ON THE CRYPTOGRAPHIC APPLICATIONS OF RANDOM FUNCTIONS
(EXTENDED ABSTRACT)

Oded Goldreich, Shafi Goldwasser, Silvio Micali

Laboratory for Computer Science
M.I.T.
Cambridge, !MA 02139

ABSTRACT

Now that "random functions" can be efficiently constructed([GGM]),
we discuss some of their possible applications to cryptography:
1) Distributing unforgable ID numbers which can be locally verified
by stations which contain only a small amount of storage.
2) Dynamic Hashing: even if the adversary can change the key-distri-
bution depending on the values the hashing function has assigned to
the previous keys, still he can not force collisions.
3) Constructing deterministic, memoryless authentication schemes
which are provably secure against chosen message attack.
4) Construction Identity Friend or Foe systems.

The first author was supoorted in part by a Weizmann Postdoctoral
fellowship. The second author was supported in part by the Interna-
tional Business Machines Corporation under the IBM/MIT Joint Research
Program, Faculty Development Award agreement dated August 9, 1983.

G.R. Blakley and D. Chaum (Eds.): Advances in Cryptology - CRYPTO ’84, LNCS 196, pp. 276-288, 1985.
© Springer-Verlag Berlin Heidelberg 1985

277

1. INTRODUCTION

In our paper "How to Construct Random Functions®([GGM]), we have
1) Introduced an algorithmic measure of the randomness of a function.
(Loosely speaking, a function is random if any polynomial time
algorithm, which asks for the values of the function at various
points, cannot distinguish the case in which it receives the true
values of the function, from the case in which it receives the out-
come of independent coin flips.)

2) Constructed functions that are easy to evaluate and, nevertheless,
achieve maximum algorithmic randomness, under the assumption that
there exist one-way permutations.

In this paper, we describe in details 4 cryptographic applications
of these "pseudo-random functions":Storageless ID Number Distribution,
Dynamic Hashing, Deterministic Private-key Signature Scheme and
Identify Friend or Foe., Before describing these applications, let us
recall some of the definitions which appeared in [GGM].

1.1 Poly-Random Collections

Let Iy denote the set of all k-bit strings. Consider the set,

Hkx, of all functions from Ix into Ix. Note that the cardinality of
Hkx is 2k2k. Thus to specify a function in Hy we would need k2K bits:
an impractical task even for a moderately large k. Even more, assume
that one randomly selects subsets Hﬁs}@:of cardinality 2K so that
each function in Hﬁ has a unique k~bit index; then there is no poly-
nomial time Turing Machine that, given k, the index of a function

fsﬁﬁ and xelp, will evaluate £(x).

Our goal is to make "random functions" accessible for applications.
I.e. to construct functions that can be easily specified and evalu-
ated and yet cannot be distinguished from functions chosen at random
in Hgy. Thus we restrict ourselves to choose functions from a subset
Fi € Hy where the collection F = {Fy! has the following properties:

1) Indexing: Each function in Fj has a unigue k-bit index associated
with it. (Thus picking randomly a function feFy is easy.)

2) Poly-time Evaluation: There exists a polynomial time Turing
machine that given an index of a function feFy and an input x, com-
putes f(yx).

3) Pseudo-Randomness: No probabilistic algorithm that runs in time
polynomial in k can distinguish the functions in Fp from the functions
in Hy.

More precisely: if the collection F passes all polynomial time
statistical tests for functions, where the notions "statistical test

for functions" and "passes a test" are hereby defined.

278

A polynomial time statistical test for function is a probabilistic
polynomial time algorithm T that, given an input k and access to an
oracle Of for a function f:I-> I, outputs either 0 or 1. Algorithm
T can guery the oracle Og only by writing on a special query~-tape some
yeIy and will read the oracle answer, £(y), on a separate answer-tape.
As usual, Of prints its answer in one step.

Let F={Fy ! be a collection of functions. We say that F passes
the test T if for any polynomial Q, for all sufficiently large k:

(PRPi i‘ ﬁ—
where pE denotes the probability that T outputs 1 on input k and
access to an oracle for a function f randomly chosen in Fi. pi is the
probability that T outputs 1 when given the input parameter k and
access to an oracle Op for a function f randomly picked in Hk(i.e. a
random function).

Such a collection of functions F will be called a poly-random
collection. Loosely speaking, despite the fact that the functions in
F are easy to select and easy to evaluate, they will exhibit, to an
examiner with polynomially bounded resources, all the properties qf
randomly selected functions.

The above definition is highly constructive. In[GGM] it was
shown how to transform any one~to-one one-way function to an algorithm
Ap for a poly-random collection of functions F. The construction is
in two steps: first, using Yao's construction (see Appendix A) to
transform a one-to-one one-way function into a Cryptographically
Strong Pseudo Random Bit generator (CSPRB-generator); next, using ANY
CSPRB~generator to construct a poly-random collection (see Appendix
B) . However, for practical purposes we will consider only poly-randcm
collections whose underlying CSPRB generator is fast.

Efficiency considerations

In the recent vears many CSPRB generators have been preoposed
([BB51, [BM],[GMT],[Y]), based on various intractability assumptions
and demonstrating wvarious degrees of practicality.

Using the new results of Chor and Goldreich[CG] it is now possible
to construct fast CSPRB generators which are "equivalent" to factor-
ing: On input a k-bit long seed, these generators output log k bits at
the price of one mcdular multiplication of two k-bit long integers.
Factoring k-bit leong integers is poly(k) reducable to distinguishing
the sequence generated by these generators from truely random
seguences.

Let T denote the average time needed for generating one bit in the

279

underlying generator used in our construction of a poly-random col-
lection. Then, evaluating a function chosen at random from Fy can
be done in time 0(k2T).

1.2 Comparison with CSPRB generators

The fundamental definitions and properties of Cryptographically
Strong Pseudo-Random Bit{CSPRB) generators are given in Appendix A.

It is a theoretical challenge and an extremely useful task to
find the most general properties of randomness that can be achieved
by efficient pseudo-random programs.

Let us consider the effect of such programs on probabilistic
computation.

CSPRB generators cut down the number of coin tosses

Performing a probabilistic polynomial-time computation that re-
quires kt random bits is trivial if we are willing to flip kt coins.
A very interesting feature of CSPRB generators is that they guarantee
the same result of the computation by flipping only k coins!

Poly Random Collection cut down the storage as well

The existence of poly-random collections allows to successfully
replace a random oracle(function), in any polynomial time computation,
by k random bits.

It should be noticed that computing with a random cracle is dif-
ferent from computing with a coin. In fact, the bit associated with
each string x, not only is random, but does not change in time and is
stored for free! The advantages of the random oracle model are
clarified by all the applications discussed in the following sections.

Again, it is trivial(see Appendix C) to simulate a computation
with a random oracle (function) that is queried on kbt inputs if one
ig willing to use kbt bits of storage. A very interesting feature of
poly-random collections is that they guarantee the same result of the
computation by using only k bits of storage!

Sharing Randomness in a distributed environment

An additional advantage of our solution is that it enables many
parties to efficiently share such an £ in a distributed environment.
By sharing f we mean that if f is evaluated at different times by
different parties on the same input x, the same value f(x) will be
obtained. Such sharing is efficient as it can be achieved by an ini-
tial step which consists of (1) One party flipps k coins; and (2) All
parties record the result. After this initial step no more coin
flips or message exchanges are needed. The k bits stored by all de-

termine a shared function of the poly-random collection.

280

Assume that in "situation” S, some party (processor) pj wants to
make a random choice so that the other processors will know it. Then
it will simply compute £(j,S). Because of the "randomness" of £,
such choices are as good as truly random choices. Note that any other
processor pi can compute the random choices processor p4 did in situa-

tion §, without any extra communication!

2. "STORAGELESS" DISTRIBUTION OF SECRET NUMBERS
2.1 The Problem

Consider the problem in distributing secret identification numbers
(ID's). Every user in the system should receive a secret ID from the
system, which is easily verifiable by the system, but hHard to compute
by anyone else. An example may be assigning calling card numbers to
telephone customers. We assume there are no two users with the same
name.

A possible solution could be to assign each user U a secret
randomly selected number r, and store the pair(U,r) in a protected
data base. This solution requires storage proportional to the number
of users, which may be very large. Using our random functions, we
propose a "storageless" solution to this problem.

2.2 Our Solution

Let Fp be a poly-random collection, and let the server pick feFx
at random. Then, the server assigns each user U, £(U) as her secret
number. To verify whether(U,n) is a legal pair, the server computes
£(U) and compares it with n. Now, suppose that Alice has such a
secret ID and that all of her relatives(a;,A, etc..), who possess
their own secret ID's gang up to discover Alice's ID. They try to
exploit the fact that their names Al,AZ...,Aq are similar to hers.
However, for f picked by the server from a poly-random collection,
they could not compute f(Alice) given f(Al),...,f(Aq).

This solution requires only k bits of storage, when the number of
users in the system is bounded by a polynomial in k.

Notice that this solution also works in a distributed environment.
If each "branch" of the server has a computer with the (shared k-bit)
secret s embedded in it, a secret number can be handed out in San
Francisco and be{locally) verified in Boston.

2.3 The Correctness Argument: Simulation

Assume that one-way permutations exists and that g is such a per-
mutation. Let F={Fy} be a poly-random collection constructed using g
and let f be a function randomly selected from Fy.

281

Assume that Aj,Aj,...,Aq have some advantage in guessing f(Alice)
from £(A1),...,f(Ag). Clearly, they could not have such an advantage
if f were a truely random function. Thus, they can distinguish £
from a truely random function. This, in turn, provides an algorithm

for inverting g.

3. DYNAMIC HASHING
3.1 The problem

Consider the problem of hashing a few long keys (names) into
shorter addresses {(abbreviations), such that with very small proba-
bility two keys are hashed into the same address.

The classical purposes of hashing are:

(1) To save on memory space. (For example, assigning physical memory
location to variables can be done by applying a hashing function to

the variable names. This way there is no need to store the variable
names, which may be long.)

(2) To allow fast retrieval of keyed information (hashing will help

in applications where accessing the memory is slower than evaluating
the function).

3.2 Our solution

In order to present our solution let us first generalize the
definition of a poly-random collection. Let p;(.)and p,(.) be
two polynomials. A generalized poly-random collection is a collection,
F={Fpl(k),p2(k)}' of indexed and easy to evaluate functions from
Ipl(k) into Ipz(k) such that a function chosen at random from
Fpl(k)’pz(k) cannot be distinguished in poly (k) time from a random
function from Ipl(k) into Ipz(k)'

Our solution consists of using a function f chosen at random from
Fpl<k)’pz(k) as a hashing function. (i.e. key K is hashed into
address f(K)).

Note that our hashing function is much more roboust with respect
to polynomial time computation than the Universal Hashing suggested
by Carter and Wegman[CW]}. In their scheme, the adversary picks an
arbitrary key distribution and the hashing performance (expected
number of collisions) is analyzed with respect to this fixed distri-
bution.

Our scheme performs well even if the adversary does not fix his
key distribution apriori, but can dynamically change the key distri-
bution during the hashing process upon seeing the hashing function
values on previous keys. In other words, even if an adversary can

pick the keys to be hashed and examine the values of the hash func-

282

tions on old keys, he cannot force collisions. Moreover, the ad-
versary cannot distinguish the hashing value for a new key from a
random value.

The roboustness of our hashing technique, makes it particularly
suitable for cryptographic purposes. For example, Brassard ([Bl])
has pointed out the advantages of authentication schemes based on
"cryptographically strong" hashing functions. This them is further
developed in section 5.

4, MESSAGE AUTHENTICATION AND TIME-STAMPING

In this section we will show how to construct deterministic,
memoryless, authentication schemes which are highly robust, as dis-
cussed in the following concrete %etting.

Assume that all the employees of a large bank communicate through
a public network. As an adversary may be able to inject messages,
the employees need to authenticate the messages they send to each
other (e.g. "transfer sum S from account A to account B"). A sol-
ution may consist of appending to the message m an authentication
tag which is hard to compute by an adversary. In particular, we pro-
pose the following. Let all employees have access to authentication
machines which compute a function f5 in a poly-random collection.

The tag associated with a message m is fg(m). We can tradeoff
security for the length of the tag. For example, if one uses only
the first 20 bits of fg(m) as an authentication tag, then the chance
that an adversary could successfully authenticate a message is about
1 in a million.

To avoid playback of previously authenticated messages, it is
common practice to use time-stamps. Namely, authenticate m con-
catenated with date it was sent. So far, time-stamping was only a
heuristic as an adversary who sees the message m authenticated with
date D could conceivably authenticate m with another date (say D+1l).
Using our solution for message authentication, time-stamping makes
playback provably hard. This is the case as for a random function
f(x) is totally unrelated to f(x+l), and therefore the same holds
(with respect to polynomial-time adversaries) for poly-random collec-
tions.

Another threat to the Bank's security is the loyalty of its own
employees. They have the authenticating computer at their disposal
and can use it to launch a chosen message attack against the scheme,
so that when they are fired they can forge transactions. Our message
authentication scheme remains secure even when the employees are not

trustworthy, if each message to be authenticated is automatically

283

time stamped by the computer. An employee who leaves the bank,
after having widely experimented with the machine, will not be able

to authenticate even one new message.

5. AN IDENTIFY FRIEND OR FOE SYSTEM

The members of a large but exclusive society are well known for
their brotherhood spirit. Upon meeting each other, anywhere in the
world, they extend hospitality, favors, advice, money, etc. Naturally
they face the danger of imposters trying to take advantage of their
generosity. Thus, upon meeting each other, they must execute a pro--
tocol for establishing membership. As they meet in public places
{(busses, trains, theatre), they must be careful not to yield informa-
tion that can lead to future successful impersonations. They go
around carrying pocket computers on which they may make calculations.

Clearly a password scheme will not suffice in this context, as
the conversations are public. An interactive identification scheme
is needed where the ability to ask questions does not enable future
successful impersonations. Note that the questions that A may ask
member B, must be picked from an exponential range to prevent an
active imposter from asking all possible questions, receiving all
possible answers and thereafter successfully impersonating as a mem-
ber (or to prevent a passive imposter from having a non-negligible
probability of being asked a guestion that he overheard the answer to).

Using our poly-random collection, we can fully solve this problem.
Let the president of the society choose a k-bit random string s,
specifying a function f; in a poly-random collection. Each member
receives a computer which calculates f;. When member A meets B, he
asks "z?" where zegly. Only if B answers fg(z), will member A be
convinced that B is a member. 1In addition, if the computers that
calculate f can be manufactured so that they can not be duplicated,
then losing a computer does not compromis the security of the entire
scheme; it just allows one non-member to enjoy the privileges of
the society.

6. SOLVING BLUM BLUM & SHUB OPEN PROBLEM
Blum, Blum and Shub [BBS] have presented an interesting CSPRB
generator whose sequences pass all polynomial time statistical tests

if and only if deciding Quadratic Residuosity modulo a Blum-integer
whose factorization is not known, is intractable.

(l)A Blum integer is an integer of the form pip; where p; and pp are

distinct primes both congruent to 3 mod 4.

284

Notice that, even though a CSPRB seguence generated with a k-bit
long seed is P1(k)-bit long, a CSPRB generator and a seed s define an

infinite bit-sequence bo,b ;... An interesting feature of Blum Blum

Shub's generator is that kiowledge of the seed and of the factorization
of the modulus allows direct access to each bit in an exponentially
long bit string (i.e. if k denotes the length of the seed and i < k.
then the i-th bit in the string (bj) can be computed in poly(k) time).
This is due to the special weak one-to-one one-way function on which
the security of their generator is based. However, this exponentially
long bit string MAY NOT appear "random”. Blum, Blum and Shub only
prove that any SINGLE polynomially long interval of CONSECUTIVE bits
in the string passes all polynomialt time statistical tests for
strings. Indeed, it may be the case that, given bi,...,bx and
bzﬁf*‘,...,bzﬂ'*k it is easy to compute any other bit in the string.
Another CSPRB generator which possess the direct access property was
suggested by Goldwasser, Micali and Tong GMT . Their generator is
also based on a specific intractability assumption(factoring in a '
subset (of half) of the Blum integer). Also, it is not known whether
direct access in the GMT generator preserves randomness.

The Blum Blum Shub open problem consists of whether direct access
to exponentially far away bits in their pseudo-random pad is a
"randomness preserving" operation. Or more generally, whether there
exist generators which possess such a "randomness preserving direct
access" property.

The Blum Blum Shub's generator, when fed with a k-bit long seed s,
defines a function f; in the following way: for each k-bit integer
x,£5{X) is the X-th block of k bits in the pad. I.e. £.(X)=by y;3...
by y+k- Recall that the Blum Blum Shub generator is based on the
intractability assumption of a special permutation and furthermore,
even under this assumption, direct access was not proved to be a
randomness preserving operation. As a consequence fg may not be
"random" .

We solve the above problem in a very strong sense, In fact we
construct random functions £, from k-bit strings into k-bit strings,
given ANY one-way permutation. Having constructed such an f, we have
virtually constructed the k2K-bit long string sf=f(l)f(2)...f(2k).

For the set (sf} we prove that direct access is a "randomness pre-
serving" property.

285

APPENDICES

Appendix A: CSPRB Generators, One-Way Permutations and Yao's Construc-
tion.

Following the unpredictable number generators of Shamir [S], Blum
and Micali [BM] have introduced the notion of Cryptographically Strong
Pseudo~Random Bit (CSPRB) generators. They have also presented the
first instance of it, relying on the intractability assumption of the
discrete logarithm problem.

Let t be any fixed constant. A CSPRB generator is a deterministic
program that receives as input a (random) k-bit long seed and outputs
a k -bit long (pseudo-random) sequence such that the neit bit in the
sequence cannot be predicted in polynomial (in k) time from the pre-
ceeding bits. Yao [Y] introduces the notion of a polynomial-time
statistical test and shows that the outputs of CSPRB generators pass
all polynomial~-time statistical tests. He also proves that one can
construct CSPRB generators given any (weak) one-way permutation.

Let us be more formal. Let fx:Ix-> Ix be a sequence of permuta-
tions such that there is a polynomial-time algorithm that on input .
erk computes £ (x). Let the function f be defined as follows: f(x)=
£y (x} if xeIyx. We say that f is a one-to-one one-way function if for
all polynomial-time Turing Machines M there is a polynomial P such
that, for all sufficiently large k

M(x) fk'l(x) for at least a fraction 1 of the xelg.
P (k)

LEMMA 1(Yao Y): Given a weak one-to-one one-way functicn, it is

possible to construct CSPRB generators.
Sketch of the proof: Given a one-way permutation, £, Yao construct a
hard to evaluate predicate by taking the exclosive-or of the inverse
of f on polynomially many points. Namely,

B (X1,Xp/ 0. erxgt) =XOR £,-1(Xy) £7 (X)) L £) -1 (Xyet)
where XOR s 1s the exclusive-or of all the bits of the string s.

Appendix B: The Construction of F(from any CSPRB Generator) (GGM)

Let G be a CSPRB-generator. Recall that G is a function defined
on all bit strings such that if stk,G(x)=b§,...,b§l(k). With no loss
of generality, we can assume that P(k)> 2k.

{(This is the case since Goldreich and Micali (GM) have shown that
the existence of a CSPRB generator which expand a k-bit long seed into
a {(k+1)~bit output pad, yields the existence of a generator which ex-
pend a k-bit long seed into a 2k-bit long pad).

Let § = Sk be defined as follows. Sy is the set of all the first

286

2k bits output by G on seeds of length k. Then S passes all poly-
nomial time statistical tests for strings.

Let xeIx be a seed for G. GO(X) denotes the first k bits output
by G on input X; Gl(x) denotes the next k bits output by G. Let « =
®) %5...%, be a binary string. We define G ("'(G“Z(G“l
(x)))...).

Let xeIx. The function fX:Ik-> Ik is defined as follows:

For y=y ¥s5.« ¥y: fx(y)=Gy
Define Fk={f } and F:{Fk}-
X X

e ea =G
mlcz oct(x) (zt

ly2...yk(x).

elyx
Note that a function in Fy needs not be one-to-one.

The reader may find it useful to picture a function fX:Ik-> Iy,
as a full binary tree of depth k with k-bit strings stored in the
nodes and edges labelled 0 or 1. The k-bit string x will be stored in
the root. If a k~bit string is s is stored in an internal node, Vv,
then GO(S) is stored in v's left-son, vy, and Gy (s) is stored in v's
right-son, v,.. The edge (v,v;) is labelled 0 and the edge(v,v,), is
labelled 1. The string fx(y) is then stored in the leaf reachable
from the root following the edge path labelled y.

It is easy to see that F satisfies properties (1) and (2) of
poly-random collections. A proof that F satisfy also property (3)

(pseudo-randomness) can be found in GGM (Main Theorem).

GENERALIZATIONS

In some applications, we would like tec have random functions from
Ipa(k)~> Ipg(k)- E-9. in hashing we might want functions from Ik into
I;p- We meet this need by introducing the collection F={Fk} defined

as follows: For xeIyx, £, Fr is a function from IPB(k) into IP4(k)

defined as follows. Letxy=yl...yp3(k). Define fX(y) = rp4(k) Gyl...
yP3(k)(X) , Where rp4(k)(z) are the first P4(k) bits output by G when
fed input zeIy, where G is a CSPRB generator.

Such an F is also a poly-random collection: properties (1) and (2)
trivially hold, and property (3) can be proved in a way similar to the

proof of the Main Theorem in GGM .

Appendix C: An(unsatisfactory)straightforward simulation of random
functions

Assume one needs to be able to evaluate a function that looks as
if it is randomly selected from Hp. One can argue that since he will
only need to evaluate the function on polynomially many(in k) inputs,
it is sufficient that he proceeds as follows:

287

Choose a CSPRB generator G and a random k-bit long seed s. This
choice specifies a kt+l-pit long pseudo-random bit-sequence bl""’
by t+1 that can be used as securely as a truely random pad. Let xl,...,
X3 denote the chronologically ordered sequence of inputs on which the
"random function™ f has already been evaluated.

Assume now that f needs to be evaluated on an input y. If y X3
for i=1...j, then f(y) is set to be the j+lst block of k consecutive

bits in the pseudo-random sequence. (I.e. f(y)=bk.j+l... Also,

by j+k’ -
y is stored as the j+lst input(storing f(y) is optional). Otherwise,
if Y=x3 for some i, f(y) is recomputed as the ith block of bits in

the pseudo-random sequence (or is retrieved from memory).

Note that this procedure does not specify a function and thus does
not meet the theoretical challenge. Furthermore, it wastes storage
proportionally to the number of oracle queries(inputs on which the
function has been evaluated). This is a strict lower bound! If the in-
puts are randomly chosen they cannot be compressed at all!

By means of a more clever use of CSPRB generators, our solution
requires only k bits of storage. Thus it meets both the theoretical
and the practical challenges.

ACKNOWLEDGEMENTS

We would like to thank Ron Rivest for suggesting the IFOF applica-

tion.

i

288

REFERENCLES

[AL] D. Angluin and D. Lichtenstein, Provable Security of
Cryptosystems: a Survey, YaleU/DCS/TR-288, 1983

[BBS]L. Blum, M. Blum and M. Shub, A simple secure pseudo random
number generator, Advances in Cryntology: Proc. of CRYPTO-82,
ed, D. Shaum, R. L. Rivest and A.T. Sherman. Plenum press
1983, pp 61-78.

[BG] M. Blum and S. Goldwasser, An Efficient Probabilistic Public-Key
Encryption Scheme Which Hides all Partial Information, preprint
May 1984,

{(BM] M. Blum and S. Micali, How to generate cryptographically strong
sequences of pseudo-random bits., SIAM J. COMPUT., Vol 13, No. 4,
Nov. 1984.

[B] G. Brassard, On computationally secure authentication tags
requiring short secret shared keys, Advances in Cryptology:
Proc. of CRYPTO-82, ed. D. Shaum, R.L. Rivest and A.T. Sherman.
Plenum press 1983, pp 79~86.

{CG}] B. Chor and O. Goldreich, RSA Rabin least significant bits are

1 1
5+§3T§T13§ﬁ7 secure,

MIT/LCS/TM-260, May 1984. .

[CW] J.L. Carter and M.N. Wegman, Universal classes of hash functions,
Proc. 9th ACM Symp. on Theory of Computing, 1977, pp 106-112.

[GGM]O. Goldreich, S. Coldwasser and S. Micali, How to construc
random functions, MIT/LCS/TM-244, November 1983.

[GM] O. Goldreich and S. Micali, The weakest CSPRB generator imnlies
the strongest one, in vrenaration.

[GMT]}S. Goldwasser, S. Micali and P, Tong. Why and how to establish
a private code on a nublic network, Proc. 23rd IEEE Symp, on
Foundations of Computer Science, 1982, pn 134-144.

[RSA]R. Rivest, A. Shamir and L. Adleman, A method for cbtaining
digital signatures and public key cryptosystems, Commun. ACM
vol. 21, Feb. 1978, pp 120-126.

[S] A. Shamir, On the Generation of Cryptographically Strong Pseudo-
random Sequences, 8th International Collogquium on Automata,
Languages, and Programming, Lect. Notes in Comp. Sci. 62,
Springer Verlag, 1981.

[Y] A.C. Yao, Theory and applications of trapdoor functions, Proc.
23rd IEEE Symp. on Foundations of Computer Science, 1982,
op 80-91.

