximately 

additional equations from polynomials of degree k.  Since Nk will be comparable to Z(k) in 

magnitude in applications to the indexcalculus algorithm, we can approximate (5.10) by 

Nk + I ( k )  (exp(-Nk/I(k))-l) . (5.11) 

Since (see Appendix A) Ik - 2k k-' and 

p ( M - k .  m )  - p ( M .  m )  (Mm-' lo& M / m ) k / m  , 

(5.9) gives us 

N k  - 2 N k - ' p ( M ,  m)' (Mm-' lo& M / m l k I m  . (5.12) 

Since IS1 - 2"'+'m-', wc art interested in N for which Np(M, m)' is on the order of 2mm-1. For 

such N, though, 6-11)  and (5.12) show that the number of additional equations is negligible for 

k-m - 00. For k - m,  on the other hand, (5.12) shows that 

which is 

and (5.1 1) then she- that we can expect 

additional 4uations9 

that the total number Of 

imp*ied constants are absolute. Hence when we sum over k, we find 

equations we can expect the large irreducible factor variation to 



generate is proportional to the number that have to be obtained. 

The large irreducible factor variation can be quite important for moderate values of n, especially 

when m is relatively low, as it might have to be to make the solution of the system of linear 

equations feasible. For example, for M - 65, m = 18, without the large irreducible factor 

variation we might expect to test about N = 1.04 x108 pairs ( w l ,  w z ) ,  whereas with this variation 

we expect to need only about 6.7 x 10'. For M - 65 and m - 12, the difference is even more 

dramatic, since without the variation we expect to need N =: 1.3 x1Oi0, while with it we need only 

N z 3.5 x 10'. For M - 100 and m - 20 the figures are N = 4.9 x 10" and N =z 2.3 x lo", 

respectively, while for M - 100 and m - 18 they are N z 2.7 x loi2 and N = 1 .1  x lo'*. Thus 

for values that are of cryptographic significance, the large irreducible variation can shorten the 

running time of the equation generating phase by a factor of between 2 and 3. Furthermore, it can 

speed up the second stage of the index-calculus algorithm by an even greater factor, since in 

addition to the logarithms of the v E S, the cryptanalyst will possess the logarithms of many 

polynomials of degrees m + 1, rn +2,... . 

5.5 Early abort strategy 

Like the large irreducible factor variation discussed in the preceding section, the early abort 

strategy is also inspired by a similar technique used in factoring integers. Most of the pairs 

( w i ,  w2) that are generated turn out to be ultimately useless, whether the large irreducible factor 

variation is used or not. I t  would obviously be of great advantage to be able to select those pairs 

( w , ,  w,) in which both of the wi are likely to factor into irreducible polynomials from S .  The idea 

behind the early abort strategy is that a polynomial is unlikely to have all its factors in S unless it 

has many factors of small degree. Asymptotically this variation is unimportant, since factorization 

of binary polynomials can be accomplished in time polynomial in their degree. For small values of 

n ,  though, this variation can be important, as will be shown below. 

Let p k b ,  m) denote the probability that a polynomial of degree r has all its irreducible factors 

of degrees strictly larger than k but at most m. It is easy to obtain recurrences for pkb,  m) 
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similar to those for p ( r ,  m )  derived in Appendix A, which enables one to compute the pk (r, m )  

numerically. (It is also possible to obtain asymptotic expansions for the p k k ,  m), but since we 

know a priori that the early abort strategy is unimportant asymptotically, we will not do it here.) 

For a polynomial w(x), let w'(x) denote the product of all the irreducible factors of w(x) of 

degrees Q k (with their full multiplicity). Let Q G ,  R,  m, k) denote the probability that a 

polynomial w ( x )  of degree r has all its irreducible factors of degrees 4 m, that deg w'k) 2 R.  

Then we easily obtain 

Let Q'(r, R ,  k )  denote the probability that a random polynomial w(x) of degree r has the 

property that deg W *  (x) B R. Then we similarly obtain 

The early abort strategy with parameters ( k ,  R )  is to discard the pair (wl, w2) if either w;(x) 

or w;k) has degree < R. Let A represent the time needed to check whether both w l k )  and 

w ~ ( x )  have all their irreducible factors are of degrees Q m, and let B represent the time involved in 

testing whether the degrees of w ; G )  and w;(x) are both 2 R. Then to obtain one factorization 

that gives a linear equation for the logarithms of the v E S ,  the standard index-calculus algorithm 

has to test about p ([n/21, m)-* pairs (w,, w2)  at a cost of approximately 

(5.13) 

units of time. The early abort strategy has to consider about Q(In/21, R,  m, k ) - 2  pairs (WI. ~ 2 1 ,  

but of these only about Q'([n/21, R. k ) 2  Q([n/21, R, m, k)-' pairs have to be subjected to the 

expensive test of checking if all their irreducible factors have degrees < m. Hence the work 

involved in obtaining an additional linear equation under the early abort strategy is about 

In Table 1 we Present some values of the ratio of the quantity in (5.14) to that in (5.13): 
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Table I. Evaluation of the early abort strategy. 

5 

5 

5 

6 

~ 200 

200 20 

2.47 BIA + 0.412 

1.73 BIA + 0.452 

2.67 BIA -+ 0.445 

2.32 B / A  + 0.396 

We see from this that if BIA 5 1/10, 

R ratio of (5.14) to (5.13) 

then one can reduce the work required to obtain an 

additional equation by 30-40%. which might speed up the algorithm by a factor of approximately 

1.5. 

The success of the early abort strategy is crucially dependent on the ability to quickly find the 

divisors w; of the wf that are  composed only of irreducible factors of degrees < k. If we use the 

procedure suggested in Section 5.3, this can be accomplished quite easily. Given a polynomial w k )  

to be tested, we compute its square-free part w ' O ' G C )  and go through the first k steps of the 

procedure described by (5.8). If k - 4, this can be simplified further. Here we only need to know 

and these can be computed by reducing w(O'(x) modulo xa + x and modulo xI6 + x, respectively, 

and looking up the greatest common divisors in precomputed tables. We could then decide not to 

reject w (x) if the difference of the degree of w(O)(x) and the sum of the degrees of the two divisors 

is small enough. It might also be advantageous to avoid computing w(O'(x) on the first pass, 

compute 

and accept or reject w k )  depending on how small the difference between the degree of w b )  and 

the sum of the degrees of those factors is. 

One can obtain some further slight gains by using additional conditions further along in the 
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computation of the w " ' k )  defined by (5 .8) .  It seems safe to say, though, that the early abort 

strategy is unlikely to sped up the linear equation collection phase of the index-calculus algorithm 

by more than a factor of 2 or so. 

5.6 Faster generation of equatiorts in Coppersmith's method 

It is possible to significantly speed up the first stage of Coppersmith's variant of the index- 

calculus algorithm by applying some of the ideas that occur in the second stage of that version. 

Asymptotically, the improvements are not 'important, but in practice they are likely to be much 

more important than all the other variations we have discussed so far, and could speed up the 

equation-collecting phase of the algorithm by factors of 10 to 20 for n = 127, by up to 300 for 

n = 521, and by over lo00 for n = 1279. 

The idea behind the new variation is that instead of selecting u i(x) and u 2 k )  to be any pair of 

relatively prime polynomials of degrees < B each, we select them to increase the chances of w1k) 

and w, (x )  splitting into low degree irreducible factors. To do this, we select a pair vlk) and v z k )  

of polynomials of degrees d B-1 (but close to B) such that each is composed of irreducible factors 

of degrees Q m. We then select ul(x) and u z ( x )  of degrees Q B so that vl(x) I wlk) and 

vz (x )  I w , ( x ) .  The divisibility condition gives us deg vi(x) + deg v2(x) Q 2B-2 homogeneous 

linear equations for the 2B coefficients of ul(x) and u , ( x ) ,  and so we obtain at  least 3 nonzero 

solutions. Moreover, these solutions can be found very fast, by using gaussian elimination on the 

GF (2) matrix of size Q 2B -2 by 2 8 .  

When U I ( X )  and u ~ k )  are selected by the above procedure, the probability of w i k )  splitting 

into irreducible factors of degrees < m ought to be close to p ( h ,  m ) ,  and the probability of W Z ( X )  

splitting in this way ought to be close to 

Since B 

W I ( X )  and W Z ( X )  splitting is not affected by this improvement. 

improvements can be vital. 

0 ( r ~ ' ' ~  (1% nIu3>, the form of the asymptotic estimate for the probability of both 

In practice, however, the 
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Some care has to be used in the application of the idea proposed above. The first stage of the 

index-calculus algorithm requires the generation of IS I - n1-~2”’+’ linearly independent equations. 

The equations generated by the basic version of the algorithm and by the Coppersmith variation are 

expected to be largely independent of the preceding ones (as long as there are < IS/ of them) on 

heuristic grounds, and this is confirmed by computational experience. That is not the case, however, 

with the variation proposed above, because in general many pairs (v,GC), vz(x)) will give rise to the 

same pair ( w ~ ( x ) ,  W Z ( X ) ) .  To circumvent this difficulty, we select B so that the standard 

Coppersmith algorithm without the variation proposed here would generate about 1.6 IS I equations. 

(This involves increasing B by a t  most 1.) We then implement the present variation, with the new 

value of B .  Essentially all of the 1.61SI equations that would be generated by the standard 

Coppersmith algorithm can be generated by the new variation with appropriate choices of vl(x)  and 

v 2 ( x ) ,  and most can be generated in roughly the same number of ways. Hence we can again model 

this situation in terms of the “balls into buckets” problem described in Section 5.4; we have about 

1.61S/ buckets corresponding to the equations we can possibly obtain, and we are throwing balls 

into them corresponding to the equations our variation actually produces. If we obtain about 1.61SI 

equations all told, approximately 1.6(1-e-’) IS1 > 1.01 IS1 of them will be distinct, and so it will 

be overwhelmingly likely that IS1 of them will be independent. 

In our new variation we do not need to check whether (uI(x), u z ( x ) )  - 1, and thus whether 

(v,(x>, vz(x)> ,,. 1 .  Therefore we can prepare beforehand a lisr of all polynomials of degrees 

< B-1 that are composed of irreducible factors of degrees < rn, and this will generate a slight 

additional saving over the standard Coppersmith algorithm. (In order to take full advantage of the 

sparse matrix techniques of Section 5.7, it might be best to use only irreducible factors of degrees 

< 171-5, say.) The effort needed to compute u l ( x )  and u,(x) (i.e., to solve a small linear system of 

equations), which is comparable to the work needed to test whether a polynomial has all its 

irreducible factors of degrees < rn ,  can be amortized over more test polynomials by requiring that 

degrees of vl(x)  and v z k >  be < B-2, since that will produce at least 15 nonzero solutions each 

time. 
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There are other ways to speed up the Coppersmith algorithm. One way would be to fix 28+2-b 

of the coefficients of u , h )  and u 2 ( x ) .  where b is maximal subject to being able to store about Zb 

small integers. Then, for all irreducible polynomials u ( x )  of degrm Q rn, one could quickly 

compute those choices of the remaining b coefficients for which w , k )  or w 2 k )  is divisible by u (XI. 

All that would need to be stored for each of the 2* combinations would be the sum of the degrees of 

the divisors that were found. This variation, however, does not appear as promising as the one 

discussed above, and it would require some very novel architectures to implement it on a parallel 

processing machine of the type we will discuss later. Hence we do not explore this variation further. 

A slight improvement on the basic idea of this section is to allow v,(x) and v 2 k )  to have 

different degrees, subject to the requirement that their sum be Q 213-2, so as to make the degrees 

of w , ( x ) / v , ( x )  and w ~ k ) / v z ( x )  more nearly equal. 

Another modification to the Coppersmith algorithm was suggested by Mullin and Vanstone [481. 

It consists of choosing w ~ h )  to be of the form 

for a - 1 or 2, say, and selecting 

w 2 ( x )  = w,(x)*' x b  (modf(x)) ,  

where b is chosen SO as to give small degree for w 2 ( x )  after reduction modulo fk). This might 

allow the use of slightly lower degree polynomials for u , ( x )  and u, (x )  than would otherwise be 

required, since if ~I(O) = 1, the equations this method yields ought to be idependent of those the 

basic method produces. This modification can be combined with the others suggested here. 

5.7 Sparse matrix techniques 

So far we have concentrated on variations on the linear equation collection phase of the index- 

calculus algorithm. However, as we noted in Section 4, the difficulty of solving systems of linear 

equations seemed for a long time to be an important limiting factor on the algorithm and affected 

the asymptotic estimatc of its running time. For example, in the basic algorithm, if the term 22" in 
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(4.16) were replaced by r" for any r > 2 (r  - 3 corresponding to the use of gaussian elimination, 

for example). then the minimum of (4.16) would occur not a t  m - cl(n l ~ & n ) ' ~ ,  but a t  a smaller 

value, m - c l ( r )  (n  1 0 & n ) ' ~ .  and would be larger, with c2 replaced by 

In this section, though, we will show that the linear equations produced by the index-calculus 

algorithm can be solved in time essentially IS/', where IS( is roughly the number of eguations. 

The matrices of coefficients of the linear equations generated by the first stage of the index- 

calculus algorithm are special in that they are very sparse. The reason is that the coefficient vector 

of each equation is obtained by adding several vectors ( b v ( h ) ) ,  indexed by v e S, coming from 

factorizations of polynomials 

Since the polynomials h are always of degrees < n ,  there can be at  m a t  n nonzero b,(h) .  and so 

each equation has at mast R nonzero entries. This is a very small number compared to the total 

number of equations, which is around e ~ p ( n ' / ~ )  or exp(nlD). The literature on sparse matrix 

techniques is immense, as can be seen by looking at [4,6,11,27,611 and the references cited there. 

Many of the techniques discussed there turn out to be very useful for the index-calculus problem, 

even though we face a somewhat different problem from the standard one in that we have to do 

exact computations modulo 2"-1 as opposed to floating point ones. In the worst case, the problem 

of solving sparse linear systems efficiently is probably very hard. For example, it is known that 

given a set of 0-1 vectors v],..., v,, each of which contains exactly three 1's. to determine whether 

there is a subset of them of a given size that is dependent modulo 2 is NP-complete 1351. Thus we 

cannot hope to find the most efficient worst case algorithm. However, very efficient algorithms can 

be found. 

There are several methods for solving the systems of linear equations that arise in the index- 

calculus algorithms that run in tone O(Nz+t) for every E > 0, where N is the number of equations. 
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The first ones were developed by D. Coppersmith and the author from an idea of N. K. Karmarkar. 

This idea was to adapt some of the iterative algorithms that have been developed for solving real, 

symmetric, positive definite systems of equations [6,11,33,39]. For example, in the original version 

of the conjugate gradient method [331, in order to solve the system Ax - y ,  where A is a symmetric 

positive definite real matrix of size N by N ,  and y is a given real column vector of length N, one 

can proceed as follows. Let xo be an arbitrary vector of length N ,  and let Po = ro = y - Axo. The 

algorithm then involves Q N-1 iterations of the following procedure: given xi,ri, and p i .  let 

(5.15b) 

(5 .15~)  

(5.1 5d) 

It can be shown 1331 that if the computations are done to infinite precision, the algorithm will find 

ri - 0 for some i < N-1, and x - y j  will then solve the original system Ax = y .  

There are several problems with trying to use the conjugate gradient method to solve the systems 

of linear equations that arise in the index-calculus algorithms. One is that the system is not 

symmetric, and one has to solve Ex = y where B is not even a square matrix. This problem can be 

bypassed (as is well known, cf. [331) by solving the system Ax - z, where A - B T B  and z - B T y  . 

Since B will in general be of almost full rank, solutions to Ax - z will usually give us solutions to 

Bx - y .  The matrix A will not in general be sparse, but its entries do not have to be computed 

explicitly. since it is only necessary to compute the vectors A p j ,  and that can be done by multiplying 

pi first by B and then B T .  The matrix B can be stored in the sparse form, with rows and columns 

being given by lists of positions and values of nonzero coefficients. 

The main difficulty with the use of the conjugate gradient method is that the basic theory was 

based on minimizing a quadratic functional, and this does not apply in finite fields. However, as 
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was suggested by Karmarkar, the most important property of the algorithm is that the direction 

vectors pi are mutually conjugate (i.e., (pi, A p j )  - 0 for i # j ) ,  and this is a purely algebraic 

property. Therefore the algorithm will terminate after a t  mast n-1 iterations and will find a 

solution unless a t  some stage a vector pi is encountered such that (pi, Api)  - 0. This cannot 

happen if A is a real positive-definite matrix and pi f 0, but can occur over finite fields. If the 

computations are being done over a large finite field, the probability of this occurring if xo is 

choosen at  random is quite low. If the field is small, say G F ( q )  with small q ,  this probability is 

much more significant, and the way to avoid the problem is to choose xo to have entries in a larger 

field, say GF(q ' )  for some small t Z ' .  

The adaptation of the conjugate gradient algorithm outlined above has been tested successfully 

by the author on some small systems. The advantages of the method include not only speed, since 

only about NQ operations in the field GF(q ' )  are required, where Q is the number of nonzero 

entries in B ,  and thus (?(log N )  or U((log A')*) in our problems, but also very modest storage 

requirements, since aside from the matrix B it is necessary to store the vectors xt .  p i ,  ri for only two 

consecutive values of i at  a time. 

An algorithm due to Lanczos 1391, somewhat different from the conjugate gradient algorithm, 

was similarly adapted by Coppersmith to solve the linear systems arising in the indexcalculus 

algorithm. Coppersmith used that method to obtain another solution to the linear system that arose 

in the implementation of his attack on discrete logarithms in GF(2'27).  

A more elegant method for dealing with the index-calculus linear systems was invented recently 

by Wiedemann 1661. Suppose first that we wish to solve for x in A x  - y ,  where A is a matrix of 

size N by N (not necessarily symmetric) over a field C F ( q ) .  Let vo ,vI ,  . . . , vw be vectors of 

length K, which might be 10 or 20, with v, consisting of the first K coefficients of the vector A j y .  

Since to compute the v j  we need only start with y and keep multiplying it by A ,  without storing all 

the vectors AJy , we need only U ( K N )  storage locations, each one capable of storing an element of 

G F ( q ) ,  and the number of G F ( q )  operations to carry out this computation is OWQ). Now the 

matrix A satisfies a polynomial equation of degree < N :  
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N 
cjAj 0, 

1-0  
(5.16) 

and therefore also for any k 3 0, 

N 2 c , A J + ~ ~  - 0 .  
i-0 

(5.17) 

Eq. (5.17) implies that any single component of the vo, . . . , v m  satisfies the linear recurrence with 

characteristic polynomial 

Given any sequence of length on the order of N ,  the Berlekamp-Massey algorithm [29,44,561 finds 

its minimal characteristic polynomial in O ( N 2 )  operations in the field G F ( q ) .  Hence if we apply 

the Berlekamp-Massey algorithm to each of the K coordinates of the vectors vo, . . . , vzN, we will 

in O ( K N 2 )  steps obtain K polynomials whose least common multiple is likely to be the minimal 

polynomial of A .  When we do find that minimal polynomial, and it is of the form (5.18) with 

co # 0, then we can easily obtain the desired solution to Ax - y from 

(5.19) 

If A is nonsingular, then co # 0, as is easy to see. Conversely, if co # 0, then A is nonsingular, 

since we can then write 

In general in index-calculus algorithms, we have to solve a system of the form A x  - y ,  where A is 

of size M by N ,  with LM > N (but M - N  small). One way to reduce to the earlier case of a 

nonsingular square matrix is to take a submatrix A ’  of A of size N by N ,  and apply the algorithm 

presented above to (A’ITx = z for some random vector z .  If A ’  turns out to be nonsingular, we can 
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then go back and search for solutions to A'x - y ,  which is what we are interested in. If A' is 

singular, though, we will obtain a linear dependency among the rows of A'.  This means we can 

discard one of the rows of A' that was involved in that dependency and replace it with another row 

of that part of A that has not been used yet. After a few steps, we ought to obtain a nonsingular 

A', and this will enable us to solve for x in Ax = y .  Wiedemann [ 6 6 ]  also has a deterministic 

algorithm, which may not be as practical, however. 

We conclude this section by discussing some very simple methods for solving sparse systems of 

equations. Some of these methods can be used as a preliminary step before the application of 

Wiedemann's algorithm, say, since they serve to reduce the effective size of the matrix that has to 

be dealt with. In some cases these methods by themselves could be just about as efficient as the 

techniques described above. These methods are based on a simple observation that has often been 

made in the work on sparse matrices (cf. [61), namely that if a matrix is noticeably sparser on one 

end than on the other, then it is better to start gaussian elimination from the sparse end. In our 

case, if we arrange the matrix of coefficients so that the columns correspond to polynomials v E S 

sorted by increasing degree, then the right side of the matrix will be very sparse. (If we use the fast 

version for generating the h' that is presented in Section 5.3, it is necessary to choose the random 

v, E S to have only low degrees for this to remain true.) To see just how sparse that matrix is, 

consider the Coppersmith algorithm in GF(2") ,  with k ,  m ,  and E chosen to satisfy (4.34a-c) with a 

satisfying (4.38). and ,+ and y satisfying p = y and (4.40). If we take M - m-'2"', then the 

matrix of coefficients will have about 2M rows and 2M columns, with columns M+1. . . . , 2 M  

(approximately) corresponding to the irreducible polynomials of degree m .  We now consider those 

columns. Any row in the matrix comes from adding two vectors of discrete logarithm coefficients 

from factorization of two polynomials of degrees about E . 2 k ,  both of which are divisible only by 

irreducible factors of degrees < m .  The probability that a polynomial of degree B . 2 k ,  which factors 

into irreducibles of degrees G m ,  also is divisible by a particular chosen irreducible polynomial of 

degree exactly m is approximately 
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2-" p (B2k - m ,m) 
p U12~,m) ' 

which, by Lemma A.3 of Appendix A, is 

. - 2-m m-'B2'l0g(B2~/m). 

Therefore the probability that any particular entry in the last M columns of the matrix is nonzero is 

about 

(5.20) 

(The factor 2 comes from the fact that we are adding two vectors.) For the choices of B,2', and m 

that were specified, this becomes 6M-', where 

6 2 a ~ S - ~ / 3  - 28-3'2/3 = log 2 - 0.6931 .... 

(Exactly the same asymptotic result also applies to the basic index-calculus algorithm.) Therefore, 

by the "balls into buckets" model, we expect that with probability about 

any column among the last M will contain only zeros. This means that about MI4 of the M 

irreducible polynomials of degree m will not appear in any of the factorizations and so the data base 

obtained from the first phase will be missing those values. More importantly, it means that it was 

not necessary to obtain all of the 2M equations, as 7M/4 would have sufficed. (In fact fewer than 

7M/4, since with that few equations, the chances of obtaining a zero column would be even larger, 

and in addition we would also have some irreducible polynomials of degrees m-l,m-2, etc., which 

would not appear in the equations.) In addition, the probability of a particular column among the 

last M having just a single nonzero coefficient is about 

2M.6M-'(l-6M-')2M-' z= 26 exp(-26) -(log 2)/2=0.346 ... 

Thus an additional 0.346M of the last M columns would have a single nonzero coefficient, SO that 

we could remove those columns together with the rows in which those columns have nonzero 

coefficients, solve the remaining system, and then obtain the values of logarithms corresponding to 



the deleted columns by back substitution. (Occasionally a row might contain two nonzero 

coefficients which are the only such in their columns, which would prevent recovery of the values of 

the corresponding logarithms, but that is not a significant problem.) Furthermore, removal of those 

rows and columns would create more columns with only a single nollzero coefficient, so that the size 

of the matrix could be cut down by more than 0.35M. However, both simulations and heuristic 

arguments show that if we proceed to carry out standard gaussian elimination, proceeding from the 

sparse end, then very rapid fill-in occurs. Therefore one does have to be careful about algorithms 

that are used. 

The above discussion of just how sparse the index-calculus algorithms matrices are was meant to 

motivate the following method. It will be helpful to explain it in terms of operating on the fill 

matrix, although in practice the matrix would be stored in the sparse encoding, using lists of nonzero 

coefficients and their positions for rows and columns, just as in the case of the algorithms discussed 

above. The algorithm is as follows: 

Step 1: Deleie all columns which have a single nonzero coefirient and the rows in which those 

columns have nonzero coeficients. 

Step 1 is repeated until there are no more columns with a single nonzero entry. 

Step 2: Select those aM columns which hove the largest number of nonzero elements for some 

a > 0. Call these columns "heavy," the others "light." 

A typical value of a might be 1/32. The entries in the "heavy" columns for every given row might 

be stored on a disk, with a pointer attached to the row list indicating the storage location. These 

pointers would have coefficients attached to them, which are set to 1 initially. The weight of a row 

is then defined as the number of nonzero coefficients in its "light" columns. 

Step 3: Eliminate variables corresponding to rows of weight 1 by subtracting appropriate 

multiples of those rows from other rows that have nonzero coeficients corresponding to 

those variables. 

During execution of Step 3, if u times row i is to be subtracted from row j ,  the pointers attached to 
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row J are to have added to them the pointers of row i, with their coefficients multiplied by u .  Step 

3 is to be repeated until there are no more rows of weight 1. At the end of this process there are 

likely to be many more equations than unknowns. We can then perform the following operation. 

SIep 4: 

We now iterate Step 1, and then Step 3. We then go on to the next procedure. Note that if a 

variable indexed by j ,  say, appears in rows of weights 2 < w ,  Q w2 6 . . . < W k ,  then eliminating 

that variable using a row of weight wi will increase the number of nonzero entries in the matrix 

(after deletion of the row of weight wi and the column corresponding to our variable) by 

If r rows are excess, drop the r rows with highest weight. 

Hence to minimize the amount of fill-in, we need to choose that variable and that wj (which clearly 

equals w1) for which (5.21) is minimized. Keeping track of this quantity is fairly easy if we use a 

priority queue data structure. 

Step 5: E h i n a t e  fhai variable which causes the least amount qffill-in. 

The algorithm outlined above can be implemented to run very fast, and it reduces the problem of 

solving a roughly 2M by 2M system to that of solving an aM by aM system. What is perhaps 

most remarkable, if the original system is sufficiently sparse, only the Erst few steps of the algorithm 

are needed. For example, if the elements of the matrix are chosen independently at random, so that 

the probability of an entry in the last M columns being nonzero is 6M-l .  in the next M / 2  column is 

26M-', etc., where 6 < 0.85 (compared to 6 - 0.693 ... for the optimal case of Coppersmith's 

algorithm), and a - 1/32, than Steps 1-4 of the algorithm are all that is needed, since by the time 

they are completed, there is nothing left of the "light" portion of the matrix. This result is confirmed 

by simulations (with systems of sizes up to 96,000) and by heuristic arguments. 

The method presented above draws on ideas that are well known in the literature on sparse 

matrices (cf. [111). Moreover, some of these ideas have already been used in the factoring integers 

and computing discrete logarithms. For example, J. Davenport in his computations related to 

Coppersmith's algorithm 1191 used some heuristic methods to minimize fill-in. Such methods were 
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also used during the execution of the Blake et al. [81 version of the basic index-calculus algorithm in 

GF(212’). According to R. Mullin (private communication), the system of about 16,500 equations 

in about that many variables (m-17 was used) was reduced by methods similar to those presented 

above to a system of size under 1000, which was then solved by ordinary gaussian elimination. 

Moreover, their procedure did not involve such tricks as always choosing the equation with fewest 

nonzero entries during elimination, which appear to result in dramatic improvements in 

performance. Therefore we expect these methods to be quite useful. 

6. Practical and impractical implementations 

Blake, Fuji-Hara, Mullin, and Vanstone [81 have successfully tested the basic index-calculus 

algorithm on fields up to GF(2’*’). They estimated that with their V A X  11/780, a relatively slow 

minicomputer, it would have taken them many CPU months to carry out the first stage of the 

algorithm for GF(2127) with m = 17. On the HEP, a powerful multiprocessor to which they 

obtained access, their implementation of the algorithm took about 8 hours for the first stage, of 

which about one hour was devoted to solving linear equations. (Their systematic equations method 

produced a substantial fraction of all the required equations.) Once the first stage is completed, the 

second stage is expected to take around 1 CPU hour per logarithm even on the VAX 11/780. On 

the IBM 3081K, Coppersmith estimated that the equation collecting phase for GF(2L27) would take 

around 9 hours with the basic algorithm. Using his own variation, Coppersmith was able to find all 

the necessary polynomials (for m = 12) in 1 1  minutes [ 191. (The factorization of the polynomials 

to obtain the actual equations took 8 minutes, and solution of the equations took 20 minutes, but 

these tasks were performed with a general purpose symbolic manipulation program, and so could 

undoubtedly be speeded up very substantially.) Further speedups, perhaps by a factor of 30 to 50, 

could be obtained by combining the variation proposed in Section 5.6, which might gain a factor of 

10 to 20, with those of sections 5.4 and 5.5, which together might gain a factor of 2 or 3. Using the 

Cray-1 might gain an additional factor of 10 or so, because i t  is perhaps 5 times faster than the 

IBM 3081K and because it could store and manipulate the test polynomials (of degrees 5 42) in 

single words. Thus we can expect that with current supercomputers the equation collecting part of 
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the first phase of the algorithm can be completed in around one second. Since the database 

produced by the algorithm is not very large (16,510 127-bit numbers for m - 17 in the basic 

algorithm and 747 numbers for rn - 12 in the Coppersmith variation), this means that individual 

logarithms in GF(2'") can now be computed even on personal computers. Therefore GF(2I23 

ought to be regarded as completely unsuitable for cryptographic applications. Our intention here is 

to explore what other fields might be appropriate. 

We first consider the basic algorithm. Although it has been made obsolete by the Coppersmith 

variation in applications to the fields GF(2"), it is worth analyzing in detail, since by comparing our 

estimates to actual running times we will obtain a better idea of how accurate the estimates are. 

In Section 5 we presented briefly a number of variations on the basic index-calculus algorithm. 

These variations were not analyzed very carefully, since we were interested only in the order of 

magnitude of the improvements that can be obtained from such techniques. The general conclusion 

to be drawn from that section is that the time to generate the pairs ( w l ,  w J ,  can probably be 

neglected. The work needed to obtain IS1 equations is probably no more than and a t  least 115 of 

the work needed to test 

pairs (w l ,  w,)  by the procedure outlined in Section 4.3 to see whether all the irreducible factors of 

each of the wi are in S. To test each wi takes about m/2 operations of the form (4.81, each of 

which involves a squaring modulo a polynomial of degree perhaps n/3 on average (since the degrees 

of the w(')(x) will be decreasing, especially if we use the early abort strategy with additional test 

along the way to discard pairs ( w , ,  w J  that are not factoring satisfactorily). a greatest common 

divisor operation or two polynomials of degrees around n / 3 ,  and a division, which will usually be 

trivial. 

To evaluate the significance of the index-calculus algorithm for cryptographic schemes, we have 

to look at the effect of parallel processing and at speeds of modem circuits. We will assume that no 

exotic algorithms, such as fast integer multiplication using the Fast Fourier Transform 1101 are to 
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be used, since they are probably not practical for n on the order of several hundred. Since a 

cryptographic scheme ought to be several orders of magnitude too hard to break, we will only try to 

be accurate within a factor of 10 or so. 

It appears that a t  present, custom VLSI chips could be built that would perform about lo* 

operations per second, where each operation would consist of a shift of a register of length 200 to 

300 or else an exclusive or of two such registers. Semi-custom chips, which would be much easier to 

design and cheaper to produce, could operate at about lo7 operations per second. Within the next 

decade or so, these speeds might increase by a factor of 10, so custom chips might do lo9 operations 

per second, while semi-custom ones do 10’. General purpose supercomputers like the Cray-1 can do 

about lo8 operations per second when running in vector mode to take advantage of parallel 

processing, where each operation consists of a shift or exclusive or of 64-bit words. The structure of 

the index-calculus algorithm lends itself to parallel processing, but the fact that coefficients of 

polynomials would often take more than a single machine word to store would cause a substantial 

slowdown in operations, perhaps to a level of lo7 operations per second. The next generation of 

supercomputers, such as the Cray-2, will be about 10 times faster, and might run at the equivalent 

of lo8 operations per second. 

The number of shifts and exclusive or’s that are involved in squaring a polynomial of degree 

- n / 3  modulo another polynomial of roughly that same degree and then in taking the greatest 

common divisor of two polynomials of degrees - n /3  can be roughly estimated by 3n. Therefore 

each of the roughly IS 1 p ([n/21, m)-2  pairs (wl ,  w2) that are generated can be expected to require 

about 3mn operations. (Various branching and the like would make the actual algorithm slower, 

but this would be compensated somewhat by the factor of 3 or more that we might gain from using 

the large irreducible factor and the early abort variations, and the method of systematic equations. 

Note also that almost always it is only necessary to test w,, since when it turns out not to factor in 

the desired way, there is no need to test w2.) We therefore expect that about 

(6.1) 
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operations might be needed to generate the linear equations for the log,v, v E S. Below we give 

approximations to the minimal values of (6.1) for various values of n as m varies (only values of 

m < 40 were considered): 

Table 2. Operation count for the basic algorithm. 

n I  q 
160 

200 

240 

280 

3 20 

360 

400 

500 

minimum of (6.1) 
3.3 x 10'1 

2.9 x 1013 

1.6 x l0l5 

6.5 x 10l6 

2.0 x 1018 

5.2 x 1019 

1.1 x 1021 

2.1 x 1022 

3.5 x 1025 

m 
19 

23 

26 

29 

32 

35 

37 

40 

40 

We will now temporarily neglect the effort needed to solve the linear equations that are 

generated, and discuss for which n and m one could hope to generate the required linear equations 

with various hardware configurations. We will assume that the equations are to be generated within 

one year, roughly 3 x lo' seconds. If we use a single supercomputer, we can hope to carry out 

between 3 x l O I 4  and 3 x l O I 5  operations in that year. If we use a massively parallel machine with 

M special chips, we can expect to carry out between 3 x I O l 4  M and 3 x 10l6 M operations in a 

year, depending on the technology that is used. Comparing these figures with those in the table in 

the preceding paragraph we see that even under our very optimistic assumptions, a general 

supercomputer could not assemble the required set of linear equations in under a year if n 2 240, 

say, whereas it probably could for n 5 180. On the other hand, even a relatively modest special 

purpose processor using lo4 semi-custom chips based on current technology could perform about 

3 X 10" operations per year, and so could probably cope with n 2 260, and perhaps with n >_ 280, 
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but probably not much beyond it. A very ambitious processor, using lo6 custom designed chips 

operating at  speeds that might become attainable in the next decade could do about 3 x lou 

operations per year, and could probably generate the needed equations for n 5 380, but probably 

not for n 2 420. 

The estimates made above are  probably quite accurate, as is confirmed by comparing the 

numbers in Table 2 with the results of the GF(2'") computations of [Sl. Interpolating between the 

values in Table 2, we might expect that GF(2'*') might require about loL2 operations on a modem 

supercomputer, which is roughly what can be done in a day to a week. On the HEP, which is one 

of the modern multiprocessor supercomputers, the actual running time was about 7 hours, even 

though the method of systematic equations yielded about half of the equations practically for Free. 

The discussion in the preceding paragraph dealt only with the equation collection phase of the 

algorithm. The main reason for this is that the methods discussed in Section 5.7 make solving those 

equations rather negligible. However, in some cases this part of the algorithm might be nontrivial, 

since it would require doing arithmetic modulo 2"-1. It is possible to envisage VLSI chips that 

multiply n-bit integers very fast, but such chips have impractically large areas. At the present time 

the best practical designs appear to be able to multiply two n-bit integers modulo another n-bit 

integer in about n clock periods (cf. [121). Therefore we can expect that special purpose chips could 

perform between n-'107 and n-'109 multiplications modulo 2"-1 per second, depending on the 

technology. In the case of a modern supercomputer, which could possibly perform about lo8 

multiplications on 32-bit words per second, we could expect about 10a/(10(n/32)2) 10iOn-* 

modular multiplications per second, and this will probably go up to 10"n-2 in the next generation of 

supercomputers. (The factor 10 is there largely to compensate for the difficulty of working with 

multi-word numbers. We ignore the fact that many modern computers, such as the Cray-1, only 

allow 24-bit integer multiplication.) 

In many situations, solving linear equations should be regarded as a limiting factor not so much 

due to its high operation count, but rather due to its requirements for a large memory and operation 

synchronization. A special purpose multiprocessor for the collection of equations is relatively simple 
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to build. Each of the processors in it is quite simple, with essentially no storage, and these 

processors can operate independently of each other. Every once in a while one of these processors 

will find a factorization of the desired kind, which will then be sent to a central processor for 

storage. This also means that a multiprocessor of this kind would be fault-tolerant, since any 

factorization obtained by a small processor could be easily checked either by the central processor or 

by other processors without affecting the running time significantly. Therefore it would be very easy 

to build a multiprocessor to collect equations. On the other hand, a multiprocessor built for solving 

linear equations would require a very large memory, all the processors in it would have to operate 

synchronomsly under the control of the central unit, and it would have to operate essentially without 

errors. Such a multiprocessor would be much harder to build, and so we will often consider the use 

of a supercomputer for the equation solving phase together with a modest special purpose 

multiprocessor for the equation collecting phase. 

In the case of the basic algorithm, the estimates derived from Table 2 for the running time of 

the algorithm do change somewhat if we consider using a modern supercomputer to solve the 

equations. For example, for n - 400, the value 2 . 1 ~ 1 0 ~ ~  for the number of operations to find the 

needed equations requires the use of rn - 40, which means that the number of unknowns (and 

equation) is around 5x 10". Moreover, each equation might involve around 20 nonzero coefficients 

(which are usually equal to I ,  though). Thus even with the use of the method described at  the end 

of Section 5.7 to reduce the number of equations, of sorting on a disk, and sophisticated data 

structures, it seems that rn = 40 would not be practical. However, use of rn - 35 would reduce the 

size of the storage required by a factor of about 30, while increasing the number of operations to 

obtain the linear equations to only 3 . 5 ~ 1 0 ~ ~ .  Further reduction of m, to <30, would bring solution 

of the linear equations within practical reach without drastically increasing the effort needed for the 

equation collection phase. 

The basic conclusion to be drawn from the preceding discussion is that using the basic algorithm, 

a supercomputer could probably be used to complete the first phase for n 5 200, but a l m a t  

certainly not for n > 300. Using a relatively simple special purpose multiprocessor to assemble the 
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equation and a supercomputer to solve them might be feasible for n 5 300. Finally, even a very 

ambitious special purpose machine with lo6 chips operating at 1 nanosecond per operation would not 

suffice for n L 500. 

The above discussion applied to the basic index-calculus algorithm. We next analyze the 

Coppersmith variation. In this case the performance of the algorithm can again be improved 

through use of the large irreducible factor variation and the early abort strategy, but again probably 

only by a factor of 3 to 5 .  Hence we will neglect these techniques. On the other hand, the method 

described in Section 5.6 leads to a speedup by two or three orders of magnitude, and so we will take 

it into account. As before, we first neglect the effort needed to solve the linear equations, and 

estimate only the work involved in finding those equations. 

In the first stage of the Coppersmith algorithm, the time to generate the polynomials W I ( X )  and 

w z ( x )  can probably be neglected, especially since for each choice of v l ( x )  and v , (x )  in the 

variation of Section 5.6 we will typically obtain several ( w l ( x ) ,  w z ( x ) )  pairs. The main work 

consists of testing the pairs (w,, w,) to see whether all the irreducible factors of the wi are in S .  

By a reasoning almost identical to that used in analyzing the basic algorithm (but with n replaced 

by 2 h ) ,  we see that this ought to take about 6mh exclusive or’s and shifts. Hence the total number 

of such operations might be around 

(6.2) 

with 

M = max ( h 2 ~ - n + 2 k d i - d z + d e g f l ( x ) ,  (2k -1 )dz )  , 

where we select deg u i ( x )  =: deg v i ( x )  == d , ,  i - 1 ,  2. (There is occasionally some slight 

advantage in allowing different degree bounds for u I and uz.) We also have to satisfy 

p ( h + d l ,  m ) p  tM+d2, m)2d3+d2+’ > - m - l 2 m + ~  

in order to have enough possible equations. 

In the table below we present approximate values for the minimal number of operations that 



these estimates suggest. In the preparation of this table, degf,Gc) was taken to be 10, since that is 

approximately what it is for such cryptographically important values of n as 521, 607, 881, and 

1279. Also, only values of m < 40 were considered. 

Table 3. Operation count for Coppersmith's algorithm (equation collecting phase only). 

n - 

280 

400 

5 20 

700 

880 

1060 

1280 

approximate 
minimum of (6.2) 

4.5x 10" 

4 . 8 ~ 1 0 ' ~  

3 . 0 ~  10" 

7 . 3 ~  1017 

3.8x10'8 

6.0x lo2' 

1.3x lo2' 

2 k  

4 

4 

4 

4 

8 

8 

8 

70 

100 

130 

175 

110 

133 

160 

20 

23 

27 

31 

36 

38 

39 

dl 

14 

17 

20 

24 

27 

29 

32 

d2 

16 

20 

22 

26 

29 

31 

33 

The above table dealt with the equation collection phase of Coppersmith's algorithm. As in the 

case of the basic algorithm, the equation solution phase would be limited more by the large memory 

size needed then by the number of operations. If we consider somewhat smaller values of m, we 

obtain Table 4. 

There are two entries in the table for each n. It is possible to obtain finer estimates than in 

Table 4 by using what are  in effect fractional values of m. What that would mean, in practice, is 

that S might consist of all the irreducible polynomials of degrees < m' and one third of those of 

degree rn '+l ,  say. However, since Table 4 is meant to be used only as a rough guide, accurate only 

to within an order of magnitude, there is no point in doing this. 
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Table 4. Operation count for Coppersmith's algorithm (taking into account limitations of equation solving phase 

n 

280 

280 

400 

400 

520 

520 

700 

700 

880 

880 

1060 

1060 

1280 

1280 

2000 

2000 

- value of (6.2) 

2.7x10'2 

4.7x10" 

1 . 3 ~  1014 

7.3X10I3 

1.3X10'6 

7 . 0 ~  1015 

1 . 2 ~ 1 0 ~ ~  

2.6X lo1* 

2.0x 102' 

4.3X1Oz0 

2 . 4 ~  

1 . 2 ~  lo2' 

4.3x1026 

1.1 x 10" 

1 . 7 ~  10'' 

1 . 3 ~  loz9 

2 k  

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

8 

8 

8 

8 

8 

8 

h 

70 

70 

100 

100 

130 

130 

175 

175 

220 

220 

133 

133 

160 

160 

250 

250 

m 

16 

19 

20 

21 

22 

23 

24 

26 

27 

29 

30 

31 

31 

33 

36 

37 

dl 

17 

14 

19 

18 

23 

22 

28 

26 

32 

30 

38 

35 

43 

37 

48 

46 

d2 

20 

17 

22 

21 

25 

24 

31 

29 

34 

32 

40 

37 

44 

38 

so 

47 

If we neglect the time needed to solve the system of linear equations, we see that a single 

supercomputer could probably compute the database for n <, 460 in about a year, and the next 

generation might be able to do it for n 5 520. On the other hand, n 2 800 would be safe from 

such attacks. If we assume that methods such as those of Section 5.7 are to be used to solve the 

linear equations, then Table 4 suggests that n 2 700 is safe even from the next generation of 

supercomputers, while n 5 5 0 0  probably isn't. 
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A special purpose processor using lo4 chips running at  100 nantxeconds per cycle might be able 

to assemble the equations for n 700 in about a year, and these equations could probably be solved 

in about that much time on a supercomputer. For n = 520, though, a processor consisting of only 

about 100 chips of this kind might be able to find the equations in about a year (with m * 221, and 

they could then be solved in about a month on a supercomputer like the Cray-2. (Alternatively, 

with lo3 chips in the equation collecting phase, a supercomputer might be needed for only a couple 

of days.) A very fanciful multiprocessor with lo6 chips running at  1 nanosecond per cycle might be 

able to assemble the required equations for n 5 1280 and solve them in between 1 and 10 years. 

Since even relatively small improvements to presently known algorithms could lower the operation 

count by a factor of 10 or 100, this means that even n - 1279 should not be considered safe, since it 

could then be broken using a less ambitious machine. (Note that a machine using lo6 chips running 

at  around 10 nanoseconds per cycle was proposed by Diffie and Hellman [241 for finding a DES key 

in about a day through exhaustive search. Such a machine was generally thought to be too 

ambitious for the then current technology, but it seems to be generally accepted that it could be 

built for some tens of millions of dollars by 1990.) On the other hand, n 2 2200 is about lo6 times 

harder than n - 1280, and so can be considered safe, barring any new major breakthroughs in 

discrete logarithm algorithms. 

7. Algorithms in CF ( p ) ,  p prime 

The Silver-Pohlig-Hellman algorithm presented in Section 2 obviously applies directly to prime 

fields. The basic version of the index-calculus algorithm that has been presented so far can also be 

applied mutatis mutandis to the computation of discrete logarithms in fields G F ( p ) ,  p aprime. 

However, its simplest adaptation, even with the use of the early abort strategy 1531, results in a 

running time for the first phase of about 

(7.1) 

where L stands for any quantity that is 
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It was recently found, however, that there are several algorithms which run in time L [201. The 

second phases of those algorithms can be used to find individual logarithms in time L'I2 [201. 

The discovery of the new algorithms for computing discrete logarithms in fields G F b )  means 

that discrete logarithms in these fields are just about as hard to compute as it is to factor integers of 

size about p ,  provided that the field G F ( p )  is changing. If the field were to stay fixed, then there 

would be an initial phase that would be about as hard to do as factoring a general integer around p ,  

but then each individual logarithm would be relatively easy to compute. 

Until recently, it was thought that the Schnorr-Lenstra algorithm [601 was the only factorization 

algorithm that ran in time L ,  with various other methods, such as the Pomerance quadratic sieve 

I531  requiring time L1* for various 6 > 0. Those conclusions were based on the assumption that 

one had to use general matrix inversion algorithms to solve systems of linear equations. Now, with 

the methods described in Section 5.7 that take advantage of the sparseness of those systems, there 

are several algorithms, including the quadratic sieve and the Schroeppel linear sieve, and the new 

ones proposed in [201, which factor integers of size around p in time L. 

It is quite possible that further progress in both discrete logarithm and factorization algorithms 

could be made in the near future. For example, if one can find, for a given p ,  integers u ,b, and c 

such that they are all 0(p''3+') and such that 

n 3  b2c (modp), u 3  # b'c , (7.3) 

then one obtains a discrete logarithm algorithm and a factorization algorithm with running time 

for the first phase [201. Such a , b ,  and c are expected to exist for all p ,  and the problem is to 

construct an algorithm that finds them. In some cases they can be found. For example, if 

p - u3-c for c = O ( P ' / ~ ) .  then (7.3) is satisfied with 6-1. (This version is the "cubic sieve" of 

Reyneri.) Any algorithm for constructing n.6, and c satisfying (7.3) would help about equally in 
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factoring integers and computing discrete logarithms. In general, while there are algorithms for 

factorization that do not generalize to give discrete logarithm algorithms (the Schnorr-Lenstra 

algorithm [601, for example), the converse is not the case. Therefore it seems fairly safe to say that 

discrete logarithms are a t  least as hard as factoring and likely to remain so. 

The idea behind the Coppersmith variant cannot be extended to the fields C F G )  with p prime. 

That idea is based on the fact that squaring is a linear operation in GF(21, so that if the difference 

of two polynomials over G F ( 2 )  is of low degree, so is the difference of the squares of those 

polynomials. Nothing like this phenomenon seems to hold in the fields G F ( p ) ,  p prime. 

8. Cryptographic implications 

The preceding sections presented descriptions of the most important known algorithms for 

computing discrete Iogarithms in finite fields. The conclusions to be drawn from the discussion of 

these algorithms is that great care should be exercised in the choice of the fields G F ( q )  to be used 

in any of the cryptosystems described in the Introduction. The Silver-Pohlig-Hellman algorithm 

presented in Section 2 has running time on the order of 6, where p is the largest prime factor of 

q-1. It is possible to decrease the 6 running time in cases where many discrete logarithms in the 

same field are to be computed, but only at  the cost of a substantially longer preprocessing stage. Of 

the cryptosystems based on discrete logarithms, probably the most likely ones to be implemented are 

the authentication and. key exchange ones (cf. [38,59,691). To crack one of these systems, it is only 

necessary to compute one discrete logarithm, since that gives the codebreaker a valid key or 

password, with which he can then either impersonate a valid user or forge enciphered messages. 

Thus it can be expected that any discrete logarithm method would be used relatively infrequently in 

cryptanalysis, so that optimizing the form of the Silver-Pohlig-Hellman algorithm would yield both 

the preprocessing stage and the average running time on the order of 6. or at least within a factor 

of 100 or so of 6. The Silver-Pohlig-Hellman algorithm can be parallelized to a very large extent, 

the main limitation arising from the need to have a very large memory, on the order of 6 bits, 

which would be accessible from all the independent elements. This means that values of p 5 lo2’, 
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say, ought to be avoided in cryptographic applications. On the other hand, for p 2 loa, the 

Silver-Pohlig-Hellman algorithm appears impractical for the foreseeable future. 

The limitation that q-1 have a t  least one large prime factor, which is imposed by the Silver- 

Pohlig-Hellman algorithm, has led to suggestions that fields CF(2") be used for which 2"-1 is a 

prime. Primes of the form 2"-1 are known as Mersenne primes, and the known ones are listed in 

Table 5. One disadvantage of Mersenne primes is that there are relatively few of them. In 

particular, there are wide gaps between the consecutive Mersenne primes 2607 - 1, 2'279 - 1, and 

22203-l. The index-calculus algorithm is not very sensitive to the factorization of 2"-1, and SO it 

seems safe to use values of n for which 2"-1 is not prime, provided it has a large prime factor 

(2 loM, preferably, for reasons discussed above). Table 6 presents a selection of values of n 

between 127 and 521 for which the complete factorization of 2" - 1 is known and includes a very 

large prime factor. (This table is drawn from [141, except that the primality of the 105-digit factor 

of 2373 - 1 was proved by the author using the Cohen-Lenstra 1171 version of the Adleman- 

Pomerance-Rumely primality test 121.1 Also included are the two values n - 881 and n = 1063, for 

which the cofactors have not been shown to be prime, although they almost definitely are, since they 

pass pseudoprime tests. Any one of these values of n will give a cryptosystem that is resistant to 

attacks by the Silver-Pohlig-Hellman algorithm. 

It would be very desirable to have some additional entries in Table 6 to fill in the gap in Table 5 

between n = 1279 and n - 2203. Unfortunately no prime values of n in that range are known for 

which 2"-1 has been shown to contain a very large prime factor. It is possible to obtain composite 

values of n with this property (any multiple of 127 or 241 will do), but these are probably best 

avoided, since logarithms in these fields GF(2") might be easy to compute. More generally, it 

might be advisable to avoid fields G F ( q )  which have large subfields. Hellman and Reyneri [301 

raised the possibility that the fields CF(pz)  with p prime might be more secure than the fields 

G F ( p ) ,  since the index-calculus algorithm did not seem to extend to them. However, ElGamal [251 

has shown how to modify the index-calculus algorithm to apply to most of the fields CF(p2). 

Furthermore, ElGamal's approach can be extended to all the fields C F ( p 2 ) ,  and in fact to fields 
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G F ( p ” )  with n bounded. Thus fields of this kind appear not to offer increased security. In fact, 

these fields may be very weak because of the possibility of moving between the field and its 

subfields. As an example of the danger that exists, it can be shown that if p+l is divisible only by 

small primes, computing logarithms in GF(p2)  is only about as hard as in G F b ) .  

In the case of GF(212’), the f m t  stage of the index-calculus algorithm can now be carried out in 

a matter of hours on a minicomputer. Furthermore, once the database is generated, individual 

logarithms can be computed rapidly even on today’s personal computers. For that reason the field 

GF(2I2’) should be regarded as very unsafe for cryptographic applications. 

Once n moves up to 400 or so, the first stage of the index-calculus algorithm becomes infeasible 

to carry out in the fields GF(2“) by anyone not having access to computing resources comparable to 

those of a modern supercomputer. However, if somebody does use a supercomputer or a large 

number of smaller machines to carry out the first stage, and makes the database widely available, 

anyone with access to even a medium speed computer can rapidly compute individual logarithms. 

When n reaches 700 or so, the first stage becomes infeasible even with a supercomputer. 

However, a relatively modest special purpose device consisting of about lo4 semi-custom chips would 

enable a cryptanalyst to assemble the desired database even in these ranges. Such a special purpose 

computer might be assembled as part of a university project (cf. 1621). Furthermore, computations 

of individual logarithms could still be performed on any relatively fast computer. Special purpose 

machines of this kind, but either with more special chips or with faster chips could probably be used 

to assemble the databases for n up to perhaps 1200, but might have difficulty solving the system of 

linear equations. 

The fields GF(2”) have been preferred for cryptographic applications because of ease of 

implementation. There are penalties for this gain, though. One is that the codebreaker’s 

implementation is correspondingly easy to carry out. Another is that logarithms in the fields 

CF(2”)  are much easier to compute than in the fields G F ( p )  for p a prime, p - 2”, especially now 
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Table 5. Known Mersenne primes 2p-1. 

VALUES O F p  FOR WHICH 
2p-1 IS PRIME 

2 

5 
7 
13 
17 
19 
31  
61 
89 
107 
I27 
52 1 
607 

1,279 
2,203 
2,28 1 
3,217 
4,253 
4,423 
9,689 
9,941 
11,213 
19,937 
21,701 
23,209 
44,497 
86,243 
132,049 

that the Coppersmith algorithm is available [l8,19]. Still another disadvantage of the fields GF(2") 

as compared with the prime fields of the same order is that there are very few of them. All of the 

fields GF(2") with a fmed value of n are isomorphic, and so can be regarded as essentially the same 

field. On the other hand, there are many primes p with 2"-' < p < 2". This is important, since in 

the index-calculus algorithm (and to some extent also in the Silver-Pohlig-Hellman algorithm) the 

initial preprocessing stage has to be done only once, and once it's done, individual logarithms are 

computable relatively fast. If the field can be changed, say every month or every year, the 

cryptanalyst will have only that long on average to assemble his database. (This may not be a 

serious strengthening of security in the case of information that has to be kept secret for extended 

periods of time.) Therefore having only a few fields to choose from makes a cryptosystem less 
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Table 6. Factorization of Mersenne numbers 2P - 1 QJ prime) which contain a very large prime 
factor. Pn denotes a prime of n decimal digits, PRPn a probable prime of n digits. 

p 1 Factorization of 2p - 1 
I 

167 

197 

227 

24 1 

269 

28 1 

30? 

331 

373 

409 

881 

1063 

secure. 

2349023 .-P44 

1487 . P56 

269863334317777017- P52 

220000409 . P66 

13822297. P14 

80929 . P80 

14608903 . 85198519. 23487583308 . 
. 18952152017. P57 

16937389168607. 865118802936559 - P72 

25569151 . P105 

4480666067023 . 16025626689833 . P91 

26431 . PRP261 

1485161479 . PRP311 

The algorithms presented here show that great care has to be exercised in the choice of the fields 

GF(2") for cryptographic applications. First of all, n should be chosen so that 2"-1 has a large 

prime factor, preferably larger than loa. Secondly, n should be quite large. Even to protect 

against attackers possessing small but fast computers of the kind that might be widely available 

within the next ten years, it seems best to choose n 2 800. To protect against sophisticated attacks 

by opponents capable of building large special purpose machines, n should probably be at least 

1500. In fact, to guard against improvements in known algorithms or new methods, it  might be 

safest to use n 2 2000 or even larger. 

Given a bound on the size of the key, one can obtain much greater security by using the fields 

G F ( p )  with p prime then the fields GF(2"). In this case p also has to be chosen SO that p-1 

contains a large prime factor. If this precaution is observed, fields with p 2 2750 provide a level of 

security that can only be matched by the fields GF(2")  with n 2 2000. 
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The requirement that p be changed frequently is not an onerous one. It is easy to construct 

large primes p for which p-1 have a large prime factor (cf. [681). Moreover, it is easy to construct 

them in such a way that the complete factorization of p-1 is known, which makes it easy to find 

primitive roots g modulo p and prove that they are primitive. 

The discrete logarithm problem in fields C F b )  for which p-1 does have a large prime factor 

appears to be about as hard as the problem of factoring integers of size about p .  The comparison of 

the asymptotic complexity of the two problems was presented in Section 7. As far as values of 

practical use are concerned, the best current factorization programs appear to be capable of 

factoring integers around 2=' in about 1 day on a supercomputer like the Cray-XMP 1221. In 

applications where one is only interested in exchanging keys for use with ordinary cryptographic 

equipment, the Diffie-Hellman scheme presented in the Section 2 seems comparable to the Rivest- 

Shamir-Adleman (RSA) scheme, provided one uses fields G F b ) .  However, the best choice is not 

totally obvious. The Diffie-Hellman scheme has the advantage that the parties exchanging keys do 

not have to keep their private keys secret (since there are no private keys). It has the disadvantage 

that there is no authentication. Furthermore. if the Diffie-Hellman scheme is to be used with the 

same field shared by many people for a prolonged time, the discrete logarithm problem being as 

hard as factorization loses some of its significance because the cryptanalyst can afford to spend 

much more time compiling the database. If the field to be used does change from one session to 

another, though, the Diffie-Hellman scheme appears as a good choice among key distribution 

systems. 
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Appendix A Computation and estimation of N ( n , m ) ,  the number of polynomials over GF(2) of 

degree n, all of whose irreducible factors are of degrees Q m .  

Let Z(k)  denote the number of irreducible polynomials over CF(2)  that are of degree k. Then 

it is well-known [38] that 

where p ( d )  is the MBbius jt-function. The formula (A.1) provides an efficient method for 

computing I ( k ) ,  the first few values of which are shown in Table 7. In addition, (A.1) shows 

immediately that 

Z ( k )  - k-‘2k + O(k-12k”)  . (A.2) 

We define N(k ,O)  - 1 if k - 0 and N ( k . 0 )  - 0 if k # 0. Also, we adopt the convention that 

N ( k , m )  - 0 if k < 0 and m 2 0. With these conventions, we obtain the following recurrence, 

valid for n ,  m > 0: 

TO prove the validity of (A.31, note that any polynomial f ( x )  of degree n, all of whose irreducible 

factors are of degrees Q m,  can be written uniquely as 

where the u ( x )  are all of degree k for some k ,  1 Q k Q m, L: o ( n ( x ) )  = r for some r E Z+, and 

g ( x )  is a polynomial of degree n-rk ,  all of whose irreducible factors are of degrees Q k-I. Given 

k and r ,  there are iV(n-rk ,k- l )  such polynomials gk). The number of II u ( x ) ” ( “ ~ ) )  is the 

number of Z(k)-tuples of nonnegative integers which sum to r ,  which is easily seen to equal 

This proves (A.3). 
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Table 7. v a l u e s  of I h ) ,  the number of irreducible binary polynomials of degree n. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15  
16 
17 
18 
19 
20 

- I ( n )  - 
2 
1 
2 
3 
6 
9 .  

18 
30 
56 
99 

186 
335 
630 

1161 
2182 
4080 
7710 

14532 
21594 
52377 

The recurrence (A.3) was used to compute the probabilities p(n,m) listed in Appendix B. TO 

estimate N(n,rn)  asymptotically, we use different techniques. The method we use differs from those 

used to study the analogous problem for ordinary integers (see [29,31,39,461), and relies on the 

saddle point method [151. With extra effort, it is capable of producing much more refined estimates 

than we obtain over much greater ranges of n and m. However, in order to keep the presentation 

simple, we consider only the ranges most important for cryptographic applications. 

Theorem A l .  Let 

m 

f m G )  = J-Jcl-zk>-"~' 
k-1 

and 

(A.4) 

Then, for n1/'Oo < rn < nW"Oo, we have 
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where r - ro - r0(mpn) is the unique positive solution to 

f '  
f m  

r L ( r )  = n .  

Corollary A2. If nl'loO Q m < n99/100, then 

Corollary A3. If n1/lo0 Q m Q nW/'Oo, and 0 < k < 2m, then 

Proof of Theorem A I .  It is immediate from (A.4) that 

Hence, by Cauchy's theorem, 

(A.7) 

(A. 10) 

(A.11) 

where r is any real number with 0 < r < 1. As usual in the saddle point method, we determine 

r = ro by the condition (A.7). which is equivalent to 

(A. 12) 

Since I ( k )  > 0, it is clear that (A.12) has a unique solution r - ro with 0 < ro < 1. W e  next 

estimate ro and fmGd. We consider n1/'O0 < rn Q n99'100, n - -, and take 

say. (All logrithms are to base e in this appendix.) Then, by (A.2). 



as n - 00 (uniformly in m satisfying n*'lM) < m < n99/100, as will be the case throughout the rest 

of the exposition), and so 

+ O(1) 
2°F'-1 

2r-1 
. - 2 r -  

We conclude that r = ro is given by (A.13) with a - a,, satisfying 

so that 

log nlm as n - m ,  
a0 - log n 

and that 

From (A.17) and (A.2) we easily conclude that 

(A.14) 

(A. 15) 

(A. 16) 

(A.17) 

(A. 18) 

We now use the bove estimates to carry out the saddle point apF 

along very standard lines (cf. [IS]). We choose 

0, - m-l/2n-599/12M) 

(A.20) 

tion, which proceeds 

If we let 
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a(r0) = logfm(rO) - n log ro ,  

then by (A.121, (A.191, and (A.20) we obtain, for 101 Q Bo. 

Therefore 

It remains only to show that the integral over 60 < 101 Q A is negligible. Now for z - re", r - ro, 

and m' - [999m/10001. we have 

If 1st 2 IO4m-', say, the right side above is 

(A.22) 

If Bo Q 161 Q 104m-', on the other hand, 



(A.23) 2 10-6rn1/1000n'/'S00 + 0 ( 1 )  . . 

Combining the estimates (-4.22) and (A.23). we conclude that for 00 < 161 < T,  

logf,(r) -log b,,,(.z)l B en6 

for some c, 6 > 0, and so the integral over that range is indeed negligible compared to the integral 

over Is1 < eo. 

When we combine all the results obtained above, we obtain the estimate (A.6) of the theorem. 

Proof of Corollary A2. By (A. 191, we know that b (rO) -4mn. Now 

-n log ro - n log 2 - 5 aolog n 
m 

n n 
m m  

- n log 2 - (1+0(1))- log - . 

Furthermore, by (A.171, 

2kri$ - O(n'f2m-1/210g n ) ,  k Q m f 2  , 

so 

and so by (A.181, 

n n  
m m  

log f, ( r )  = 0 (- log-) . 

This proves the estimate (A.8) of the corollary. 

(A.24) 

Proof of Corollary A3. We first study how r o  - rob, rn) varies with n.  Letting n be a continuous 

variable defined by (A.12) (with m fixed and r varying), we find that (as in (A.19) and (A.20)) 
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Therefore 

where 

and so 

log f m ( r o ( n + k ,  m ) )  - logf,(ro(n, m ) )  - klm , 

Since by (A. 19), 

b(ro(n+k,  m ) )  - b(ro(n, m ) )  - 4mn , 

we finally obtain, for r - rob, m ) ,  

(A.26) 

which yields the desired result. 
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Appendix B. Values of p ( n , k ) ,  the probability that a random polynomial over GF(2) of degree n 

wi l l  have all its irreducible factors of degrees 6 k, for various values of n and for 1 < k Q 40. 

n - 10 

1 
6 
11 
16 
21 
26 
31 
36 

n = 20 

1 
6 
11 
16 
21 
26 
31 
36 

n = 30 

1 
6 
11 
16 
21 
26 
31 
36 

n = 40 

1 
6 
11 
16 
21 
26 
31 
36 

n = 50 

1.07422E-02 
5.36 133E-01 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 

2.00272E-05 
4.19769E-02 
4.24762E-01 
7.83 160E-0 1 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 

2.8871OE-08 
1.30629E-03 
9.95504E-02 
3.85957E-01 
6.50413E-01 
8.59436E-01 
1.00000E+00 
1.00000E+00 

3.72893E-11 
2.331 14E-05 
1.58528E-02 

3.66858E-01 

7.48703E-01 

1.4 1606E-0 1 

5.7 5 8 8 1 E-0 1 

8.9601 6E-01 

3.51562E-02 
6.76758E-01 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1 .00000E+00 

1.15395E-04 
9.27200E-02 
5.06549E-01 
8.41 983E-0 1 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 

2.38419E-07 
5.32556E-03 
1.46035E-01 
4.44780E-01 
6.95845E-01 
8.96473E-01 
1.00000E+00 
1.00000E+00 

4.0 1087E-10 
1.79979E-04 
2.93316E-02 
1.8 1 373E-0 1 
4.1 229OE-01 
6.129 18E-01 
7.799538-01 
9.23043E-01 

1.08398E-01 
7.93945E-01 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 

8.44955E-04 
1.58895E-01 
5.83453E-01 
8.974 1 8E-0 1 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 

3.204688-06 
1.46 109E-0% 
2.00 105E-0 1 
5.0021 5E-01 
7.39323E-01 
9.32185E-01 
1.00000E+00 
1.00000E+00 

8.58 199E-09 
8.13273E-04 
4.8 94908-02 
2.24427E-0 1 
4.55768E-01 
6.486308-0 1 
8.10256E-01 
9.49359E-01 

2.22656E-01 
9.03320E-01 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 

3.95012E-03 
2.41888E-01 
6.54315E-01 
9.50049E-01 
1.00000Ef00 
1.00000E+00 
1.00000E+00 
1.00000E+00 

2.89446E-05 
3.27337E-02 
2.59328E-01 
5.52846E-01 
7.80979E-01 
9.66668E-01 
1.00000E+00 
1.00000E+00 

1.33864E-07 
2.79863E-03 
7.46204E-02 
2.70539E-01 
4.97424E-01 
6.831 13E-01 
8.39667E-01 
9.75000E-01 

3.95508E-01 
L .00000E+00 
I .00000E+00 
I .00000E+00 
I .00000E+00 
1.00000E+00 
1.00000E+00 
I .00000E+00 

1.65253E-02 
3.33941E-01 
7.20904E-0 1 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 

2.70738E-04 
6.05388E-02 
3.23701 E-01 
6.02797E-01 
8.20979E-01 
1.00000E+00 
1.00000E+00 
1.00000E+00 

2.58580E-06 
7.24926E-03 
1.0588OE-01 
3.19242E-01 
5.37424E-0 1 
7.16445E-01 
8.68239E-01 
1.00000E+00 
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1 
6 
11 
16 
21 
26 
31 
36 

4.52971E-14 
2.8 3 34 1 E-07 
1.89641E-03 
4.27905E-02 
1.706788-01 
3.5521 9E-01 
5.28041 E-01 
6.75354E-01 

6.00409E-13 
4.15352E-06 
4.5 1306E-03 
6.17055E-02 
2.04341 E-01 
3.92256E-01 
5 S9290E-0 1 
7.0238 1 E-01 

1.8737OE-11 
3.1 568 3 E-05 
9.32956E-03 
8.43781E-02 
2.40042E-01 
4.27968E-01 
5.89593E-01 
7.28697E-01 

4.64628E- 10 
1.70819E-04 
1.69499E-02 
1.10392E-01 
2.77562E-01 
4.62450E-01 
6.19005E-01 
7.54338E-01 

1.72661E-08 
6.37026E-04 
2.800 1 9E-02 
1.39255E-01 
3.16762841 
4.95783E-01 
6.47576E-01 
7.79338E-01 

n - 60 

1 
6 
11 
16 
21 
26 
31 
36 

5.2909 1 E-17 
2.58718E-09 
1.80902E-04 
1.10167E-02 
7.13458E-02 
1.9 1288E-01 
3.47376E-0 1 
4.94689E-01 

8.33535E- 16 
7.15988E-08 
5.62442E-04 
1.79 1 10E-02 
9.13458E-02 
2.20330E-01 
3.78625E-01 
5.21 7 16E-01 

3.57405E-14 
9.24769E-07 
1.45972E-03 
2.71835E-02 
1.13563E-01 
2.507 14E-01 
4.08928E-01 
5.48032E-01 

1.32500E-12 
8.00984E-06 
3.2078 1E-03 
3.9 I0 1 I E-02 
1.37747E-01 
2.82341 E-0 1 
4.3 8 340E-0 1 
5.73673E-01 

8.91426E-11 
4.38229E-05 
6.251798-03 
5.38207E-02 
1.63715E-01 
3.15 1 1 8E-01 
4.6691 1E-01 
5.98673E-01 

n = 70 

6..01393E3-20 
1.88957E-11 
1.43153E-05 
2.4739 1E-03 
2.66552E-02 
9.65101 E-02 
2.06566E-O 1 
3.4 1 723E-0 1 

1.09775E-18 
9.76926E-10 
5.88968E-05 
4.57774E-03 
3.65932E-02 
1.1 5 87 8E-0 1 
2.32034E-0 1 
3.68750E-01 

6.19062E- 17 
2.15538E-08 
1.94202E-04 
7.79633E-03 
4.85857E-02 
1.36683E-01 
2.5 84608-0 1 
3.95065E-0 1 

3.27368E-15 
3.02670E-07 
5.2203 3E-04 
1.24157E-02 
6.268438-02 
1 S8803E-01 
2.85782E-01 
4.20706E-01 

3.78790E- 13 
2.4643 3E-06 
1.21092E-03 
1.86403E-02 
7.872508-02 

3.13945E-01 
4.45706E-01 

1.82 129E-01 

1 
6 
11 
16 
21 
26 
31 
36 

n - 80 
6.7001 6E-23 
1.15256E-13 
9.66482E-07 
4.95625E-04 
9.1 4845E-03 
4.48677E-02 
1.17636E-0 1 
2.18311E-01 

1.39049E-21 
1.09894E-11 
5.3 1900E-06 
1.05 199E-03 
1.35494E-02 
5.65725E-02 
1.35888E-01 
2.40962E-01 

9.97836E-20 
4.148538-10 
2.25093E-05 
2.01760E-03 
1.92 187E-02 
6.98314E-02 
1.55 151 E-01 
2.643308-01 

7.25067E- 18 
9.53139E-09 
7.46852E-05 
3.56457E-03 
2.62653E-02 
8.45073E-02 
1.7535 1 E-0 1 
2.88376E-01 

1.38 122E-15 
1.168 15E-07 
2.07615E-04 
5.87520E-03 
3.47883E-02 
1.00477E-01 
1.96424E-01 
3.130648-01 

1 
6 
11 
16 
21 
26 
31 
36 

n - 90 

7.350928-26 1.70929E-24 1.52104E-22 
6.05742E-16 1.05018E-13 6.778 15E-12 
5.68482E-08 4.224048-07 2.3 14298-06 
8.99488E-05 2.19926E-04 4.77206E-04 
2.90283E-03 4.64261E-03 7.0693 IE-03 
1.96783E-02 2.59683E-02 3.34221E-02 

1.47329E-20 4.450868-18 
2.56475E-10 4.77572E-09 
9.54889E-06 3.20299E-05 
9.41494E-04 1.71 113E-03 
1.03 132E-02 1.44861E-02 
4.209978-02 5.20539E-02 

1 
6 
11 
16 
21 
26 



31 
36 

n - 100 

1 
6 
11 
16 
21 
26 
31 
36 

n - 120 

1 
6 
11 
16 
21 
26 
31 
36 

n - 140 

1 
6 
1 1  
16 
21 
26 
31 
36 

n - 160 

1 
6 
11 
16 
21 
26 
31 
36 

n - 180 

6.3 2769 E-02 
1.35270s-01 

7.9675OE-29 
2.80812E-18 
2.96075E-09 
1.49474E-05 
8.60536E-04 
8.14723E-03 
3.23 53 5E-02 
8.05 132E-02 

9.10303E-35 
4.43640E-23 
5.8561 3E-12 
3.28256E-07 
6.33049E-05 
1.20819E-03 
7.5256OE-03 
2.53799E-02 

1.01 163E-40 
5.04962E-28 
8.08426E-15 
5.55000E-09 
3.800 5 7 E-06 
1.5 1678E-04 
1.5 1926E-03 
7.1 025 8 E-03 

1 . 1 0 1 6 1 E-46 
4.44249E-33 
8.2293 1E-18 
7.51 169E-11 
1.9 1 93 3 E-07 
1.65279E-05 

1.791 5 1E-03 
2.71850E-04 

7.56710E-02 
1.52328E-01 

2.05183E-27 
8.72341 E-16 
2.99434E-08 
4.23006E-05 
1.49335E-03 
1.13206E-02 
3.996088-02 
9.29404E-02 

2.79937E-33 
4.23359E-20 
1.12008E- 10 
1.26087E-06 
1.30082E-04 
1.86404E-03 
9.983 18E-03 
3.07891 E-02 

3.616748-39 
1.398 14E-24 
2.9921 2E-13 
2.9343 1 E-08 
9.3283 3E-06 
2.61437E-04 
2.17048E-03 
9.09777E-03 

4.48922E-45 
3.38239E-29 
6.00596E-16 
5.5 329 5E- 10 
5.66887E-07 
3.19895E-05 
4.19968E-04 
2.42504E-03 
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8.91447E-02 
1.701 36E-01 

2.21718E-25 
9.60294E- 14 
2.140208-07 
1.04387E-04 
2.44477E-03 
1.52676E-02 
4.85939E-02 
1.06 160E-01 

4.24841E-31 
1.33993E-17 
1.38923E-09 
4.06533E-06 
2.481 15E-04 
2.76800s-03 
i .29596E-02 
3.68775E-02 

1.33734E-37 
I .24688E-21 
6.58221E-12 
1.25224E-07 
2.08939E-05 
4.29945E-04 
3.0188OE-03 
1.14637E-02 

1.17344E-42 
8.304678-26 
2.38665E-14 
3.15918E-09 
1.501 11E-06 
5.85387E-05 
6.28482E-04 
3.21 815E-03 

1.036 16E-01 
1.88646E-01 

2.79208E-23 
6.01224E-12 
1.10537E-06 
2.30656E-04 
3.80487E-03 
2.005308-02 
5.8 2726s-02 
1.20 12 1 E-0 1 

8.5 1575E-29 
2.3 1621 E-15 
1.14391E-08 
1.13862E-05 
4.43550E-04 
3.97434E-03 
1.64949E-02 
4.3669OE-02 

2.199658-34 
5.97886E-19 
8.81292E-11 
4.49650E-07 
4.321 32E-05 
6.78498E-04 
4.09904E-03 
1.4227 1 E-02 

5 .O 1669E-40 
1.10376E-22 
5.28278E-13 
1.46872E-08 
3.6 1395E-06 
1 .O 194OE-04 
9.13982E-04 
4.19454E-03 

1.1901 3E-01 
2.07 8 1 7 E-0 1 

1.29509E-20 
1.7 139SE-10 
4.50209E-06 
4.633 5 8E-04 
5.67219E-03 
2.57320E-02 
6.89360E-02 
1.34775E-01 

8.58 548E-26 
1 S7566E-13 
6.97729E-08 
2.82395E-05 
7.50092E-04 
5.54048843 
2.062468-02 
5.1 1857E-02 

4.4131 6E-3 1 
9.87955E-17 
8.19347E-10 
1.39106E-06 
8.34419E-05 
1.03218E-03 
5.44782E-03 
3.7412OE-02 

1.8668 1E-36 
4.4855 1E-20 
7.59978E-12 
5.7 1758E-08 
8.0 1344E-06 
I .698 14E-04 
1.29497E-03 
5.37894E-03 
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1.18 108E-52 
3.1741OE-38 
6.43456E-21 
8.37861E-13 
8.33948E-09 
1.59242E-06 
4.38309E3-05 
4.1 2329E-04 

5.40360E-51 
6.32280E-34 
9.40765E-19 
8.68865E-12 
2.98308E-08 
3.4?604E-06 
7.34728E-05 
5.9 165 1 E-04 

1.76869E-48 
4.1701 5E-30 
6.85942E-17 
6.70002E-11 
9.39352E-08 
7.105468-06 
1.18633E-04 
8.29679E-04 

1.03860E-45 
1.52942E-26 
2.54621E-15 
4.06745E- 10 
2.64665E-07 
1.37023E-05 
1.85 15 1E-04 
1.13916E-03 

6.76840E-42 
1.54164E-23 
5.74207E- 14 
2.007838-09 
6.77278E-07 
2.50828E-05 
2.80 190E-04 
1.53389E-03 

1 
6 
11 
16 
21 
26 
31 
36 

n =. 200 

1.25083E-58 
1.90979E-43 
3.9884OE-24 
7.876678-15 
3.172ME-10 
1.37605E-07 
6.445 34E-06 
8.76481E-05 

6.348 10E-57 
9.50701E-39 
1.18400E-21 
1.16065E-13 
1.38215E-09 
3.40048E-07 
1.17526E-05 
1.33598E-04 

2.54336E-54 
1.64269E-34 
1.60566E-19 
1.21 882E- 12 
5.20253E-09 
7.79 144E-07 
2.0521OE-05 
1.98241E-04 

1.99006E-5 1 
1.65088E-30 
1.01212E-17 
9.73478E- 12 
1.72365E-08 
1.66938E-06 
3.44554E-05 
2.870138-04 

2.16542E-47 
4.15085E-27 
3.6 1920E-16 
6.13504E-11 
5.1 1289E-08 
3.36899E-06 
5.58425E-05 
4.06290E-04 

1 
6 
11 
16 
21 
26 
31 
36 

n = 250 

1 
6 
11 
16 
21 
26 
31 
36 

1.3873 1E-73 
9.43320E-57 
1.60958E-32 
3.562488-20 
5.44802E- 14 
2.01 11 1E-10 
3.78515E-08 
1.35288E-06 

8.774908-72 
3.88248E-5 1 
2.94386E-29 
1.30783E-18 
3.96906E- 13 
6.87289E-10 
8.604OOE-08 
2.41 546E-06 

5.40876E-69 
6.69001 E-46 
1.97886E-26 
3.06590E- 17 
2.3796 1 E- 12 
2.12261E-09 
1.845 19E-07 
4.15966E-06 

7.83967E-66 
8.021 16E-41 
4.908868-24 
5.000 1 OE- 16 
1.20333E-11 
5.99202E-09 
3.75441 E-07 
6.930468-06 

2.60927E-61 
2.00422E-36 
5.79891 E-22 
5.95292E-15 
5.24971E-11 
1.56105E-08 
7.2833 1E-07 
1.1201 5E-05 

n - 300 

1.47764E-88 
2.4875OE-70 
2.3 3 703E-4 1 
7.51397E-26 
5.17007E-18 
1.80862E-13 
1.47287E-10 
1.4605 1E-08 

1.1 1932E-86 
6.82386E-64 
2.77543E-37 
7.16126E-24 
6.45934E- 17 
8.69349E-13 
4.22472E- 10 
3.08299E-08 

9 .S 3 244E-84 
1.0132OE-57 
9.78889E-34 
3.88900E-22 
6.31276E-16 
3.67642E-12 
1.12559E-09 
6.21 540E-08 

2.37616E-80 
1.3 52 1 1 E-5 1 
1.00885E-30 
1.33922E-20 
4.97725E-15 
1.38762E-11 
2.80512E-09 
1.20132E-07 

2.02941E-75 
3.3 5 347 E-46 
4.14030E-28 
3.10487E-19 
3.257OOE- 14 
4.73 123E-11 
6.57962E-09 
2.23 3 77E-07 

1 
6 
11 
16 
21 
26 
31 
36 

n = 350 

1 
6 
11 
16 
21 
26 

1.53041-103 1.35060-101 1.60284E-98 5.99444E-95 1.15598E-89 
4.15490E-84 6.36291E-77 7.12431E-70 9.81396E-63 2.38010E-56 
1.47173E-50 1.17990E-45 2.28345E-41 1.021428-37 1.5 1735E-34 
8.44461E-32 2.16145E-29 2.80349E-27 2.09567E-25 9.70161E-24 
3.00716E-22 6.57878E-21 1.06830E-19 1.33657E-18 1.33338E-17 
1.08953E-16 7.46950E-16 4.38 196E-15 2.23833E-14 1.01023E-13 
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31 4.08092E-13 1.49 196E-12 4.9849 1 E-12 1.535 17E-11 4.39066E-11 
36 1.17397E-10 2.95185E-10 7.01651E-10 1.58406E-09 3.41082E-09 

n - 400 

1 1.55291-1 18 
6 4.90260E-98 
11 4.58566E-60 
16 5.5 55 33 E-3 8 
21 1.15333E-26 
26 4.66781E-20 
31 8.47073E-16 
36 7.34282E- 13 

n - 450 

1 
6 
11 
16 
21 
26 
31 
36 

n - 500 
1 
6 
11 
16 
21 
26 
31 
36 

1.55 124- 1 33 
4.40044-1 12 
7.79521E-70 
2.29399E-44 
3.07933E-3 1 
1.48691E-23 
1.36783E-18 
3.69290E-15 

1.53052- 148 
3.16656-126 
7.79518E-80 
6.27531E-5 1 
5.96843E-36 
3.64471E-27 
1.76903E-21 
1.53 163E-17 

1 S6457- 1 16 
3.61544E-90 
2.55583E-54 
3.93027E-35 
4.49726E-25 
4.6 1886E-19 
3.98086E-15 
2.21339E-12 

1.75679-131 
1.37925103 
3.08892E-63 
4.59937E-41 
2.17355E-29 
2.14569E-22 
8.3 2458E- 18 
1.34195E-14 

1.92464-146 
3.79129-117 
2.234038-72 
3.6450lE-47 
7.73090E-34 
7.74067E-26 
1.40341E-20 
6.7427 1 E-17 

2.41161-113 
2.70641E-82 
2.8 141 6E-49 
1.249568-32 
1.23335E-23 
3.80070E- 18 
1.68143E-14 
6.24 107E- 12 

3.41 223-1 28 
6.19409E-95 
1.99379E-57 
3.66621E-38 
1.02106E-27 
2.50052E-21 
4.47600E- 17 
4.51235E-14 

4.59900- 143 
9.2653 1 - 108 
8.66735E-66 
7.43 141 E-44 
6.29946E-32 
1.28847E-24 
9.66536E-20 
2.7 1643E-16 

1.32035-109 
3.5651 8E-74 
5.66577E-45 
2.07597E-30 
2.48551E-22 
2.65470E-17 
6.44748E-14 
1.65527E-11 

2.6 1980- 124 
7.23803E-86 
1.86331E-52 
1.38170E-35 
3.35795E-26 
2.40980E-20 
2.15115E-16 
1.41305E-13 

4.78471-139 
8.93 129E-98 
3.86 142E-60 
6.46943E-41 
3.42003E-30 
1.72694E-23 
5.85587E-19 
1.00884E-15 

5.21575-104 
8.25910847 
3.15379E-41 
1.960368-28 
3.8 3276E-2 1 
1.60 1 38E-16 
2.26456E-13 
4.14991E-11 

1.96368-1 18 
1.55644E-77 
4.0036 1 E-48 
2.7 1 137E-33 
8.10087E-25 
1.95927E-19 
9.33645E-16 
4.14464E-13 

6.3973 1-1 33 
1.72679E-88 
3.28692E-55 
2.68186E-38 
1.30459E-28 
1.9066OE-22 
3.15796E-18 
3.476568-1 5 
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