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ABSTRACT

A generalized linear threshold scheme is introduced. The new scheme generalizes
the existing linear threshold schemes. The basic principles involved in the con-
struction of linear threshold schemes are laid out and the relationships between the
existing schemes are completely established. The generalized linear scheme is used
to provide a hierarchical threshold scheme which allows multiple thresholds necessary

in a hierarchical environment.

INTRODUCTION:

The protection of important information is an age old problem. In any scheme
devised to protect information, care has to be taken to ensure that the information
does not get lost, destroyed, or into wrong hands, and at the same time the scheme
should be efficient. A simple solution to protect the information from loss or de-
struction, is to make multiple copies of the information and distribute the copies.
But with multiple copies the probability that the information will get into wrong
hands, increases and the simple solution becomes unacceptable. The question of pro-
tection of information has received a lot of attention in recent years because of the
proliferation of computers into areas such as electronic mail, electronic fund trans-
fer, and storage of information.

There have been several schemes, called cryptosystems, developed in the past to
protect information. A very important and interesting class of cryptosystems called
the public key cryptosystems came into existence in the seventies. The important
concept underlying the public key cryptosystems is to create a cryptosystem such that
the knowledge of the encoding key does not lead to the computation of the decoding key
in a reasonable amount of computer time. This enables the public key cryptosystems
to make the encoding key public and also solve the problem of electronic signature.
The reader is referred to [Diffie 76], [Rivest 78] for discussion of the public key
cryptosystems. In 1979, a different type of protection scheme, called the threshold

1

scheme' was introduced independently by Blakely and Shamir. The important idea under-

lying the threshold scheme is to create "shadows"2 of the message (secret) such that

1The other commonly used names for threshold schemes are key safeguarding schemes and
secret sharing schemes.

2The term "shadows" was originally introduced by Professor Blakely in [Blakely 79].
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unless a certain number (called the threshold) of "shadows'" are not available the
message (secret) cannot be retrieved. Discussion of the threshold schemes is found
in [Blakely 79}, [Shamir 79]. Several other threshold schemes have been introduced
since then.

This paper focuses on four of the existing threshold schemes [Blakely 79], [Sha-
mir 79], [Bloom], [Karnin 83]. It is shown that the four schemes are founded on
common principles derived from linear algebra and for this reason we will refer to
these four schemes as linear threshold schemes. A generalized linear threshold scheme
which subsumes the various threshold schemes is presented. The generalized threshold
scheme extracts the essence of the linear threshold schemes, making transparent the
basic principles.

Roughly speaking a generalized linear threshold scheme works as follows. A secret
is represented by a scalar and a linear variety is chosen to conceal the secret. A
linear functional fixed in the beginning, and known to all trustees is used to reveal
the secret from the linear variety. The n shadows are hyperplanes containing the
linear variety. Moreover the hyperplanes are chosen to satisfy the conditiom that
the intersection of less than t (t < n) of them results in a linear variety which
projects uniformly over the scalar field by the linear functional used for revealing
the secret. The number t is called the threshold. Thus as more shadows are known
more information is revealed about the linear variety used to keep the secret, how~
ever, no information is revealed until the threshold number of shadows are known.

Karnin et al show in [Karnin 83] that Shamir's, and Blakeley's schemes are special
cases of their threshold scheme. It is shown here that with the exception of Shamir's
scheme the remaining three threshold schemes are equivalent to each other and explicit
algorithms are presented to convert one scheme to another. The Shamir's scheme is a
specialization of the remaining three schemes and all the four schemes are speciali-
zations of the generalized linear threshold scheme. Also a much simpler proof of
perfect security compared to [Blakely 8l] is presented. This proof nicely explains
the common mechanism used for perfect security in various linear threshold schemes.

The generalized linear threshold scheme allows linear varleties of positive
dimension to conceal the secret. This fact is utilized in constructing a hierarchical
threshold scheme. The hierarchical threshold scheme uses a chain of linear varieties

to keep a secret and allows multiple thresholds for hierarchy of trustees.

2. DEFINITIONS AND PRELIMINARY RESULTS

In this section some preliminary results and definitions are discussed. This
material will be used in the construction of the generalized threshold scheme and
also in the proofs to show that other threshold schemes are specializations of the
generalized threshold scheme. Some of these are standard results but they are in-
cluded here for the sake of completeness and to fix the notation. The interested

readers may look at [Kuiper 65] for further discussion.
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DEFINITION: A threshold scheme is a process which coverts a given number x called

the "message" to n other numbers yi's called the "shadows" which satisfy the property:
there exists a number t (t < n) called the threshold such that x can be retrieved
if any t of the n 'shadows" are known, but less than t "shadows'" reveal no information
about the message. More specifically such a threshold.scheme is called t out of n
threshold scheme.

Using the entropy function H from [Shannon 48] we can state the requirements in

the threshold scheme as

12
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Let k denote a finite field and k" denote the set consisting of n-tuples over k.
n . n .
The set k is a vector space over k of dimension n in a natural way. The set k 1is
also called an affine space over k and the individual n-tuples are referred to as

the points of the affine space.

DEFINITION: A subset S of k™ is called an affine variety of k" if there exist a
finite set fi(xl’XZ""’xn)’ i=1,2,..,m, of polynomials in n variables such that

n N .
S {(al,az,..,an) e k| fi(al,az,..an)—o for i=1,2,..,m.}

The equations fi(xl’xz""xn) = 0 are called the defining equations of the affine

variety S.

DEFINITION: An affine variety is called a linear variety if all its defining equatiouns

are linear.

DEFINITION: A linear variety is called a homogenous linear variety if all its defining

equations are homogeneous.

Given a linear polynomial f(xl’XZ"'xn) = b0+blx1+b2x2+..+bnxn, we represent it by

the vector (bO’bl”'bn) in kn+l, representing the coefficients of f. We will identify

a linear polynomial f(xl,x ,..,xn) with the vector representing its coefficients.

2

DEFINITION: Given a linear variety S, define

o+l

E(S) = {fek | f(al,az,..,an)=0 for all (al,az,..,an) e s}.

E(S) is a vector subspace of kn+1.

DEFINITION: Given subsets S and W of k" and vector ¢ in k" define § = c#W if
S={vekl| v=cts for we W.
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The function dim( ) is used to denote the dimension of a vector space.

LEMMA 1: Given a linear variety S of kn, there exists a vector ¢ = (cl,cz,..cn) and
a vector subspace W of k" such that
(1) S =c+w
and
(i1) dim(W) + dim(E(S)) = a.

Proof: The proof follows from the Gaussian elimination process and other standard

arguments from vector space theory.
DEFINITION: For a linear variety S = c+W, define dim(S) to be dim(W).

NOTATION: Given a linear variety S, the notation S = w + W indicates that w is a

n
vector and W is a vector subspace of k.

= = f s n
LEMMA 2: Let S1 =w 2 = w2+W2 be linear varieties of k . Then Sl N 52’ is

either empty or else it is a linear variety such that S1 (\ Sz = w + W where W contains
W, N,

+W1, and S

Proof: The proof follows from standard vector space arguments.

DEFINITION: Given vector subspaces Wl and W2 of &%, Wl + W2 is defined as the vector

space where

n
Wt W, = {v ek |vs= w tw, for w, e W, for i=1,2.}

The following is a standard result from the vector space theory.

LEMMA 3: If Wl and Wz are vector spaces of k" then

dim (W +,) = dim(W1)+dim(w2)-dim(wlﬂ W)

DEFINITION: If S is a linear variety of k" such that dim(E(S)) = 1 then 5 is called
a hyper plane.

LEMMA 4: Let S=wtW be a linear variety and t = dim(E(S)). Let Hl,H Hm be hyper-

2’°oa
planes containing S. Then,

m
(i) Ifm< t then () Hi strictly contains S,
i=1
m
(i) 1f () H, =S then m > t.
i=] * -

Proof: Note that (ii) clearly follows from (i) because Hi contains § for i-1,2,..,m.

m
Let T = N Hi' Clearly E(T) = E(H1)+E(H2)+...+E(Hm). By repeated applications of
i=1
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Lemma 3 it follows that dim(E(T)) < m. If m < t then it follows from Lemma 1
that dim(S) < dim(T), thus T strictly contains S.

DEFINITION: Let S be a linear variety and t = dim(E(S))}. The hyperplanes Hl’HZ""Hm

for m > t, are said to be in general position with respect to S, if the intersection

of any t of them is S.

DUALIZATION PRINCIPLE: Let V be a vector space of dimension n over the base field k.
Let V‘be the set of linear functionals on V then ;\itself forms a vector space of
dimension n called the dual space of V. The space‘§\can be identified with k7 as
follows:

Fix a basis of V. Then for every linear functional L on V there exist a unique vector

(al,az,..,an) in k™ such that for every v in V,

= + “ee
L(v) a v ,ta +anvn,

1

where (VZ’VZ""vn) is the representation of v with respect to the fixed basis of V.

2vat

-~

For every L belonging to the dual space V we identify it with the vector (al,az,..,an)

in K° as described above.

DEFINITION: Given a vector v belonging to a vector space V and an element a of k,
define

H(v,a) = {L ¢ \‘/I\iL(v)=a}.

LEMMA 5: Given a vector v in V and an element a in k the set H{v,a) is a hyperplane
o
in V.

Proof: Let v=(v1,v2,..,vn) be the representation of v with respect to a fixed basis

of V. Then by the dualization principle H(v,a) can be identified with the set

n -
{(al,az,..an) e k la v ¥a,v o+t v o= al

Thus E(H(v,a)) is a vector space of dimension one, generated by the vector

(—a,vl,vz,..,vn) and so H(v,a) is a hyperplane.

LEMMA 6: Let V be a vector space of dimension n. Let v, for i=1,2,..,m,m > n, be
vectors in V such that any n of them are linearly independent. Let L be a limear
functional on V and let L(v1)=ai for i=1,2,..,m. Then the hyperplanes Hi=H(vi’ai)
are in general position with respect to (L).

Proof: Since L(v,) = a;» L belongs to H, for i=1,2,..,m. By lemma 1, dim(E({L})}=n.

For i=1,2,..,m, by (V 2, ) we denote the vector in kK +l whose projection on the first
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n components is given by the vector v, and the (n+l)-th component is a,. Any of the

i
n vectors (Vi’ai) for i=1,2,..,m are linearly independent because the same property
is true for their projections vi's by assumption. To prove that the hyperpland Hi

are in general position we need to show that intersection of any n of them is {L}.

n .
Let S = N Hi' Without loss of generality it is enough to show that § = {L}.
i=1

By lemma 2, S is a linear variety. L belongs to S because L belongs to every hyper-
plane Hi for i=1,2,..,m. The vectors (vi,ai) belong to E(S) for i=1,2,..,n. Since

the vectors are linearly independent it follows that dim(E(S))=n. Then by lemma 1,

dim (S) = 0 and so S = {L} since L belongs to S.

n-1

LEMMA 7: Let vi=(l,bi,bi,...,bi ) be vectors belonging to k” for i=1,..,m where

m > n and bi # bj for i # j then any n of the m vectors vi‘s are linearly independent.

Proof: Without loss of generality it is enough to show that vi's for i=1,2,...,n are
linearly independent. Let B be the n x n matrix such that its (i,j)-th entry is bi-l-
The matrix B is known as a Vandermonde matrix. It is a property of a Vendermonde
matrix that 3det(B) # 0 if and only if by # b, for 1 # j. Thus if b, # bj for 1 # ]

then det(B) # 0 which implies that vi's are linearly independent for i=1,2,..,n.

Definition: Given a linear functional f and an element a belonging to k define

H(f,a) = {ve V| £(V) = a}.
LEMMA 8: H(f,a) is a hyperplane in V.
Proof: This is a dual of lemma 5. -

The following lemma is the mathematical basis for the perfect security of the

various linear threshold schemes.

LEMMA 9: Let f be a linear functional on a vectorspace V. T is a linear subvariety
of V such that T is not contained in H(f,a) for any a belonging to k. Then f uniformly

projects T over k.
Proof: Since T is not contained in any H(f,a), f projects T onto k.

Let Ta ={V | veTand f(v) = a}. Then Ta =v, + W where va is a vector in T

which projects to a and W is subspace contained in the kernel of f and it does not
depend on a. Thus cardinality of Ta which is the same as the cardinality of W is

independent of a i.e. £ projects T unifromly over k.
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3. DESCRIPTION OF LINEAR THRESHOLD SCHEMES

In this section we briefly describe the threshold schemes due to Blakely, Bloom,
Karnin-Greene-Hellman and Shamir. For more detailed descriptions of these schemes
refer to [Blakely 79}, [Shamir 79], {[Bloom]}, [Karnin 83]}. For uniformity of descrip-
tions all the three schemes are set up to give n "shadows'" and the threshold is t

where n and t are integers such that o > t.

Blakely's Threshold Scheme (affine version):

Blakely's threshold scheme starts with a t dimensional affine space V. The key
is concealed by specific coordinate of a point S of V. The n "shadows' are given by
hyperplanes Hi’ i=1,2,..,n, of V such that the Hi and the specific coordinate plane
passing through S are in general position with respect to S.

Now given any t distant "shadows" Hi' we can get the point S representing the
key by intersecting the ''shadows'. However if only r "shadows", r < t, are known,
then by intersecting the r hyperplanes corresponding to the 'shadows' we get (t-r)
dimensional linear variety strictly containing S. Thus S cannot be determined and

no information about the key is revealed.

Bloom's Threshold Scheme:

Bloom's scheme starts with a t dimensional vector space V. The n vectors A for
i=0,1.,,n, are chosen such that any t of them are linearly independent and consequently
span the vector space C. A linear functional L on V is chosen such that L(vo) repre-
sents the key. The '"shadows" Si for i=1,2,..,n are defined to be SisL(vi). Now,
given any t the linear functional L is completely determined and the key can be com-
puted using VO' However if any r "shadows", r < t, are known then L is not completely

determined and no information about the key is revealed.

Shamir's Threshold Scheme:

Shamir's scheme starts with a polynomial

_ 2 t-1
f(x) = ao+a1x+azx +..+at_lx R

and nonzero distinct scalars bi for i=1,2,..n. The key S is represented by ay- The

n "shadows" S for i=1,2,..n are defined as

i’
Si = f(bi) .
Given any t distinct "shadows" £(x) can be determined by Lagrange interpolation formula

and the key is obtained by evaluating f(x) at x=0. If only r "shadows"™, r < t, are

known then f(x) cannot be determined and no information about the key is revealed.

Karnin-Greene-Hellman Threshold Scheme:

The scheme starts with n+l column vectors AO’Al""An of size t such that amy t
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of them have full rank. U is a row vector of size t. The key is given by U‘Ao.

The n shadows are given by U+A, for i=1,2,..,n. If any t of the n shadows are known

i
then U can be determined and the key is obtained by evaluating U'AD. If less than
t shadows are known then U is not determined and no information about the key is

revealed.

4, GENERALIZED LINEAR THRESHOLD SCHEME:

A generalized t out of n threshold scheme is constructed as follows. Let V be
a (d+t) dimensional vectorspace. The secret is a scalar a concealed by a d dimensional
linear subvariety S. A linear functiomal f is used to reveal the secret from § i.e.

f is chosen such that f(v) is equal to o for any v belonging to S§. The linear variety
S is kept secret but the linear functional f is made known to all the trustees invol~
ved.

The n shadows are given by n hyperplanes. The hyperplanes representing the
shadows and the hyperplane H(f,a) together are chosen to be in general position with
respect to S.

Given any t shadows, S is obtained by intersecting the corresponding hyperplanes.
1f less than ( < t) shadows are known the corresponding hyperplanes intersect in a
linear subvariety S' containing S. Moreover §' is not contained in H(f,a) because
the hyperplanes intersecting in S' and H(f,a) are in general position by choice. 1In

view of lemma 9 $' reveals no information about «.

5. INTERRELATION OF LINEAR THRESHOLD SCHEMES:

This section presents conversion algorithms proving that the t out of n threshold
schemes of Blakely, Bloom and Karnin-Greene-Hellman are equivalent. The same notation

that is used to describe the schemes is used again to describe the algorithms.

Algorithm BLBM:

The following algorithm comverts a Blakely scheme to a Bloom scheme.

1. Let R TN be the standard basis of V.
Choose the linear functional L such that L(ei) is the i-th coordinate
of § for 1 < 1 < t.

2. 1If the k-th coordinate of S is the secret to be concealed then choose

Yo to be ek.

3. Choose vy to be the vector representing the coefficients of Hi for

i=1,2,..,n.

Algorithm BMKGH:

The following algorithm converts a Bloom scheme to a Karnin-Greene-Hellman scheme.

L. Let e ,e,,..,e_be the standard basis of V. Set U = (L(el),L(e3),--,L(et))-

t
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2. The (n+l) column vectors are chosen to be v ,v sessV written as column vec-

0°'1

tors.

Algorithm KGHBL:

The following algorithm converts a Karnin-Greene-Hellman scheme to a Blakely
scheme.
1. Choose S to be the point given by U.
2. The hyperplanes HI’HZ""Hn are chosen to be the hyperplanes
whose coefficient vectors are given by Vl,Vz,..,Vn.

Algorithm BMSH:

This algorithm converts a Bloom's scheme to a Shamir's scheme.
1. Define ' (1,0,..,0)
2. Define the vectors vy for 1 <i<nas
- 2 e-1
vy = (Lbysbl,.osbE™h).
Note that by lemma 7 any t of the vi's for i=0,2,..,n are linearly
independent.
3. Llet a = (ao,al,..,at_l) and define L as,
L(v) = a*v for v belonging to v, where a-v is the dot product

of a and v.

Algorithm GSBL:

This algoritlm specializes a generalized linear scheme to a Blakely scheme.
1. Choose 4 = 0.
2. Choose the linear functional f to be a projection on one of the coordinate

axis.

In view of these algorithms the various threshold schemes are specializations

of the Generalized linear threshold scheme and they subsume Shamir's scheme.

6. HIERARCHICAL THRESHOLD SCHEME:

In many applications there is a hierarchy among the trustees to whom the shadows
are distributed for safeguarding the secret, and there 1s a need to create shadows of
different potency. For example in a company where there are two levels of guards like
senior and junior executives, it may be required that the threshold to obtain the
secret be strictly smaller for senior executives compared to the threshold required
of junior executives. In defense applications, this requirement may be even more

crucial when there are different levels of commands and it is required that the lower
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the level of command the higher the number of officers required to reveal the secret.
These applications require a threshold scheme which provides shadows at different levels
and the threshold is dependent on the level, such a scheme will be called a hierarchi-
cal threshold scheme.

An obvious solution to obtain a hierarchical threshold scheme seems to be to adopt
an ordinary threshold scheme to the purpose by providing multiple shadows as shadows
at higher levels. However this approach has drawbacks such as even though less shadows
are required to reveal the secret the computation required in the process is mot re-
duced, the shadows at different levels have to be physically different and interpreted
differently, and a full range of threshold values is not available. A natural solution
to these problems is offered by a generalized linear scheme.

A hierarchical threshold scheme is obtained from generalized linear threshold
scheme as follows. The basic idea is to use linear varieties of different dimensions
to conceal the secrets, at different levels.

Assume that V is a t dimensional vector space and f is a linear functional which
is used to reveal the secret concealed by a linear subvariety S. The variety S is
such that function f has a unique value, on S. There are several choices for § and
the maximum dimension for S is (t-1). The threshold is the difference between t and

the dimension of S. Choose a sequence S 0 <1< t-1, of linear subvarieties such

i!
that dim(Si) = i and f(Si) is a single value giving the secret. The shadows at level

i are generated with respect to S, as described in the construction of generalized

i
linear threshold scheme. The threshold at level i is then t-~i. Thus we get a hier-

archical scheme providing t different levels of shadows. At level i, t-i linear equa-
tions have to be solved to obtain the secret, thus the computation to reveal the secret

is proportional to the threshold.

7. CONCLUSIONS

This paper shows that various linear threshold schemes are closely related and
they are all founded on the same principles. A generalized linear threshold scheme
nicely crystalizes the basic principles of linear threshold schemes. The generalized
threshold scheme has the flexibility which allows a chain of linear varieties to be
used to conceal a secret. This property provides a hierarchical threshold scheme.
The linear threshold schemes have fallen back on Shamir's method for a concrete im-
plementation - however the same method cannot be used to implement a generalized
threshold scheme as a hierarchical scheme. At this time we do not know of any effi-
cient implementation of a hierarchical threshold scheme and the problem needs to be
investigated further.

There are other possible generalizations of linear threshold schemes. The linear
functional used to reveal the secret may be replaced by a fractional linear trans-
formation (this is the case with Blakeley's projective threshold scheme) also the

shadows may be chosen to be lower dimensional linear varieties instead of linear
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hyperplanes. It is not clear that these generalizations would give any better thres-

hold schemes.
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