
A Split&Push Approach to 3D Orthogonal

Drawing?

(Extended Abstract)

Giuseppe Di Battista1, Maurizio Patrignani1, and Francesco Vargiu2

1 Dipartimento di Informatica e Automazione, Università di Roma Tre
via della Vasca Navale 79, 00146 Roma, Italy. {gdb,patrigna}@dia.uniroma3.it

2 AIPA, via Po 14, 00198 Roma Italy. vargiu@aipa.it

Abstract. We present a method for constructing orthogonal drawings
of graphs of maximum degree six in three dimensions. Such a method
is based on generating the final drawing through a sequence of steps,
starting from a “degenerate” drawing. At each step the drawing “splits”
into two pieces and finds a structure more similar to its final version. Also,
we test the effectiveness of our approach by performing an experimental
comparison with several existing algorithms.

1 Introduction

Both for its theoretical appeal and for the high number of potential applica-
tions, research in 3D graph drawing is attracting an increasing attention. The
interest of the researchers has been mainly devoted to straight-line drawings and
orthogonal drawings.

Concerning straight-line drawings, many different approaches can be found
in the literature. For example, the method in [7] is based on carefully exploiting
the “momentum curve” to guarantee no edge crossings and a volume 4n3, where
n is the number of vertices of the graph to be drawn. The same paper presents
another example of algorithm which constructs drawings without edge crossings
of planar graphs with degree at most 4. It is based on folding a 2-dimensional
orthogonal grid drawing of area h × v into a straight-line drawing with volume
h × v. Force directed approaches have been exploited to devise the algorithms
in [5, 8, 10, 18, 25, 14, 20]. Also, the research on this type of drawings stimulated
the investigation on theoretical bounds. Examples of bounds on the volume of a
straight-line drawing can be found in [7, 6, 21]. Further, special types of straight-
line drawings have been studied in [3, 13, 1, 15] (visibility representations) and
in [17] (proximity drawings).

Concerning orthogonal drawings, all the algorithms guarantee no intersection
between edges and most of the results apply mainly to graphs with maximum
vertex degree six. Biedl [2] shows a linear time algorithm (in what follows we call
it Slice) that draws in O(n2) volume with at most 14 bends per edge. Eades,

? Research supported in part by the ESPRIT LTR Project no. 20244 - ALCOM-IT
and by the CNR Project “Geometria Computazionale Robusta con Applicazioni alla
Grafica ed al CAD.”

S.H. Whitesides (Ed.): GD’98, LNCS 1547, pp. 87–101, 1998.
c© Springer-Verlag Berlin Heidelberg 1998



88 Giuseppe Di Battista, Maurizio Patrignani, and Francesco Vargiu

Stirk, and Whitesides [11] propose a O(n3/2)-time algorithm based on augment-
ing the graph to an Eulerian graph and on applying a variation of an algorithm
by Kolmogorov and Bardzin [16]. The algorithm (we call it Kolmogorov) draws
in O(n3/2) volume with at most 16 bends per edge. Eades, Symvonis, and White-
sides [12] propose two algorithms. Both work in O(n3/2) time and are based on
augmenting the graph to a 6-regular graph and on a coloring technique. A first
algorithm (we call it Compact) draws in O(n3/2) volume with at most 7 bends
per edge while a second algorithm (we call it Three-Bends) draws in at most
27n3 volume with at most 3 bends per edge. Papakostas and Tollis [22] present
a linear time algorithm (we call it Interactive) that draws in at most 4.66n3

volume with at most 3 bends per edge. The algorithm can be extended to draw
graphs with vertices of arbitrary degree. Finally, Wood [26] presents an algo-
rithm for maximum degree 5 graphs that draws in O(n3) volume with at most 2
bends per edge. Although the results presented in the above papers are interest-
ing and deep, the research in this field suffers, in our opinion, the lack of general
methodologies.

In this paper we deal with the problem of constructing orthogonal drawings
in three dimensions. We experiment several existing algorithms to test their prac-
tical applicability. Further, we propose new techniques that have a good average
behaviour. Our main target are graphs with number of vertices in the range
10–100 that are crucial in several applications. The results presented in this pa-
per can be summarized as follows. We present a new method for constructing
orthogonal drawings of graphs of maximum degree six in three dimensions with-
out intersections between edges. It can be considered more as a general strategy
rather than as a specific algorithm. The approach is based on generating the
final drawing through a sequence of steps, starting from a “degenerate” draw-
ing; at each step the drawing “splits” into two pieces and finds a structure more
similar to its final version. We devise an example of algorithm developed accord-
ing to the above method, called Reduce-Forks. We perform an experimental
comparison of Compact, Interactive, Kolmogorov, Reduce-Forks, Slice, and
Three-Bends against a large test suite of graphs with at most 100 vertices.
We measure the computation time and three important readability parameters:
volume, average edge length, and average number of bends along edges. Our
experiments show that no algorithm can be considered “the best” with respect
to all the parameters. Concerning Reduce-Forks, we can say that it has a good
effectiveness for graphs in the range 5–30 and, among the algorithms that have a
reasonable number of bends along the edges (Interactive, Reduce-Forks, and
Three-Bends), Reduce-Forks is the one that has the best behaviour in terms of
edge length and volume. This is obtained at the expenses of an efficiency that is
much worse than the other algorithms. However, the CPU time do not seem to
be a critical issue for the size of graphs in the interval.

The paper is organized as follows. In Section 2 we present our approach
and in Section 3 we show its feasibility. In Section 4 we describe Algorithm
Reduce-Forks. In Section 5 we present the results of the experimental compar-
ison.



A Split&Push Approach to 3D Orthogonal Drawing 89

The interested reader will find at our Web site a cgi program that allows
to use the experimented algorithms, and the test suite used in the experiments
(www.dia.uniroma3.it/∼patrigna/3dcube).

2 A Strategy for Constructing 3D Orthogonal Drawings

An orthogonal drawing of a graph is such that all the edges are chains of segments
parallel to the axes. A grid drawing is such that all vertices and bends have
integer coordinates. A 01-drawing is an orthogonal grid drawing such that each
edge has either length 0 or length 1 and vertices may overlap. A 0-drawing is
a trivial 01-drawing such that each edge has length 0 and all vertices have the
same coordinates. A 1-drawing is a 01-drawing such that all edges have length
1 and vertices have distinct coordinates. (See Fig. 1.) Observe that while all
graphs have a 01-drawing, only some admit a 1-drawing.

Fig. 1. A 1-drawing of a graph with ten vertices.

Let G be a graph. A subdivision G1 of G is a graph obtained from G by
replacing some edge of G with a path. A subdivision G2 of G1 is a subdivision of
G. There always exists a subdivision of G that admits a 1-drawing. We partition
the vertices of G1 into vertices that belong also to G (original vertices of G) and
vertices that belong only to G1 (dummy vertices).

A dummy path of G1 is a path consisting only of dummy vertices but, possibly,
at the endpoints (that can be original vertices). A planar path of an orthogonal
drawing of G1 is a maximal path whose vertices are on the same plane. A planar
dummy path is self-intersecting if it has two distinct vertices with the same
coordinates.

We propose a method for constructing orthogonal grid drawings with all
vertices at distinct coordinates and without intersections between edges (except
at the common endpoints). The drawing process consists of a sequence of steps
such that each step maps a 01-drawing of a graph G into a 01-drawing of a
subdivision of G. We start with a 0-drawing of G and at the last step we get a
1-drawing of a subdivision G1 of G. Hence, an orthogonal grid drawing of G is
obtained by replacing each path u, v of G1, corresponding to an edge (u, v) of
G, with an orthogonal polygonal line connecting u and v.

The general strategy is as follows. Let G0 be a graph, we consider several
subsequent subdivisions of G0. In each subdivision new dummy vertices are



90 Giuseppe Di Battista, Maurizio Patrignani, and Francesco Vargiu

introduced. In each subdivision we call original the original vertices of G0 and
dummy all the other vertices. We construct an orthogonal grid drawing Γ of
G0 in four steps. Vertex Scattering: Construct a 01-drawing of a subdivision
G1 of G0 such that all the original vertices have different coordinates and all
planar dummy paths are not self-intersecting (we call it scattered 01-drawing).
After this step dummy vertices may still overlap both with dummy and with
original vertices. Direction Distribution: Construct a scattered 01-drawing
of a subdivision G2 of G1 such that, for each vertex v, v and all its adjacent
vertices have different coordinates (we call it direction-consistent 01-drawing).
In other words, after this step the edges incident on v “leave” v with different
directions. Observe that this is true both in the case v is original and in the case v
is dummy. Vertex-Edge Overlap Removal: Construct a direction-consistent
01-drawing of a subdivision G3 of G2 such that for each original vertex v, no
dummy vertex has the same coordinates of v (we call it vertex-edge-consistent
01-drawing). After this step the original vertices do not “collide” with other
vertices. Observe that dummy vertices having the same coordinates may still
exist. Crossing Removal: Construct a 1-drawing of a subdivision G4 of G3 (all
the vertices, both original and dummy, have different coordinates). Observe that
Γ is easily obtained from the drawing of G4.

Each step is performed by repeatedly applying the same simple primitive
operation called split. Informally, such operation “cuts” the entire graph with
a plane perpendicular to one of the axes. The vertices laying on the “cutting”
plane are split into two subsets that are “pushed” into two adjacent planes.

Given a direction d we denote by −d its opposite direction. A split parameter
is a 4-tuple (d, P, φ, ρ), where d is a direction and P is a plane perpendicular
to d. Function φ maps each vertex laying on P to a boolean. Function ρ maps
each edge (u, v) laying on P such that φ(u) 6= φ(v) and such that u and v
have different coordinates to a boolean. Given a split parameter (d, P, φ, ρ), a
split(d, P, φ, ρ) performs as follows (see Fig. 2). (1) We move of one unit in the d
direction all vertices in the open half-space determined by P and d. Such vertices
are “pushed” towards d. (2) We move of one unit in the d direction each vertex
u on P with φ(u) = true. (3) For each edge (u, v) that after the above steps
has length greater than one, we substitute (u, v) with the new edges (u, w) and
(w, v), where w is a new dummy vertex. Vertex w is placed as follows. (3.a) If the
function ρ(u, v) is not defined, then vertex w is simply put in the middle point
of the segment u, v. (3.b) If the function ρ(u, v) is defined (suppose, wlog, that
φ(u) = true and φ(v) = false), then two cases are possible. If ρ(u, v) = true,
then w is put at distance 1 in the d direction from u. If ρ(u, v) = false, then w
is put at distance 1 in the −d direction from v.

Observe that a split operation applied to a 01-drawing of a graph G con-
structs a 01-drawing of a subdivision of G. Also, although split is a simple prim-
itive, it has several degrees of freedom that can lead to very different drawing
algorithms. Further, by applying split in a “random” way there is no guarantee
that the process converges to a 1-drawing.



A Split&Push Approach to 3D Orthogonal Drawing 91

(a) (b)

Fig. 2. An example of split: (a) before the split and (b) after the split. Vertices
with φ = true (φ = false) are black (light grey). Edges with ρ = true (ρ =
false) are labelled t (f). The little cubes are dummy vertices inserted by the
split.

3 Feasibility of the Approach

Property 1. Let Γ be a scattered 01-drawing of a graph. Each edge of Γ incident
to a dummy vertex has length 1.

Property 2. Let Γ be a 01-drawing of a graph obtained by a sequence of split
operations from a 0-drawing of another graph. Each edge of Γ incident to a
dummy vertex has length 1.

Proof. Dummy vertices are created by split operations. In such operations they
are placed at distance 1 from their neighbors.

Property 3. Let Γ0 be a 0-drawing of a graph G0. There exists a finite sequence
of split operations that, starting from Γ0, constructs a scattered 01-drawing of
a subdivision of G0.

Proof. Trivial. All the splits can be performed with planes perpendicular to the
same axis. Each split separates one original vertex from the others. Note that
all the obtained dummy paths are drawn as straight lines and hence are not
self-intersecting and that all vertices lie on the same line.

Let u be a vertex. We call the six directions isothetic wrt the axes around u
access directions of u. The access direction of u determined by traversing edge



92 Giuseppe Di Battista, Maurizio Patrignani, and Francesco Vargiu

(u, v) from u to v is used by (u, v). An access direction of u that is not used by
any of its incident edges is a free direction of u.

Given a direction d isothetic to one of the axes and a vertex v, we denote
Pd,v the plane through v perpendicular to d.

Theorem 1. Let Γ1 be a scattered 01-drawing of a graph G1, subdivision of a
graph G0. There exists a finite sequence of split operations that, starting from
Γ1 constructs a direction-consistent 01-drawing of a subdivision of G1.

Proof. We consider one by one each vertex u with edges (u, v) and (u, w) that
use the same access direction d of u. Since Γ1 is a scattered 01-drawing, at least
one of v and w (say v) is dummy. Also, by Property 1 we have that all edges
incident to u use a direction of u. Two cases are possible. Case 1: at least one
direction d′ of the free directions of u is orthogonal to d; see Fig. 3.a. Case 2:
direction −d is the only free direction of u; see Fig. 3.b.

(a) (b)

Fig. 3. Cases in the proof of Theorem 1.

Case 1: We perform split(d′, Pd′,u, φ, ρ) as follows. We set φ(v) = true, all
the other vertices of Pd′,u have φ = false. Also, ρ(u, v) = true, all the other
edges in the domain of ρ have ρ = false. After split, edge (u, v) uses direction
d′ of u. The usage of the other access directions of u is unchanged. Also, all the
other vertices still use the same access directions as before the split with the
exception, possibly, of v (that is dummy).

Case 2: Let d′′ be a non-free direction of u different from d. We perform
the same split operation as the one of Case 1, using direction d′′ instead of d′.
After split, edge (u, v) uses direction d′′ of u. At this point, since at least one
direction of the free directions of u is orthogonal to d′′, we can apply the same
split strategy of Case 1.

Finally, we observe that the above split operations preserve the properties of
the scattered 01-drawings.



A Split&Push Approach to 3D Orthogonal Drawing 93

We define a simplier version of split(d, P, φ, ρ), called trivialsplit(d, P ), where
φ is identically false for all vertices of the cutting plane, and, as a consequence,
the domain of ρ is empty.

Theorem 2. Let Γ2 be a direction-consistent 01-drawing of a graph G2, sub-
division of a graph G0. There exists a finite sequence of split operations that,
starting from Γ2, constructs a vertex-edge-consistent 01-drawing of a subdivision
of G2.

Proof. Consider one by one each original vertex u of G0 such that there exists
a dummy vertex v with the same coordinates of u. Let (v′, v) and (v, v′′) be the
incident edges of v. By Property 1, v, v′ and v′′ have different coordinates.

Let d′ and d′′ be the directions of v used by (v′, v) and (v, v′′), respectively. We
perform trivialsplit(d′, Pd′,v) and trivialsplit(d′′, Pd′′,v). After such operations
vertex v is guaranteed to be adjacent to dummy vertices w′ and w′′ created by
the performed splits. Two cases are possible: either d′ = −d′′ or not. In the first
case we define d′′′ as any direction orthogonal to d′; in the second case we define
d′′′ as any direction among d′, d′′, and the two directions orthogonal to d′ and d′′.
We perform split(d′′′, Pd′′′,v, φ, ρ) as follows. We set φ(v) = true, all the other
vertices of Pd′′′,v have φ = false. All the edges in the domain of ρ have ρ = true.
Note that now u and v have different coordinates, that each split preserves the
properties of direction-consistent 01-drawings, and that each operation does not
generate new vertex-edge overlaps.

Two distinct planar paths p1 and p2 on the same plane intersect if there exist
two vertices one of p1 and the other of p2 with the same coordinates.

Theorem 3. Let Γ3 be a vertex-edge-consistent 01-drawing of a graph G3, sub-
division of a graph G0. There exists a finite sequence of split operations that,
starting from Γ3, constructs a 1-drawing of a subdivision of G3.

Proof. Since Γ3 is vertex-edge-consistent, all vertices have distinct coordinates
but dummy vertices, that may still overlap. We consider the number χ of the
pairs of intersecting planar dummy paths of Γ3. Fig. 4 shows that χ can be
greater than one even with just two vertices with the same coordinates. If χ = 0,
then Γ3 is already a 1-drawing of G3. Otherwise, we repeatedly select a pair
of intersecting planar dummy paths p1 and p2 and “remove” their intersection,
decreasing the value of χ. Such removal is performed as follows.

Let u1 and v1 be the endpoints of p1. If u1 (v1) is an original vertex we per-
form trivialsplit(d1, Pd1,u1) (trivialsplit(d1, Pd1,u1)), where d1 is the direction
determined by entering p1 from u1 (v1). The value of χ stays unchanged. We
denote by r1 (s1) the dummy vertex possibly introduced by the trivialsplit.

Let x1 and x2 be two vertices, one of p1 and the other of p2, with the same
coordinates; x1 and x2 are dummy. Let d a free direction of x2 such that −d is
a free direction of x1. Since x1 and x2 have both degree 2, direction d always
exists. We perform split(d, Pd,x1, φ, ρ), by setting φ(v) = true for each v ∈ p1

and v 6= r1, s1 (false otherwise). All the edges in the domain of ρ have ρ = true.
The proof is easily completed by showing the decrease of χ after the split.



94 Giuseppe Di Battista, Maurizio Patrignani, and Francesco Vargiu

Fig. 4. Two dummy vertices with the same coordinates originating 3 pairs of
intersecting planar dummy paths.

We have shown that split is a powerful tool in performing the steps of the
method presented in Section 2. Namely, each step of Vertex scattering, Direc-
tion distribution, Vertex-edge overlap removal, and Crossing removal can be
performed by a finite sequence of splits.

4 The Reduce-Forks Algorithm

An edge (u, v) is cut by split(d, P, φ, ρ) if u and v were on the same P -plane
before the split and are on different planes parallel to P after the split. A pair
of adjacent edges cut by a split is a fork.

Algorithm Reduce-Forks follows the strategy described in Sections 2 and 3.
However, the steps of the approach are refined into a set of heuristics that can be
summarized as follows. Vertex Scattering: We repeatedly apply the following
strategy. We select two original vertices u and v of G0 with the same coordinates.
We consider the set of split operations that separate u from v and perform the
one with “a few” forks. The number of forks is kept small since, intuitively, each
fork will require at least one bend to be removed in the subsequent Direction
distribution step. Direction Distribution: For each original vertex u of G0

with edges (u, v) and (u, w) such that v and w have the same coordinates: (1)
We compute all the planar dummy paths containing (u, v) and (u, w). (2) We
determine all the split operations that separate such paths and that separate
v from w. (3) We weight such splits according to the number of bends they
introduce and to the number nd of vertices that become direction-consistent
after the split. We have that 1 ≤ nd ≤ 2. (4) We select and apply the split with
minimum weight. Vertex-Edge Overlap Removal: For each original vertex
u of G0 such that v has the same coordinates as u: (1) We compute all the
planar dummy paths containing v. (2) We determine all the split operations that
separate such paths from u. (3) We weight such splits according to the number
of bends they introduce and to the number of crossings introduced by the split.
(4) We select and apply the split with minimum weight. Crossing Removal:
For each pair of dummy vertices u and v having the same coordinates: (1) We



A Split&Push Approach to 3D Orthogonal Drawing 95

compute all the planar dummy paths containing u or v. (2) We determine all
the split operations that separate such paths and u from v. (3) We weight such
splits according to the number of bends they introduce. (4) We select and apply
the split with minimum weight.

Concerning the Vertex scattering step, observe that a split with no forks is a
matching cut. Unfortunately, the problem of finding a matching cut in a graph
is NP-complete (see [23]), hence a heuristic solution is needed. A simple and
efficient heuristic for finding a split with a few forks is described below.

Let G be a graph with adjacent vertices u and v. We color black and red the
vertices of G in the two sides of the split. Each step of the heuristic colors one
vertex. At a certain step a vertex can be black, red or free (uncolored). At the
beginning u is black, v is red, and all the other vertices are free.

Colored vertices adjacent to free vertices are active vertices. Black (Red)
vertices adjacent to red (black) vertices are boundary vertices. See Fig. 5. Each
step works as follows. (1) If a boundary active black (red) vertex, say x, exists,
then we color black (red) one free vertex y adjacent to x. This is done to prevent
a fork between (x, y) and (x, w), where w is a red (black) vertex. (2) Else, if an
active black (red) vertex, say x, exists, then we color black (red) one free vertex
y adjacent to x. This is done for not cutting edge (x, y). (3) Else, we color black
or red (random) a (random) free vertex.

Fig. 5. Red, black, and free vertices in the Vertex scattering heuristic of Algo-
rithm Reduce-Forks.

It is easy to implement the above heuristic to run in linear time and space
(a graph with at most six edges per vertex has a linear number of edges).

5 Experimental Results

The experiments have been performed on a Sun Sparc station Ultra-1 by using
3DCube [24]. All the algorithms have been implemented in C++. The test suite



96 Giuseppe Di Battista, Maurizio Patrignani, and Francesco Vargiu

was composed by 1900 randomly generated graphs having from 5 to 100 vertices,
20 graphs for each value of vertex cardinality. All graphs were connected, with
maximum vertex degree 6, without multi-edges and self-loops. The density was
relatively high: the number of edges was twice the number of vertices.

We considered two families of quality measures. For the efficiency we relied on
the time performance (cpu seconds); for the readability we measured the average
number of bends along the edges, the average edge length, and the volume of
the minimum enclosing box with sides isothetic to the axes.

We compared algorithms Compact, Interactive, Kolmogorov, Reduce-
Forks, Slice, and Three-Bends. Fig. 6 and 7 illustrate the results of the com-
parison.

The comparison shows that no algorithm can be considered “the best”.
Namely, some algorithms are more effective in the average number of bends
(Interactive, Reduce-Forks, and Three-Bends) while other algorithms per-
form better with respect to the volume (Compact and Slice) or to the edge
length (Compact, Interactive, and Reduce-Forks). In particular: (i) The av-
erage number of bends (see Fig. 6-b) is comparable for Interactive, Reduce-
Forks, and Three-Bends, since it remains for all of them under the value of 3
bends per edge, while it is higher for Compact and Slice, and it definitely too
much high for Kolmogorov. Furthermore, Reduce-Forks performs better than
the others for graphs with number of vertices in the range 5–30. Interactive
performs better in the range 30–100. Another issue concerns the results of the
experiments vs. the theoretical analysis. About Kolmogorov the literature shows
an upper bound of 16 bends per edge [11] while our experiments obtain about
19. This inconsistency might show a little “flaw” in the theoretical analysis (or,
of course, in our implementation). Further, about Compact the experiments show
that the average case is much better than the worst case [12]. (ii) Concerning
the average edge length (see Fig. 7-a), Reduce-Forks performs better for graphs
up to 50 vertices, whereas Compact is better from 50 to 100; Interactive is a
bit worse, while the other algorithms form a separate group with a much lower
level of performance. (iii) The values of volume occupation (see Fig. 7-b) show
that Compact and Slice have the best performance for graphs bigger than 30
vertices, while Reduce-Forks performs better for smaller graphs. Examples of
the drawings constructed by the algorithms are shown in Fig. 8.

As overall considerations we can say that Reduce-Forks is the most effective
algorithm for graphs in the range 5–30. Also, among the algorithms that have a
reasonable number of bends along the edges (Interactive, Reduce-Forks, and
Three-Bends), Reduce-Forks is the one that has the best behaviour in terms
of edge length and volume. This is obtained at the expenses of an efficiency
that is much worse than the other algorithms. However, the CPU time do not
seem to be a critical issue for the size of graphs in the interval. In fact, even for
Reduce-Forks the CPU time never overcomes the sole of 150 seconds, that is
still a reasonable time for most of the applications.



A Split&Push Approach to 3D Orthogonal Drawing 97

(a)

(b)

Fig. 6. Comparison of Algorithms Compact, Interactive, Kolmogorov,
Reduce-Forks, Slice, and Three-Bends with respect to time performance (a)
and average number of bends along edges (b).



98 Giuseppe Di Battista, Maurizio Patrignani, and Francesco Vargiu

(a)

(b)

Fig. 7. Comparison of Algorithms Compact, Interactive, Kolmogorov,
Reduce-Forks, Slice, and Three-Bends with respect to average edge length
(a) and volume occupation (b).



A Split&Push Approach to 3D Orthogonal Drawing 99

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Three-dimensional orthogonal drawings of a K7 as yielded by Compact
(a), Interactive (b), Kolmogorov (c), Reduce-Forks (d), Slice (e), and
Three-Bends (f).



100 Giuseppe Di Battista, Maurizio Patrignani, and Francesco Vargiu

6 Conclusions and Open Problems

In this paper we presented a new method for constructing orthogonal drawings
in three dimensions of graphs of maximum degree 6, and tested the effectiveness
of our approach by performing an experimental comparison with several existing
algorithms. The presented techniques are easily extensible to obtain drawings of
graphs of arbitrary degree with the following strategy. The Vertex scattering
step remains unchanged. In the Direction distribution step for vertices of degree
greater than six, we first saturate the six available directions and then we evenly
distribute the remaining edges. The Vertex-edge overlap removal step remains
unchanged. In the Crossing removal step we distinguish between crossings that
are “needed” because of the overlay between edges that is unavoidable because
of the high degree and the crossings that can be removed. For the latter type of
crossings we apply the techniques presented in Section 3.

Several problems are opened by this work. (1) Devise new algorithms and
heuristics (alternative to Reduce-Forks) within the described paradigm. (2) Ex-
plore the trade-off, put in evidence by the experiments, between number of bends
and volume. (3) Measure the impact of bend-stretching (or possibly other post-
processing techniques) on the performances of the different algorithms. (4) De-
vise new quality parameters to better study the human perception of “nice draw-
ing” in three dimensions.

References

[1] H. Alt, M. Godau, and S. Whitesides. Universal 3-dimensional visibility repre-
sentations for graphs, in [4], pp. 8–19.

[2] T. C. Biedl. Heuristics for 3d-orthogonal graph drawings. In Proc. 4th Twente
Workshop on Graphs and Combinatorial Optimization, pp. 41–44, 1995.

[3] P. Bose, H. Everett, S. P. Fekete, A. Lubiw, H. Meijer, K. Romanik, T. Shermer,
and S. Whitesides. On a visibility representation for graphs in three dimensions.
In D. Avis and P. Bose, eds., Snapshots in Computational and Discrete Geometry,
Vol. III, pp. 2–25. McGill Univ., July 1994. McGill tech. rep. SOCS-94.50.

[4] F. J. Brandenburg, editor: Proceedings of Graph Drawing ’95, Vol. 1027 of LNCS,
Springer-Verlag, 1996.

[5] I. Bruß and A. Frick. Fast interactive 3-D graph visualization, in [4], pp. 99–110.

[6] T. Calamoneri and A. Sterbini. Drawing 2-, 3-, and 4-colorable graphs in O(n2)
volume, in [19], pp. 53–62.

[7] R. F. Cohen, P. Eades, T. Lin, and F. Ruskey. Three-dimensional graph drawing.
Algorithmica, 17(2):199–208, 1996.

[8] I. F. Cruz and J. P. Twarog. 3d graph drawing with simulated annealing, in [4],
pp. 162–165.

[9] G. Di Battista, editor: Proceedings of Graph Drawing ’97, Vol. 1353 of LNCS,
Springer-Verlag, 1998.

[10] D. Dodson. COMAIDE: Information visualization using cooperative 3D diagram
layout, in [4], pp. 190–201.



A Split&Push Approach to 3D Orthogonal Drawing 101

[11] P. Eades, C. Stirk, and S. Whitesides. The techniques of Kolmogorov and Bardzin
for three dimensional orthogonal graph drawings. I. P. L., 60(2):97–103, 1987.

[12] P. Eades, A. Symvonis, and S. Whitesides. Two algorithms for three dimensional
orthogonal graph drawing, in [19], pp. 139–154.

[13] S. P. Fekete, M. E. Houle, and S. Whitesides. New results on a visibility repre-
sentation of graphs in 3-d, in [4], pp. 234–241.

[14] A. Frick, C. Keskin, and V. Vogelmann. Integration of declarative approaches,
in [19], pp. 184–192.

[15] A. Garg, R. Tamassia, and P. Vocca. Drawing with colors. In Proc. 4th Annu.
Europ. Sympos. Algorithms, vol. 1136 of LNCS, pp. 12–26. Springer-Verlag, 1996.

[16] A. N. Kolmogorov and Y. M. Bardzin. About realization of sets in 3-dimensional
space. Problems in Cybernetics, pp. 261–268, 1967.

[17] G. Liotta and G. Di Battista. Computing proximity drawings of trees in the 3-
dimensional space. In Proc. 4th Workshop Algorithms Data Struct., volume 955
of LNCS, pp. 239–250. Springer-Verlag, 1995.

[18] B. Monien, F. Ramme, and H. Salmen. A parallel simulated annealing algorithm
for generating 3D layouts of undirected graphs, in [4], pp. 396–408.

[19] S. North, editor: Proceedings of Graph Drawing ’96, Vol. 1190 of LNCS, Springer-
Verlag, 1997.

[20] D. I. Ostry. Some Three-Dimensional Graph Drawing Algorithms. M.Sc. thesis,
Dept. Comput. Sci. and Soft. Eng., Univ. Newcastle, Oct. 1996.

[21] J. Pach, T. Thiele, and G. Tóth. Three-dimensional grid drawings of graphs,
in [9], pp. 47–51.

[22] A. Papakostas and I. G. Tollis. Incremental orthogonal graph drawing in three
dimensions, in [9], pp. 52–63.

[23] M. Patrignani and M. Pizzonia The complexity of the matching-cut problem.
Tech. Rep. RT-DIA-35-1998, Dept. of Computer Sci., Univ. di Roma Tre, 1998.

[24] M. Patrignani and F. Vargiu. 3DCube: A tool for three dimensional graph draw-
ing, in [9], pp. 284–290.

[25] R. Webber and A. Scott. GOVE: Grammar-Oriented Visualisation Environment,
in [4], pp. 516–519.

[26] D. R. Wood. Two-bend three-dimensional orthogonal grid drawing of maximum
degree five graphs. Technical report, School of Computer Science and Software
Engineering, Monash University, 1998.


	Introduction
	A Strategy for Constructing 3D Orthogonal Drawings
	Feasibility of the Approach
	The Reduce-Forks Algorithm
	Experimental Results
	Conclusions and Open Problems
	References

