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ABSTRACT 

A generalized linear threshold scheme is introduced. The new scheme generalizes 
the existing linear threshold schemes. 

struction of linear threshold schemes are laid out and the relationships between the 
existing schemes are completely established. 

to provide a hierarchical threshold scheme which allows multiple thresholds necessary 

in a hierarchical environment. 

The basic principles involved in the con- 

The generalized linear scheme is used 

INTRODUCTION : 

The protection of important information is an age old problem. In any scheme 

devised to protect information, care has to be taken to ensure that the information 

does not get lost, destroyed, or into wrong hands, and at the same time the scheme 
should be efficient. A simple solution to protect the information from loss or de- 
struction, is to make multiple copies of the information and distribute the copies. 

But with multiple copies the probability that the information will get into wrong 

hands, increases and the simple solution becomes unacceptable. The question of pro- 

tection of information has received a lot of attention in recent years because of the 

proliferation of computers into areas such as electronic mail, electronic fund trans- 

fer, and storage of  information. 

There have been several schemes, called cryptosystems, developed in the past to 

A very important and interesting class of cryptosystems called protect information. 

the public key cryptosystems came into existence in the seventies. 

concept underlying the public key cryptosystems is to create a cryptosystem such that 

the knowledge of the encoding key does not lead to the computation of the decoding key 
in a reasonable amount of computer time. This enables the public key cryptosystems 

to make the encoding key public and also solve the problem of electronic signature. 

The reader is referred to [Diffie 761, [Rivest 781 for discussion of the public key 

cryptosystems. 
scheme1 was introduced independently by Blakely and Shamir, 

lying the threshold scheme is to create "shadowsvt2 of the message (secret) such that 

The important 

In 1979, a different type of  protection scheme, called the threshold 
The important idea under- 

'The other commonly used names for threshold schemes are key safeguarding schemes and 

'The term "shadows" was originally introduced by Professor Blakely in [Blakely 791. 

secret sharing schemes. 

G.R. Blakley and D. Chaum (Eds.): Advances in Cryptology - CRYPT0 '84, LNCS 196, pp. 231-241, 1985. 
0 Springer-Verlag Berlin Heidelberg 1985 
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unless a c e r t a i n  number ( c a l l e d  t h e  threshold) of "shadows" a r e  not a v a i l a b l e  t h e  

message ( s e c r e t )  cannot  be  r e t r i e v e d .  Discussion of the threshold schemes is found 

i n  [Blakely 791. [Shamir 791. Severa l  o ther  threshold schemes have been introduced 

s ince then. 

This paper focuses  on four  of t h e  e x i s t i n g  threshold schemes [Blakely 791,  [Sha- 

m i r  791, [Bloom], [Karnin 831. It i s  shown t h a t  the four schemes are founded on 

common p r i n c i p l e s  der ived  from l i n e a r  algebra and f o r  t h i s  reason w e  w i l l  r e f e r  t o  

these four  schemes as l i n e a r  th reshold  schemes. 

which subsumes t h e  v a r i o u s  threshold  schemes is  presented. 

scheme e x t r a c t s  t h e  essence of t h e  l i n e a r  threshold schemes, making t ransparent  t h e  

basic  pr inc ip les .  

A generalized l i n e a r  threshold scheme 

The generalized threshold  

Roughly speaking a genera l ized  l i n e a r  threshold scheme works a s  follows. A secret 

is represented by a scalar and a l i n e a r  var ie ty  is  chosen t o  conceal the  secret. 

l i n e a r  func t iona l  f i x e d  i n  t h e  beginning, and known t o  a l l  t r u s t e e s  i s  used t o  r e v e a l  

the s e c r e t  from t h e  l i n e a r  v a r i e t y .  

l inear  var ie ty .  

the i n t e r s e c t i o n  of less t h a n  t ( t  5 n) of them results i n  a l i n e a r  v a r i e t y  which 

projects  uniformly over  t h e  scalar f i e l d  by the l i n e a r  funct ional  used f o r  r e v e a l i n g  

the s e c r e t .  The number t i s  c a l l e d  t h e  threshold. Thus as  more shadows a r e  known 

more information i s  revealed about t h e  l i n e a r  v a r i e t y  used t o  keep t h e  secret, how- 

ever, no information is revealed u n t i l  the  threshold number of shadows are known. 

A 

The n shadows are  hyperplanes containing t h e  

Moreover t h e  hyperplanes a r e  chosen to  s a t i s f y  t h e  condi t ion  t h a t  

Karnin et a1 show i n  [Karnin 831 t h a t  Shamir's, and Blakeley's schemes are s p e c i a l  

cases of t h e i r  th reshold  scheme. It is  shown here t h a t  with the  exception of Shamir's 

scheme t h e  remaining t h r e e  threshold  schemes a r e  equivalent t o  each o ther  and e x p l i c i t  

algorithms a r e  presented t o  convert  one scheme t o  another. The Shamir's scheme is  a 

spec ia l iza t ion  of t h e  remaining t h r e e  schemes and a l l  the four  schemes a r e  s p e c i a l i -  

zat ions of t h e  genera l ized  l i n e a r  threshold scheme. 

perfect  s e c u r i t y  compared t o  [Blakely 811 is  presented. This proof n ice ly  expla ins  

the  common mechanism used f o r  p e r f e c t  secur i ty  i n  various l i n e a r  threshold schemes. 

Also a much simpler proof of 

The general ized l i n e a r  th reshold  scheme allows l inear  v a r i e t i e s  of p o s i t i v e  

dimension t o  conceal  t h e  s e c r e t .  This f a c t  is  u t i l i z e d  i n  construct ing a h i e r a r c h i c a l  

threshold scheme. The h i e r a r c h i c a l  threshold scheme uses a chain of l i n e a r  varieties 

t o  keep a secret and al lows m u l t i p l e  thresholds f o r  hierarchy of t r u s t e e s .  

2. DEFINITIONS LXD PRELIMINARY RESULTS 

In  t h i s  s e c t i o n  some prel iminary r e s u l t s  and def in i t ions  a r e  discussed. 

mater ia l  w i l l  be used i n  t h e  cons t ruc t ion  of  the generalized threshold scheme and 

a l so  i n  the  proofs  t o  show that o ther  threshold schemes a r e  s p e c i a l i z a t i o n s  of t h e  

generalized threshold  scheme. Some of these a r e  standard r e s u l t s  but they are in-  

cluded here  f o r  t h e  sake of completeness and t o  f i x  the notat ion.  

readers may look a t  [Kuiper 651 f o r  f u r t h e r  discussion. 

This 

The i n t e r e s t e d  
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DEFINITION: 
the "message" t o  n other numbers y. ' s  called the "shadows" which satisfy the property: 
there exists a number t (t 5 n) called the threshold such that x can be retrieved 
if any t of the n "shadows" are known, but less than t "shadows" reveal no information 
about the message. 
threshold scheme. 

A threshold scheme is a process which coverts a given number x called 

More specifically such a threshold.scheme is called t out of n 

the 

for 

The 

Using the entropy function H from [Shannon 4 8 )  we can state the requirements in 
threshold scheme as 

(i) H(X I Y yi2,..y. ) = o 
(ii) H(X) = H(X I yi .Y. ,..Y. 

il It 

1 =2 It-1 
an arbitrary set of t indices {il,i2,..,itl. 

Let k denote a finite field and kn denote the set consisting of n-tuples over k. 
n set k is a vector space over k of dimension n in a natural way. The set kn is 

also called an affine space over k and the individual n-tuples are referred to as 
the points of the affine space. 

DEFINITION: 
finite set fi(xl,x 2,...,xn), i = 1,2,..,m, of polynomials in n variables such that 

A subset S of kn is called an affine variety of kn if there exist a 

s 5 {(al,a2,.. ,a E k" 1 fi(al,a2,..a )=o for i=1,2 ,.., m.1 n 
The equations fi(xl,x2,..,xn) = 0 are called the defining equations of the affine 

variety S. 

DEFINITION: 
are linear. 

A n  affine variety is called a linear variety if all its defining equations 

DEFINITION: 
equations are homogeneous. 

A linear variety is called a homogenous linear variety if all its defining 

Given a linear polynomial f(x1,x2,..x ) = b +b x +b x +..+b x 
n+l the vector (bo,bl,..b ) in k 

a linear polynomial f(x1,x2,. .,x ) with the vector representing its coefficients. 

we represent it by n 0 1 1  2 2  nn' 

, representing the coefficients of f. We will identify n 
n 

DEFINITION: Given a linear variety S, define 
E(S) = {fEkn+' I f(al,a2 ,.., a )=0 for a l l  (al,a *,.., a ) E Sl. 

E(S) is a vector subspace of k . 
n n 
n+l 

n DEFINITION: Given subsets S and W of kn and vector c in k define S = c+W if 
S = {v E kn 1 v = c+w for w e W). 
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The funct ion dim( ) is used t o  denote the  dimension of a vec tor  space. 

LEMMA 1: 

a vector  subspace W of kn such that  

Given a l i n e a r  v a r i e t y  S of kn, there  e x i s t s  a vector  c = (c1,c2,..c ) and n 

(i) s = c + w  
and 

( i i )  dim(W) + dim(E(S)) = n. 

Proof: 

arguments from v e c t o r  space  theory.  

The proof fol lows from t h e  Gaussian elimination process and o ther  s tandard  

DEFINITION: For a l i n e a r  v a r i e t y  S = c+W. def ine dim(S) t o  be dim(W). 

NOTATION: 

vector and W is a v e c t o r  subspace of k . 
Given a l i n e a r  v a r i e t y  S ,  the  notat ion S = w + W ind ica tes  t h a t  w i s  a 

n 

n 
LEMMA 2: 
e i t h e r  empty o r  else it is a l i n e a r  v a r i e t y  such t h a t  S1 n S2 = w + W where W conta ins  

L e t  S1 = wl+W1. and S 2  = w +W be l i n e a r  v a r i e t i e s  of k . Then Sl n S2, is  2 2  

w1 n w2. 

Proof: The proof fo l lows  from standard vector  space arguments. 

DEFINITION: 

space where 

Given v e c t o r  subspaces Wl and W2 of kn. W1 + W2 i s  defined as t h e  v e c t o r  

W1 + W2 = {v o kn 1 v = w 1 i w 2  f o r  wi E W .  f o r  i=1,2.) 

The following is a s tandard  r e s u l t  from the  vector  space theory. 

LEMMA 3: I f  W and W are v e c t o r  spaces of kn then 

dim(W1+W2) - din(W1)+dim(W2)-dim(W1 n W2). 
1 2 

DEFINITION: 

a hyper plane. 

I f  S is  a l i n e a r  v a r i e t y  of kn such t h a t  d im(E(S) )  = 1 then S i s  c a l l e d  

LEMMA 4 :  

planes containing S .  Then, 

L e t  S=w+h' be a l i n e a r  v a r i e t y  and t = dim(E(S)). L e t  Hl,H2,.. ,Hm be hyper- 

m 
(i) I f  m < t then  0 Hi s t r i c t l y  contains S ,  

i=l 
m 

( i i )  I f  n Hi = S then m t .  
i=l 

Proof: 

Let T = n Hi. 

Note t h a t  ( i i )  c l e a r l y  follows from ( i )  because Hi contains  S f o r  i-1,2,..,m. 
m 

i= 1 
C l e a r l y  E(T) = E(H1)+E(H2)+ ...+ E(Hm). By repeated a p p l i c a t i o n s  Of 
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Lemma 3 i t  follows that dim(E(T)) 2 m. 

that dim@) < dim(T), t h u s  T s t r i c t l y  contains S .  

I f  m < t then it  follows from Lemma 1 

DEFINITION: 

f o r  m 1. t ,  are s a i d  t o  be  i n  genera l  pos i t ion  with respect t o  S ,  i f  the  i n t e r s e c t i o n  

of any t of them is  S .  

Let  S be  a l i n e a r  v a r i e t y  and t - dim(E(S)). The hyperplanes Hl,H2,..,Hm 

DUALIZATION PRINCIPLE: L e t  V be a vec tor  space of dimension n over the base field k. 
L e t  V be  t h e  set of l i n e a r  f u n c t i o n a l s  on V then V i t s e l f  forms a vector  space of 

dimension n c a l l e d  t h e  dua l  space of V. as 

follows : 

Fix a b a s i s  of V. 

(al,a2,.. ,an) i n  kn such t h a t  for every v i n  V,  

v- d 

n 4 

The space V can be i d e n t i f i e d  w i t h  k 

Then f o r  every l i n e a r  funct ional  L on V there  e x i s t  a unique vec tor  

L(v) = a v +a v +...+a v 1 1  2 2  n n’ 

where (v2,v2,..,v ) is  t h e  representa t ion  of v with respect t o  t h e  f ixed b a s i s  of V. 

For every L belonging t o  t h e  dua l  space V w e  ident i fy  i t  with t h e  vector  (al,a2,..,an) 

i n  kn as descr ibed above. 

Il  
a 

DEFINITION: Given a v e c t o r  v 

LEMMA 5: Given a v e c t o r  v i n  

i n  V. 
A 

belonging t o  a vector  space V and an element a of k, 

V and an element a i n  k the  s e t  H(v,a) is a hyperplane 

Proof: 

of V.  

L e t  v=(v1,v2,..,vn) be t h e  representat ion of v with respect t o  a f i x e d  b a s i s  

Then by t h e  d u a l i z a t i o n  p r i n c i p l e  H(v,a) can be  ident i f ied  with t h e  set 

(a l ,a2 , .  .an) E knla1vL+a2v2+. .+a n n  v = a)  

Thus E(H(v,a)) is a v e c t o r  space of dimension one, generated by the vector  

(-a,v1,v2 ,.., v ) and so H(v.a) is a hyperplane. n 

LEMMA 6:  
vectors  i n  V such t h a t  any n of them a r e  l i n e a r l y  independent. 

funct ional  on V and l e t  L(v )=ai f o r  i = l , 2 , . . , m .  

a r e  i n  general  p o s i t i o n  w i t h  r e s p e c t  t o  (L). 

L e t  V be a v e c t o r  space of dimension n. Let vi f o r  i = 1 , 2 , . . , m . m  2 n, be 

Then the hyperplanes Hi=H(vi,ai) 

L e t  L b e  a l i n e a r  

i 

Proof: 

For i = 1 , 2 , . . , m ,  by (vi.a.) w e  denote  t h e  vector  i n  k 
Since L(vi) = ai, L belongs t o  H .  f o r  i=1,2. ..,m. By lemma 1, dim(E(CL)))q-  

whose pro jec t ion  on t h e  f i rs t  n+l 
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n components is given by the vector vi and the (n+l)-th component is a 
n vectors (vi,ai) for i=1,2,..,m are linearly independent because the same property 

is true for their projections v ' s  by assumption. To prove that the hyperpland Hi 
are in general position we need to show that intersection of any n of them is EL}. 

Any of the i' 

i 

n 

i= 1 
Let S = n Hi. Without loss of generality it is enough to show that S = {Ll. 

By lemma 2 ,  S is a linear variety. 
plane Hi for i=1,2,.-,m. 

the vectors are linearly independent it follows that din(E(S))=n. 

dim (S) = 0 and so S = {L} since L belongs to S. 

L belongs to S because L belongs to every hyper- 

The vectors (vi.ai) belong t o  E(S) for i=1,2....n. Since 

Then by lemma 1, 

2 n- 1 LEMMA 7 :  

m 2 n and b. # b. for i # j then any n of the m vectors vi's are linearly independent. 

Let v =(l,b.,bi ,..., b. ) be vectors belonging to kn for i=l,.., m where i 

1 J  

Proof: 

linearly independent. 
Without loss of generality it is enough to show that vi's for i=1,2, ..., n are 

j -1 . Let B be the n x n matrix such that its (i,j)-th entry is bi 
The matrix B is known as a Vandermonde matrix. 
matrix that 3det(B) # 0 if and only if bi # b. for i # j. Thus'if bi # b for i # j 
then det(B) # 0 which implies that v ' s  are linearly independent for i=1,2,..,n. 

It is a property of a Vendermonde 

J j 
i 

Definition: 
H(f,a) = {v E V I f(V) = a}. 

Given a linear functional f and an element a belonging to k define 

LEMMA 8: H(f,a) is a hyperplane in V. 

Proof: This is a dual of lemma 5. 

The following lemma is the mathematical basis for the perfect security of the 
various linear threshold schemes. 

LEMMA 9: Let f be a linear functional on a vectorspace V. T is a linear subvariety 
of V such that T is not contained in H(f,a) for any a belonging to k. 
projects T over k. 

Then f uniformly 

Proof: Since T is n o t  contained in any H ( f , a ) ,  f projects T onto k. 

Let Ta = {V 1 v r T and f(v) = a}. Then Ta = va + W where va is a vector in T 
which projects to a and W is subspace contained in the kernel of f and it does not 
depend on a. 
independent of a i.e. f projects T unifromly over k. 

Thus cardinality of Ta which is the same as the cardinality of W is 
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3 .  DESCRIPTION O F  LINEAR THRFSHOLD SCHEMES 

I n  t h i s  s e c t i o n  w e  b r i e f l y  descr ibe  the  threshold schemes due t o  Blakely,  Bloom, 

Karnin-Greene-Hellman and Shamir. For more de ta i led  descr ipt ions of these  schemes 

r e f e r  t o  [Blakely 791, [Shamir 791,  [Bloom], [Karnin 831.  For uniformity of  descr ip-  

t ions  a l l  the  t h r e e  schemes are set up t o  give n "shadows" and t h e  threshold i s  t 
where n and t are i n t e g e r s  such t h a t  n 1. t .  

Blakely's Threshold Scheme ( a f f i n e  vers ion) :  

Blakely 's  th reshold  scheme s t a r t s  with a t dimensional a f f i n e  space V. The key 

The n "shadows" are given by i s  concealed by s p e c i f i c  coord ina te  of a point  S of V .  

hyperplanes H i= l ,Z , . . ,n ,  of V such t h a t  the  H. and the s p e c i f i c  coordinate  plane 

passing through S are i n  genera l  pos i t ion  with respect t o  S. 
i' 

Now given any t d i s t a n t  "shadows" Hi, we can get the point  S represent ing  t h e  

key by i n t e r s e c t i n g  t h e  "shadows". However i f  only r "shadows", r < t ,  are known, 

then by i n t e r s e c t i n g  t h e  r hyperplanes corresponding to  the "shadows" w e  g e t  ( t - r )  

dimensional l i n e a r  v a r i e t y  s t r i c t l y  containing S. Thus S cannot be determined and 

no information about  t h e  key i s  revealed. 

Bloom's Threshold Scheme: 

Bloom's scheme starts wi th  a t dimensional vector  space V. The n v e c t o r s  vi f o r  

i=O,l . . ,n ,  a r e  chosen such t h a t  any t of them a r e  l inear ly  independent and consequently 

span t h e  vector  space C. 

sen ts  t h e  key. 

given any t t h e  l i n e a r  f u n c t i o n a l  L is completely determined and the  key can be  com- 

puted using vo. 

determined and no information about the  key is revealed. 

A l i n e a r  func t iona l  L on V i s  chosen such t h a t  L(vo) repre- 

The  %hadowst' S .  f o r  i=1 ,2 , . . ,n  a r e  defined t o  be Si=L(vi). NOW, 

However i f  any r "shadows", r c t ,  a r e  known then L is not  completely 

Shamir's Threshold Scheme: 

Shamir's scheme starts wi th  a polynomial 

2 t-1 f (x) = a +a x ta2x  +. .+at-lx 

i 

, 0 1  

and nonzero d i s t i n c t  s c a l a r s  b f o r  i=1 ,2 , . .n .  The key S i s  represented by ao. The 

n "shadows" Si ,  f o r  i = 1 , 2 , .  .n a r e  defined as  

S .  = f(bi) . 
Given any t d i s t i n c t  "shadows" f ( x )  can be determined by Lagrange i n t e r p o l a t i o n  formula 

and the key i s  obtained by eva lua t ing  f (x)  a t  x=O. I f  only r "shadows", r < t ,  a r e  

known then f (x)  cannot be determined and no information about the  key i s  revealed.  

Karnin-Greene-Helln Threshold Scheme: 

The scheme starts wi th  n+l column vectors  AO,Al,..,A of s i z e  t such t h a t  any t 
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of them have full rank. 
The n shadows are given by U-Ai for i=1,2,..,n. 
then U can be determined and the key is obtained by evaluating U-AO.  

t shadows are known then U is not determined and no information about the key is 
revealed. 

U i s  a row vector of size t. The key is given by U.Ao. 
If any t of the n shadows are known 

If less than 

4 .  GENERALIZED LINEAR THRESHOLD SCHEME: 

A generalized t out of n threshold scheme is constructed as follows. Let V be 
a (d+t) dimensional vectorspace. The secret is a scalar a concealed by a d dimensional 
linear subvariety S. A linear functional f is used to reveal the secret from S i.e. 
f is chosen such that f(v) is equal to a for any v belonging to S .  

S is kept secret but the linear functional f is made known to all the trustees invol- 
ved. 

The linear variety 

The n shadows are given by n hyperplanes. The hyperplanes representing the 
shadows and the hyperplane H(f,a) together are chosen to be in general position with 
respect to S. 

Given any t shadows, S is obtained by intersecting the corresponding hyperplanes. 
If less than ( < t) shadows are known the corresponding hyperplanes intersect in a 
linear subvariety S' containing S. Moreover S '  is not contained in H(f.a) because 
the hyperplanes intersecting in S' and H(f,a) are in general position by choice. In 
view of lemma 9 S' reveals no information about a. 

5. INTERRELATION OF LINEAR THRESHOLD SCHEMES: 

This section presents conversion algorithms proving that the t out of n threshold 
The same notation schemes of Blakely, B l o o m  and Karnin-Greene-Hellman are equivalent. 

that is used to describe the schemes is used again to describe the algorithms. 

Algorithm BLBM: 

The following algorithm converts a Blakely scheme to a Bloom scheme. 
1. Let el,e2. ..,et be the standard basis of V. 

Choose the linear functional L such that L(e.) is the i-th coordinate 
of S for 1 5 i 5  t. 

2. If the k-th coordinate of S is the secret to be concealed then choose 

k' 
to be the vector representing the coefficients of Hi for 

v,, to be e 

Choose v 
i=l,2,. . ,n. 

3. i 

Algorithm BMKGH: 

The following algorithm converts a Bloom scheme to a Karnin-Greene-Helbm scheme. 
1. Let el,e2 ,.., e be the standard basis of V. Set U = (L(el),L(e3) ,. ..L(et)). 
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2.  The (n+l) column v e c t o r s  are chosen t o  b e  vo,vl,..,vn wr i t ten  as column vec- 

t o r s .  

Algorithm KGHBL: 

The following a lgor i thm conver t s  a Karnin-Greene-Hellman scheme t o  a Blakely 

scheme. 

1. Choose S t o  b e  t h e  p o i n t  given by U. 

2. The hyperplanes H1,H *,... H 

whose c o e f f i c i e n t  v e c t o r s  a r e  given by Vl,V2, . . ,Vn.  

are chosen t o  b e  the  hyperplanes n 

Algorithm BMSH: 

This a lgori thm conver t s  a Bloom's scheme t o  a Shamir's scheme. 

1. Define vo - (l,O,..,O) 
2. Define t h e  v e c t o r s  vt  f o r  1 1  i l  n as 

v i = (l,bi,bi, .. ,b:-I). 

Note t h a t  by lemma 7 any t of the  vi 's f o r  i=0,2,.. ,n are l i n e a r l y  

independent. 

2 

3. L e t  a = (ao.al , , . ,a  ) and def ine L a s ,  t-1 
L ( v )  = a-v  f o r  v belonging t o  v ,  where a - v  is  the  dot  product 

of a and v. 

Algorithm GSBL: 

This a lgori thm s p e c i a l i z e s  a generalized l i n e a r  scheme t o  a Blakely scheme. 

1. Choose d = 0. 

2. Choose t h e  l inear f u n c t i o n a l  f to  be a project ion on one of t h e  coord ina te  

a x i s .  

I n  view of t h e s e  algori thms t h e  various threshold schemes are s p e c i a l i z a t i o n s  

of t h e  Generalized l i n e a r  th reshold  scheme and they subsume Shamir ' s  scheme. 

6. HIERARCHICAL THRESHOLD SCHEME: 

In many a p p l i c a t i o n s  t h e r e  i s  a hierarchy among the t r u s t e e s  to  whom t h e  shadows 

a r e  d i s t r i b u t e d  f o r  safeguarding t h e  secre t ,  and there  i s  a need t o  c r e a t e  shadows of 

d i f f e r e n t  potency. 

sen ior  and j u n i o r  execut ives ,  i t  may be required tha t  the  threshold t o  o b t a i n  t h e  

secre t  be s t r i c t l y  smaller f o r  sen ior  executives compared t o  t h e  threshold required 

of jun ior  execut ives .  

c r u c i a l  when t h e r e  are d i f f e r e n t  l e v e l s  of commands and i t  i s  required that t h e  lower 

For example i n  a company where there  a r e  two l e v e l s  of guards l ike  

In defense appl icat ions,  t h i s  requirement may be even more 
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the level of command the higher the number of officers required to reveal the secret. 

These applications require a threshold scheme which provides shadows at different levels 

and the threshold is dependent on the level, such a scheme will be called a hierarchi- 
cal threshold scheme. 

An obvious solution to obtain a hierarchical threshold scheme seems to be to adopt 
an ordinary threshold scheme to the purpose by providing multiple shadows as shadows 
at higher levels. 

are required to reveal the secret the computation required in the process is not re- 

duced, the shadows at different levels have to be physically different and interpreted 

differently, and a full range of threshold values is not available. A natural solution 

to these problems is offered by a generalized linear scheme. 

However this approach has drawbacks such as even though less shadows 

A hierarchical threshold scheme is obtained from generalized linear threshold 

scheme as follows. The basic idea is to use linear varieties of different dimensions 

to conceal the secrets, at different levels. 

Assume that V is a t dimensional vector space and f is a linear functional which 
is used to reveal the secret concealed by a linear subvariety S. The variety S is 
such that function f has a unique value, on S. 
the maximum dimension for S is (t-1). 
the dimension of S. 

that dim(S.) = i and f(Si) is a single value giving the secret. 

i are generated with respect to Si as described in the construction of generalized 

linear threshold scheme. The threshold at level i is then t-i. Thus we get a hier- 

archical scheme providing t different levels of shadows. At level i, t-i linear equa- 

tions have to be solved to obtain the secret, thus the computation to reveal the secret 
is proportional to the threshold. 

There are several choices for S and 
The threshold is the difference between t and 

Choose a sequence Si, 0 5 1 1  t-I. of linear subvarieties such 

The shadows at level 

7 .  CONCLUSIONS 

This paper shows that various linear threshold schemes are closely related and 

A generalized linear threshold scheme they are all founded on the same principles. 

nicely crystalizes the basic principles of linear threshold schemes. 

threshold scheme has the flexibility which allows a chain of linear varieties to be 
used to conceal a secret. 

The linear threshold schemes have fallen back on Shamir's method for a concrete im- 

plementation - however the same method cannot be used to implement a generalized 

threshold scheme as a hierarchical scheme. At this time we do not know of any effi- 
cient implementation of a hierarchical threshold scheme and the problem needs to be 
investigated further. 

The generalized 

This property provides a hierarchical threshold scheme. 

There are other possible generalizations of linear threshold schemes. The linear 

functional used to reveal the secret may be replaced by a fractional linear trans- 

formation (this is the case with Blakeley's projective threshold scheme) also the 

shadows may be chosen to be lower dimensional linear varieties instead of linear 
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hyperplanes. 
hold schemes. 

It is not clear that these generalizations would give any better thres- 
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