
A Layout Adjustment Problem for Disjoint

Rectangles Preserving Orthogonal Order

Kunihiko Hayashi, Michiko Inoue, Toshimitsu Masuzawa, and Hideo Fujiwara

Graduate School of Information Science,
Nara Institute of Science and Technology, Nara 630-0101, Japan.
{kunihi-h, kounoe, masuzawa, fujiwara}@is.aist-nara.ac.jp

Abstract. For a given set of n rectangles place on a plane, we consider a
problem of finding the minimum area layout of the rectangles that avoids
intersections of the rectangles and preserves the orthogonal order. Misue
et al. proposed an O(n2)-time heuristic algorithm for the problem. We
first show that the corresponding decision problem for this problem is
NP-complete. We also present an O(n2)-time heuristic algorithm for the
problem that finds a layout with smaller area than Misue’s.

1 Introduction

Several algorithms for automatic graph drawing have been proposed[1][2]. Most
of the algorithms are designed to create layouts (i.e., drawings) of graphs from
scratch. However many systems (e.g., interactive systems) need to adjust layouts
after some modifications are made in graphs, and it is desirable to adjust layouts
with preserving some geometric properties of the layouts. Thus, it is important
to design layout adjustment algorithms appropriate to the systems.

Geometric relations among vertices are very important geometric properties
that should be preserved in adjustment of the layout. By preserving the geomet-
ric relations in the layout adjustment, we can easily recognize the correspondence
between vertices in the previous layout and those in the new layout. Eades et
al.[3] proposed the following geometric relations.

– orthogonal order: top-and-bottom and right-and-left relations between any
two vertices;

– proximity relation: a geometric proximity relation (e.g., the nearest relation
between vertices);

– topology: adjacent relations between regions of the layout.

In this paper, we consider the orthogonal order as a geometric relation that
should be preserved in layout adjustment.

In some systems, vertices of a graph are sometimes represented by geometric
figures such as rectangles or circles. Some modifications made on the graph, such
as vertex insertion or vertex extension, may cause intersections of vertices. To
avoid the intersections, layout adjustment is needed. Considering the display area

S.H. Whitesides (Ed.): GD’98, LNCS 1547, pp. 183–197, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

184 Kunihiko Hayashi et al.

of the systems, it is important to find the intersection-free layout with minimum
area.

In this paper, we consider graphs where each vertex is represented by a
rectangle and investigate the layout adjustment problem for minimizing the area
under the following constraints.

– The vertices (i.e., rectangles) should not intersect;
– The orthogonal order of the vertices should be preserved.

Misue et al.[4] proposed a heuristic algorithm for the problem. The main
contribution of this paper is as follows.

1. We prove that a corresponding decision problem of the layout adjustment
problem is NP-complete.

2. We propose a new heuristic algorithm for the layout adjustment problem.
Our algorithm is superior to Misue’s; it finds a layout with smaller area than
Misue’s while its time complexity O(n2) is the same as Misue’s where n is
the number of vertices.

This paper is organized as follows. In Section 2 and 3, we introduce some pre-
liminaries and define the layout adjustment problem. We show the NP-complete
result in Section 4, and present our heuristic algorithm in Section 5. In Section 6,
we conclude this paper.

2 Definition

Let R be a set of n rectangles v1, v2, · · · , vn. Each rectangle vi has horizontal
width wi and vertical height hi, where wi and hi are integers. We sometimes
denote vi by 〈wi, hi〉. A layout of R is a function from R to coordinates on the
plane. We denote a layout of R by πR : R → ZZ2 for integral coordinate system,
and πR : R → IR2 for real coordinate system, where ZZ2 is an integral two
dimensional space, and IR2 is a real one.

Let xi and yi be x-coordinate and y-coordinate of a rectangle vi ∈ R in πR,
respectively. That is, πR(vi) = (xi, yi). This indicates that the coordinates of the
center of vi is (xi, yi) in πR. We assume that every rectangle is placed so that
the boundary with length wi is parallel to x-axis, and do not allow rotation of
rectangles.

Let leftπ(vi) and rightπ(vi) be the x-coordinates of the left and right bound-
aries of vi ∈ R, respectively. The y-coordinates topπ(vi) and bottomπ(vi) are
defined similarly. Formally, we define them as follows.

leftπ(vi) = xi − wi/2, rightπ(vi) = xi + wi/2,
topπ(vi) = yi − hi/2, bottomπ(vi) = yi + hi/2

We also define similar notations for the layout πR as follows.

left(πR) = min
vi∈R

leftπ(vi), right(πR) = max
vi∈R

rightπ(vi),

top(πR) = min
vi∈R

topπ(vi), bottom(πR) = max
vi∈R

bottomπ(vi)

A Layout Adjustment Problem for Disjoint Rectangles 185

Let Wx(πR) and Wy(πR) denote the horizontal width and the vertical width
of πR, respectively. That is,

Wx(πR) = right(πR) − left(πR), Wy(πR) = bottom(πR) − top(πR).

We also use a notation 〈Wx(πR), Wy(πR)〉 for πR. We define an area S(πR) of
πR as S(πR) = Wx(πR)Wy(πR).

3 A Layout Adjustment Problem

We consider a layout adjustment problem for minimizing the area under the
constraints that intersections of rectangles should be avoided and the orthogonal
order of rectangles should be preserved. First, we define the problem as a decision
problem, as follows.

INSTANCE: A rectangle set R, its layout πR, and a positive integer
K, where πR(vi) 6= πR(vj) for any two rectangles vi, vj ∈ R(i 6= j).
QUESTION: Is there a layout π′

R with S(π′
R) ≤ K satisfying the

following constraints (1) and (2)?

Let (xi, yi) and (x′
i, y

′
i) be πR(vi) and π′

R(vi), respectively.
(1) π′

R preserves the orthogonal order of πR. That is, for any two rectangles
vi, vj ∈ R,

xi < xj ⇔ x′
i < x′

j , and xi = xj ⇔ x′
i = x′

j , and
yi < yj ⇔ y′

i < y′
j, and yi = yj ⇔ y′

i = y′
j .

(2) Any two rectangles do not intersect with each other in π′
R. That is, for any

two rectangles vi, vj ∈ R(i 6= j),

|x′
i − x′

j | ≥
wi + wj

2
or |y′

i − y′
j | ≥

hi + hj

2
.

We denote the above problem by LADR and especially by ILADR in the case
of integral coordinate system.

4 The NP-Completeness of LADR

We show that ILADR is NP-complete. It is easy to see that ILADR is in NP.
Therefore, it is sufficient to show NP-hardness of ILADR. We reduce a well-
known NP-complete problem 3-SAT[6] into ILADR.

Let X = {x1, x2, · · · , xr} be a set of boolean variables. We call xi and xi

literals, and disjunction of literals clause. 3-SAT is defined as follows:

INSTANCE: A set X of boolean variables and a boolean expression
E = F1∧F2 ∧· · ·∧Fm, where E is a conjunction of a finite number m of
clauses, and each clause Fi = yi,1 ∨ yi,2 ∨ yi,3 consists of three different
literals over X .
QUESTION: Is there a truth assignment for X that satisfies E?

186 Kunihiko Hayashi et al.

x VR 1 x()VR 2 x()VR r

’R

FCR 1()

FCR 2()

FCR m()

()

Fig. 1. Outline of the initial layout πR(E) of a rectangle set R(E).

4.1 The Transformation of 3-SAT into ILADR

We transform 3-SAT with a boolean expression E into ILADR with a rectangle
set R∗(E) and its initial layout πR∗(E) from E. First, we construct a partial set
R(E) of R∗(E) and its initial layout πR(E). Other part of R∗(E) is shown only
in the proof. We set the coordinate of the upper-left corner of πR(E) to (0, 0).
The rectangle set R(E) includes a rectangle set V R(xk) for each variable xk, a
rectangle set CR(Fi) for each clause Fi, and a rectangle set R′(see Fig. 1).

The rectangle set R′ plays a role to restrict the positions of V R(xk) and
CR(Fi). R′ includes R′′

i for each Fi(i = 1, · · · , m). The initial layout of R′′
i and

R′ is shown in Fig. 2.
Figure 3(a) illustrates an initial layout of V R(xk) for a variable xk. VR(xk) in-

cludes rectangles vck,i for Fi(i=1, · · · , m). VR(xk) is placed so that top(πVR(xk))
= top(πR′) holds (see Fig. 1). It has only two layouts shown in Fig. 3, if the area
of V R(xk) is restricted to 〈8, 2 + 4(k − 1) + 2 + 2(4r + 3)m + 4(r − k)〉. We con-
sider that Fig. 3(a) (resp. Fig. 3(b)) corresponds to assigning true (resp. false)
to xk. Note that the two layouts differ in y-coordinate of vck,i.

The rectangle set CR(Fi) includes a rectangle set LR(yi,j) for each literal
yi,j(j = 1, 2, 3). There are two kinds of LR(yi,j) and their initial layouts are
shown in Figs. 4(a) and 5(a). Figure 4 shows LR(yi,j) in the case where yi,j = xk

for some xk, and Fig. 5 shows the case where yi,j = xk for some xk. Every
LR(yi,j) includes a rectangle 〈2, 2〉 denoted by vsi,j . Let ds be the difference of
y-coordinates between the upper boundary of LR(yi,j) and the center of vsi,j .
The layouts of LR(yi,j) are restricted only to the layouts in Figs. 4 and 5 if the
height is 8, ds = 5 or ds = 3, and the width is the minimum. We place vsi,j

so to have the same y-coordinate as vck,i in V R(xk) if yi,j = xk or xk. The
case of ds = 5 corresponds to xk = true and the case of ds = 3 corresponds to
xk = false. Consider the case of where the height of LR(yi,j) is 8. If yi,j = true,
that is, yi,j = xk and xk = true, or yi,j = xk and xk = false, the width can be
10. On the other hand, if yi,j = false, the width must be 12 or more.

We now show the rectangle set CR(Fi) for the clause Fi (see Fig. 6). CR(Fi)
includes LR(yi,j) and LR′(yi,j) (j = 1, 2, 3), a rectangle vli = 〈36(m + i − 2), 4〉,

A Layout Adjustment Problem for Disjoint Rectangles 187

2 +1r
rect.

2

4

2

(a) R′′
i

R"1

R"m

-1r
rect.

m sets

4

2

2

2

(b) R′

Fig. 2. The layout of R′′
i and R′.

-1k
rect.

r2(4 +3)

rect.m

r-k
rect.

vck,m

vck,1

4 4

2

2

4

4

2

(a) xk = true (b) xk = false

Fig. 3. Two layouts of V R(xk).

6vsi,j

= 5ds

10

4

4

(a) xk = true

d = 3s

12

(b) xk = false

Fig. 4. Two layouts of LR(yi,j), where
yi,j = xk.

vsi,j

d = 5s

12

4

4

8

(a) xk = true

= 3ds

10

(b) xk = false

Fig. 5. Two layouts of LR(yi,j), where
yi,j = xk.

and a rectangle vri = 〈36(2m− i − 1) + 12, 4〉. LR′(yi,j) consists of vei,j =〈4, 4〉
and vfi,j =〈6, 4〉. We place each LR(yi,j) so that top(πLR(yi,j))=bottom(πLR′(yi,j))
+ 4(k − 1) holds if yi,j = xk or xk. We place LR′(yi,j) and LR(yi,j) so that
left(πLR(yi,j)) = leftπ(vei,j) and right(πLR(yi,j)) = rightπ(vfi,j) hold.

The initial layout of R(E) is shown in Fig. 1. We place CR(Fi) and R′

so that topπ(vli) = top(πR′′
i
) holds (see Fig. 7). In the initial layout, for each

rectangle in CR(Fi) except for vsi,j , there exists a rectangle in R′′
i with the same

y-coordinate. When yi,j = xk or xk, the y-coordinates of vsi,j is the same as
y-coordinates of vck,i in V R(xk). Therefore, they have the same y-coordinate
in any adjusted layout satisfying the constraint (1). CR(Fi) and CR(Fi+1) are
apart enough for the rectangles in them not to intersect (see Fig. 7).

Each of V R(xk) and CR(Fi) includes the polynomial number and size of rect-
angles on r and m. R(E) includes polynomial number of V R(xk) and CR(Fi).
Therefore the initial layout of R(E) can be constructed in polynomial time.

188 Kunihiko Hayashi et al.

ve i,1

vli vri 4

LR y(),1i’ LR y(),2i’ LR y(),3i’

m i36 (2 - -1) + 12m i36 (+ - 2)

vf i,1

LR y ,1i() LR y ,3i()LR y ,2i()

k24 (- 1) k34 (- 1)
k14 (- 1)

k3i,3k2i,2k1i,1

4 6

y = x y = x y = x() () ()

Fig. 6. The initial layout of CR(Fi).

vli+1

vli

vs i,j
yi,jLR ()

iR"

R’

CR F +1i()

CR Fi()
vc k,i

xkVR()

Fig. 7. The layout of CR(Fi) and
R′.

Example. Figure 8(a) shows the initial layout of R(E) for an expression E =
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4 ∨ x2). This corresponds to the truth
assignment x1 = x2 = x3 = x4 = true, which does not satisfy E and requires
Wx(πR) = 108m + 8r − 58 and Wy(πR) = 8mr + 6m + 4r. The expression E is
satisfied by the truth assignment x1 = x2 = true,x3 = x4 = false. Figure 8(b)
shows the corresponding layout. In this case, the width is reduced to Wx(πR) =
108m + 8r − 62.

4.2 Proof

We show the reducibility of 3-SAT to ILADR.

Lemma 1. E is satisfiable if and only if there exists a layout π′
R(E) of R(E),

such that it satisfies the constraints (1) and (2), and Wx(π′
R(E)) ≤ 108m+8r−60,

Wy(π′
R(E)) = 8mr + 6m + 4r.

Proof. (⇒) We define π′
R as the minimum width layout satisfying the following.

Assuming that E is satisfiable, there is a truth assignment that satisfies E. First,
we place each V R(xk) as Fig. 3(a) if xk = true, or as Fig. 3(b) if xk = false.
In either case, Wx(π′

V R(xk)) = 8 and Wy(π′
V R(xk)) = 8mr + 6m + 4r hold. The

layout π′
R′ is the same as its initial layout in Fig. 2, where there is no gap between

rectangles in the y-direction.
Let yi,j be xk or xk. Since each rectangle in LR(yi,j) except for vsi,j has the

same y-coordinate as some rectangle in R′′
i , and vsi,j has the same y-coordinate

as vck,i, ds of LR(yi,j) is 5 if xk = true and ds is 3 if xk = false. We place LR(yi,j)
as Fig. 4(a) or Fig. 5(a) if ds = 5, and as Fig. 4(b) or Fig. 5(b) if ds = 3. From
Figs. 4 and 5, we find Wx(π′

LR(yi,j)
) = 10 if yi,j is true, and Wx(π′

LR(yi,j)
) = 12

if yi,j is false.
By the hypothesis,at least one literal in each Fi is true. Therefore,Wx(π′

LR(yi,1)
)

+ Wx(π′
LR(yi,2)) + Wx(π′

LR(yi,3)) ≤ 34, and then Wx(π′
CR(Fi)

) ≤ 108m − 62

A Layout Adjustment Problem for Disjoint Rectangles 189

x1 x2 x3 x4

F1

F2

F3

108m+8r-58
8m

r+
6m

+4
r

(a) The initial layout (x1 = x2 = x3 = x4 = true)

x1 x2 x3 x4

F1

F2

F3

108m+8r-62

8m
r+

6m
+4

r

(b) The adjusted layout (x1 = x2 = true, x3 = x4 = false)

Fig. 8. An example of the layout of R(E).

hold. That is, Wx(π′
R(E)) ≤ 8r + 2 + (108m − 62) = 108m + 8r − 60, and

Wy(π′
R(E)) = Wy(π′

V R(xk)) = 8mr + 6m + 4r hold.

(⇐) Assume that there exists a layout π′
R(E) of R(E) with Wx(π′

R(E)) ≤ 108m+
8r − 60 and Wy(π′

R(E)) = 8mr + 6m + 4r. We show that there exists a truth
assignment that satisfies E.

If a clause Fi has both xk and xk, Fi is true for any assignment. In the
following, we consider a truth assignment for clauses that consists of three literals
relevant to distinct variables. For a clause Fi, let each yi,j(j = 1, 2, 3) be xkj or
xkj . The sum of the widths of all V R(xkj) and all LR′(yi,j) in π′

R(E) is

190 Kunihiko Hayashi et al.

Wx(π′
R(E)) − {

∑
k 6=k1,k2,k3

Wx(πV R(xk)) + Wx(πR′) + (Wx(πvli,j)) + (Wx(πvri,j))}

≤ (108m− 8r − 60)−{8(r−3) + 2 + 36(m+i−2) + 36(2m−i−1)+ 12}=58.

Therefore, for some j, the sum of the widths of V R(xkj) and LR′(yi,j) is 19 or
less. Because of Wx(π′

V R(xkj
)) ≥ 8 and Wx(π′

LR′(yi,j)
) ≥ 10, Wx(π′

V R(xkj
)) ≤ 9

and Wx(π′
LR′(yi,j)

) ≤ 11 hold. Since, the hight of the whole layout is 8mr+6m+
4r and the initial layout restricts Wy(π′

V R(xkj
)) ≥ 8mr+6m+4r, Wy(π′

V R(xkj
)) =

8mr+6m+4r holds. From Wx(π′
V R(xkj

)) ≤ 9, m rectangles vckj ,1, · · · , vckj ,m are

placed in π′
R without any gap in the y-direction. In this case, all the y-coordinates

of m rectangles are the same as either Fig. 3(a) or Fig. 3(b).
We also find that Wy(π′

R′) = 8mr+6m+4r. This implies that the rectangles
in R′ and in LR(yi,j) except for vsi,j do not change their y-coordinates from the
initial layout. Therefore, Wy(πLR(yi,j)) = 8 holds.

Now, we consider a partial truth assignment that assigns true to xk if all of
vck,1, · · · , vck,m have the same y-coordinates as Fig. 3(a), and assigns false to
xk if they have the same y-coordinates as Fig. 3(b). We do not care any other
variables. Since vsi,j has the same y-coordinates as vck,i, ds = 5 holds for yi,j if
we assign true to xkj , and ds = 3 holds if we assign false to xkj . (Figs. 4 and 5).
If ds = 5 and yi,j = xkj , then Wx(π′

LR(yi,j)) ≥ 12 and Wx(π′
LR′(yi,j)

) ≥ 12 hold.
If ds = 3 and yi,j = xk, then Wx(π′

LR′(yi,j)
) ≥ 12 hold. Therefore, because of

Wx(πLR′(yi,j)) ≤ 11, yi,j = xkj holds in the case of ds = 5, and yi,j = xkj holds in
the case of ds = 3. In either case, yi,j is true. That is there is a truth assignment
that satisfies at least one literal in each clause, that is, E is satisfiable.

We construct R∗(E) by adding a rectangle 〈32mr + 8r, 4〉 at the left side of
R(E) so that the upper boundary of this rectangle and R(E) are the same. We
show that 3-SAT can be reduced into ILADR using R∗(E).

Lemma 2. E is satisfiable if and only if there exists a layout π′
R∗(E), where

π′
R∗(E) satisfy the constraints (1) and (2), and S(π′

R∗(E)) ≤ (32mr + 108m +
16r − 60)(8mr + 6m + 4r).

Proof. If E is satisfiable, from Lemma 1, π′
R(E) can be constructed so that

S(π′
R∗(E)) ≤ (32mr + 108m + 16r − 60)(8mr + 6m + 4r). Let S be (32mr +

108m+16r−60)(8mr+6m+4r). We show that E is satisfiable if S(πR∗(E)) ≤ S.
From the definition of R∗(E), Wx(π′

R∗(E)) ≥ 32mr + 108m + 16r − 64 and
Wy(π′

R∗(E)) ≥ 8mr + 6m + 4r. When Wy(π′
R∗(E)) > 8mr + 6m + 4r,

S(π′
R∗(E)) ≥ (32mr + 108m + 16r − 64)(8mr + 6m + 4r + 1)

= S + 84m− 64.

From m ≥ 1, 84m− 64 > 0 holds.
Therefore, Wy(π′

R∗(E)) = 8mr + 6m + 4r and Wx(π′
R∗(E)) ≤ 32mr + 108m+

16r−60 if S(π′
R∗(E)) ≤ S. In this case, Wy(π′

R(E)) = 8mr+6m+4r, Wx(π′
R(E)) ≤

108m + 8r − 60 hold, and from Lemma 1, E is satisfiable.

A Layout Adjustment Problem for Disjoint Rectangles 191

Since ILADR is in NP, we obtain the following theorem.

Theorem 1. ILADR is NP-complete.

5 A Layout Adjustment Algorithm

Misue et al. proposed PFS (Push Force-Scan Algorithm) in [4], which is a heuris-
tic algorithm to find the minimum area adjusted layout under the constraints
that intersections of rectangles should be avoided and the orthogonal order of
rectangles should be preserved, for a given rectangle set and its layout. In this
section, we show a new heuristic algorithm PFS′ based on PFS. This algorithm
obtains an adjusted layout with smaller area than PFS.

5.1 Push Force-Scan Algorithm

An algorithm PFS uses a measure called a force to avoid intersections between
rectangles. The force is a vector defined for each pair of rectangles. The force
fi,j for rectangles vi and vj is used in the way that if two rectangles intersect
then fi,j pushes vj away from vi. The direction is chosen by experience not only
to make vi and vj disjoint but to keep the layout as compact as possible and to
preserve the orthogonal order.

We define a force and other terminologies, and briefly introduce PFS. For a
given rectangle set R and its layout πR, let (xi, yi) denote a coordinate of the
center of a rectangle vi(∈ R), that is, πR(vi) = (xi, yi). Differences ∆xi,j and
∆yi,j of coordinates between vi and vj are defined as follows.

∆xi,j = xj − xi, ∆yi,j = yj − yi

Two different rectangles vi and vj intersect each other if the following condition
holds.

|∆xi,j | <
wi + wj

2
and |∆yi,j | <

hi + hj

2
.

Let L be the line from the vi’s center to the vj ’s center. Consider that we move vj

along L to the point where vj touches vi without intersections and preserving the
orthogonal order. A force fi,j = (fx

i,j , f
y
i,j) is defined as the vector from (xi, yi)

to that point. Let gi,j be the gradient of L, that is, gi,j = ∆yi,j/∆xi,j (gi,j = ∞
if ∆xi,j = 0). Let Gi,j be (hi + hj)/(wi + wj).

a) The case where vi and vj touch with y-direction boundaries, that is, the case
of Gi,j ≥ gi,j > 0, −Gi,j ≤ gi,j < 0 or gi,j = 0.

fx
i,j =

∆xi,j

|∆xi,j |
(

wi + wj

2
− |∆xi,j |

)
, fy

i,j = fx
i,j · gi,j

192 Kunihiko Hayashi et al.

[Algorithm Horizontal-PFS]
begin

i := 1;
while (i < n) do begin

k := max{j|xi = xj}; /*xi = xi+1 = · · · = xk */
δ := max(0, max

i≤m≤k<j≤n
fx

m,j);

for j := k + 1 to n do
xj := xj + δ;

i := k + 1;
end;

end.

Fig. 9. Algorithm Horizontal-PFS.

v
1 v2 v3

(a) An initial layout

v v v1 2 3

(b) An adjusted layout byPFS

v v2 3
v
1

(c) An adjusted layout byPFS′

Fig. 10. An example of PFS and PFS′ (1).

b) The case where vi and vj touch with x-direction boundaries, that is, the case
of (Gi,j < gi,j) ∧ (gi,j > 0), or (−Gi,j > gi,j) ∧ (gi,j < 0).

fy
i,j =

∆yi,j

|∆yi,j |
(

hi + hj

2
− |∆yi,j |

)
, fx

i,j = fy
i,j/gi,j

Now, we introduce PFS. PFS finds the adjusted layout satisfying the con-
straints in O(n2)-time (n = |R|). PFS applies forces in the x-direction first,
then in the y-direction. First one is called Horizontal-PFS and the other is called
Vertical-PFS. Vertical-PFS is the same as Horizontal-PFS except for the applied
direction. Therefore, we present Horizontal-PFS only.

Horizontal-PFS is shown in Fig. 9. Assume that x1 ≤ x2 ≤ · · · ≤ xn.
Horizontal-PFS decides x-coordinates of rectangles in the order v1, · · · , vn. The
rectangles with the same initial x-coordinate are decided at the same time.
When it decides the x-coordinates for vi, · · · , vk, it also moves all the rectan-
gles vm(i ≤ m ≤ k) and vj(k < j ≤ n) by the same distance in the x-direction.
This distance depends on vj(k < j ≤ n) as well as vm(i ≤ m ≤ k).

PFS restricts the movement only to the positive direction. Misue et al. also
proposed another algorithm, Push-Pull Force-Scan algorithm, which allows the
movement in the negative direction. This algorithm does not always guarantee
the disjointness. Therefore, we do not deal with it.

5.2 The Improvement of PFS

In some case, PFS is not efficient. We now consider the case in Fig. 10. Fig-
ure 10(a) shows an initial layout, and Fig. 10(b) shows its adjusted layout by

A Layout Adjustment Problem for Disjoint Rectangles 193

[Algorithm Horizontal-PFS′]
begin

i := 1;
σ := 0;
lmin := 1;
while (i ≤ n) do begin

k := max{j|xi = xj}; /* xi = xi+1 = · · · = xk */
γ := 0;
if (xi > x1) then

for m := i to k do begin
γ′′ := max

1≤j<i
(γj + f

x
j,m);

γ′ :={
σ if l bnd(vm, xm) + γ′′ < l bnd(vlmin, xlmin)
γ′′ otherwise

γ := max(γ, γ′);
end;

for m := i to k do begin
γm := γ;
xm := xm + γm;
if l bnd(vm, xm) < l bnd(vlmin, xlmin) then

lmin := m;
end;
σ := σ + max(0, max

i≤m≤k<j≤n
fx

m,j);

i := k + 1;
end;

end.

Fig. 11. Algorithm Horizontal-PFS′.

PFS. In this case, first, v2 and v3 are moved to the right by fx
1,3, and then v3 is

moved by fx
2,3 again. Therefore, a needless gap appears between v1 and v2.

Here, we propose an algorithm PFS′, which obtains an adjusted layout with
smaller area than the layout obtained by PFS. PFS′ has the same time com-
plexity O(n2) as PFS′. Similarly to PFS, PFS′ executes Horizontal-PFS′ and
then Vertical-PFS′. We show only Horizontal-PFS′.

Again, we consider the example in Fig. 10. In this case, it is sufficient for
v2 to be moved by fx

1,2 and for v3 to be moved by max{fx
1,2 + fx

2,3, f
x
1,3}. PFS′

generalizes this idea. Assume that x1 ≤ x2 ≤ · · · ≤ xn. Horizontal-PFS′ is shown
in Fig. 11. A function l bnd(vi, xi) is the x-coordinate of the left boundary of
vi when the x-coordinate of vi is xi. Horizontal-PFS′ decides x-coordinates of
rectangles in the order v1, · · · , vn, where the rectangles with the same initial
x-coordinates are decided at the same time. When it decides the x-coordinate
for vi, · · · , vk, the movement distance depends only v1, · · · , vk except for some
special case. This is different from PFS. We explain how to decide x-coordinates
of vi, · · · , vk. Assume that x-coordinates of v1, · · · , vi−1 have been decided. Let
γj be the distance by which vj is moved by PFS′ in the x-direction. Except for
the special case mentioned later, Horizontal-PFS′ decides γm(i ≤ m ≤ k) as the
maximum value of γj + fx

j,m for 1 ≤ j < i and i ≤ m ≤ k.
The exception is as follows. Let σm be the distance by which vm(i ≤ m ≤ k)

is moved to the right in PFS. The movement γm may place some vm so that the
left boundary of vm is farther left than any other rectangles whose x-coordinates

194 Kunihiko Hayashi et al.

have been decided. In this case, the area may become larger than PFS. To avoid
this, we decide the movement distance as σm instead of γm in this case.

5.3 The Validity of the Algorithm

We prove that the area of the layout by PFS′ is not larger than one by PFS,
and that the layout by PFS′ satisfies the constraints (1) and (2).

Let π′
R and π′′

R be the layout of R by PFS and PFS′, respectively. Let xi,
x′

i and x′′
i be x-coordinates of vi in the initial layout, π′

R and π′′
R, respectively

(1 ≤ i ≤ n). Let σi and γi be the distance by which PFS and PFS′ moves
vi in the x-direction, respectively. PFS calculates σi as follows, where l is the
minimum m satisfying xi = xm.

σi = δ0 + δ1 + · · · + δi−1

δi =

{
0 if i = 0 or xi = xi+1

max(0, max
l≤m≤i<j≤n

fx
m,j) if xi < xi+1

PFS′ uses the following γ′′
i and γ′

i to calculate γi, where l is the minimum m
satisfying xi = xm, and

γ′′
i = max

1≤j<l
(γj + fx

j,i)

γ′
i =

{
σi if l bnd(vi, xi) + γ′′

i < min
j<l

l bnd(vj , xj + γj)

γ′′
i otherwise

γi = max
xi=xm

γ′
m

Lemma 3. For all i(1 ≤ i ≤ n), (a) σi ≥ γ′′
i , and (b) x′

i ≥ x′′
i hold.

Proof. For all i, we show σi ≥ γ′′
i and x′

i ≥ x′′
i by induction. For all i such that

x1 = xi, σi = γ′′
i = γi = 0 hold. Therefore, x′

i = xi +σi = xi +γi = x′′
i holds. Let

xl, · · · , xk be the maximal sequence with the same x-coordinate. Assume that
x′

j ≥ x′′
j , that is σj ≥ γj , for j < l. For all i such that l ≤ i ≤ k, γi = γl and

σi = σl hold. Therefore, it is sufficient to show σl ≥ γl for σi ≥ γi and then
x′

i ≥ x′′
i (l ≤ i ≤ k). For l ≤ i ≤ k, γ′′

i is calculated as follows.

γ′′
i = max

1≤j<l
(γj + fx

j,i) ≤ max
1≤j<l

(σj + fx
j,i)

Let lj and kj be the minimum and the maximum indices such that xlj = xj and
xkj = xj hold, respectively.

fx
j,m ≤ max

lj≤j′≤kj

fx
j′,m

≤ max
lj≤j′≤kj<m′≤n

fx
j′,m′ (··· kj < m)

≤ max(0, max
lj≤j′≤kj<m′≤n

fx
j′,m′) = δkj

Because of σj ≤ σkj , then we show σi ≥ γ′′
i for l ≤ i ≤ k.

A Layout Adjustment Problem for Disjoint Rectangles 195

γ′′
i ≤ max

1≤j<l
(σj + fx

j,i) ≤ max
1≤j<l

(σj + δkj) ≤ max
1≤j<l

(σkj + δkj) ≤ σkj+1 ≤ σl = σi

From σi ≥ γ′′
i , σi ≥ γ′

i holds. Because of σl = · · · = σk, γi = max
l≤m≤k

γ′
m ≤

max
l≤m≤k

σm = σi. Therefore, x′
i ≥ x′′

i holds.

Lemma 4. π′
R and π′′

R satisfy the following conditions.

Wx(π′
R) ≤ Wx(π′′

R) and Wy(π′
R) ≤ Wy(π′′

R)

Proof. We only prove Wx(π′
R) ≤ Wx(π′′

R). Let l′ be the smallest index among
the rectangles whose left boundaries are the left boundary of π′

R. Let r′ be the
smallest index among the rectangles whose right boundaries are the right bound-
ary of π′

R. We define l′′ and r′′ for π′′
R similarly to l′ and r′ for π′

R, respectively.
It is sufficient to prove that

leftπ′(vl′) ≤ leftπ′′(vl′′) and rightπ′(vr′) ≥ rightπ′′(vr′′).

If xl′′ = x1, then γl′′ = σl′′ = 0. In this case, leftπ′(vl′) ≤ leftπ′(vl′′) =
leftπ′′(vl′′) hold. Consider the case where x1 6= xl′′ . The rectangle vl′′ is the
widest among the rectangles vll′′ , · · · , vkl′′ with the same x-coordinate. Let lmin′′

be the value of a variable lmin after PFS′ decided σi for i = 1, · · · , ll′′ −1. Since
leftπ′′(vl′′) ≤ leftπ′′(vlmin′′), PFS′ finds l bnd(vl′′ , xl′′)+γ′′

l′′ < l bnd(vlmin′′ , xlmin′′

+ γ′′
lmin′′). and sets γl′′ = σl′′ . This implies leftπ′(vl′) ≤ leftπ′(vl′′) = leftπ′′(vl′′).
From Lemma 3, rightπ′(vr′′) ≥ rightπ′′(vr′′) holds. Therefore, rightπ′(vr′) ≥

rightπ′(vr′′) ≥ rightπ′′(vr′′) holds.

Next, we show that the adjusted layout by PFS′ satisfies the constraints.

Lemma 5. For any two rectangles vi, vj ∈ R(i ≤ j), γj − γi ≥ fx
i,j holds.

Proof. In the case of xi = xj , γi = γj and fx
i,j = 0, γj −γi ≥ fx

i,j holds. Consider
the case of xi < xj . Let l and k be the minimum and maximum indices such
that xl = xj and xk = xj , respectively. For all m such that l ≤ m ≤ k,

γ′′
m = max

1≤i′<l
(γi′ + fx

i′,m) ≥ γi + fx
i,j .

From Lemma 3, γ′′
m ≤ σm holds, and moreover, γj = max

l≤m≤k
γ′

m and γ′
m = σm or

γ′′
m holds. We find γ′′

m ≤ γj for l ≤ m ≤ k. Therefore, γj ≥ γi + fx
i,j holds.

Lemma 6. The algorithm PFS′ preserves the orthogonal order of the initial
layout (the constraint (1)).

Proof. If xi = xj , then x′′
i = x′′

j holds. Consider the case xi 6= xj . Assume
xi < xj w.l.o.g. By Lemma 5 and the definition of fx

i,j , γj − γi ≥ fx
i,j and

xi ≤ xj + fx
i,j hold. Therefore, x′′

i = xi+γi ≤ xi+γj−fx
i,j ≤ xj+γj = x′′

j holds.

196 Kunihiko Hayashi et al.

(a) πR

(b) (the layout by PFS)
(c) (the layout by PFS′)

Fig. 12. An example of PFS and PFS′ (2).

We can see that the layout by PFS′ satisfies the constraint (2) from Lemma 5
and the definition of fx

i,j . Then we have the following lemma and theorem.

Lemma 7. Algorithm PFS′ guarantees the disjointness of rectangles (the con-
straint (2)).

Theorem 2. PFS′ adjusts the layout in O(n2) time, and the result satisfies the
constraints (1) and (2) and the area is smaller than the result of PFS.

Example. Fig. 12 illustrates an example of applying PFS and PFS′ for a given
set R and its layout πR. In this case, PFS′(Fig. 12(c)) obtains much smaller
area than PFS(Fig. 12(b)).

6 Conclusion

We considered the layout adjustment problem for minimizing the area under the
constraints that intersections of rectangles should be avoided and the orthogo-
nal order of rectangles should be preserved, and showed that the corresponding
decision problem on the integral coordinate system is NP-complete. We also pro-
posed a heuristic algorithm for this problem applicable to both (on the integral
and real coordinate system). Our algorithm obtained smaller area than the al-
gorithm proposed by Misue et al., while both algorithms have the same time
complexity.

It would be interesting to find NP-completeness of layout adjustment prob-
lems that guarantee different constraints, and to provide much better heuristic
algorithms.

References

1. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, “Algorithms for drawing
graphs: an annotated bibliography,” Computational Geometry Theory and Appli-
cations, vol. 4, pp. 235–282, 1994.

A Layout Adjustment Problem for Disjoint Rectangles 197

2. R. Tamassia, G. Di Battista, and C. Batini, “Automatic graph drawing and read-
ability of diagrams,” IEEE Trans. on System, Man and Cybernetics, vol. 18, no. 1,
pp. 61–79, 1988.

3. P. Eades, W. Lai, K. Misue, and K. Sugiyama, “Preserving the mental map of a
diagram,” Proc. of COMPUGRAPHICS ’91, pp. 34–43, 1991.

4. K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout adjustment and the mental
map,” Journal of Visual Languages and Computing, vol. 6, pp. 183–210, 1995.

5. M-A. D. Storey and H. A. Müller, “Graph layout adjustment strategies,” Proc.
Graph Drawing ’95, LNCS 1027, pp. 487–499. Springer-Verlag, 1995.

6. M. R. Garey and D. S. Johnson, “Computers and Intractability — A Guide to the
Theory of NP-Completeness,” W. H. Freeman and Company, New York, 1979.

	Introduction
	Definition
	A Layout Adjustment Problem
	The NP-Completeness of LADR
	The Transformation of 3-SAT into ILADR
	Proof

	A Layout Adjustment Algorithm
	Push Force-Scan Algorithm
	The Improvement of PFS
	The Validity of the Algorithm

	Conclusion
	References

