
Ranking with Predictive Clustering Trees

Ljupčo Todorovski1, Hendrik Blockeel2, and Sašo Džeroski1

1 Department of Intelligent Systems, Jožef Stefan Institute
Jamova 39, SI-1000 Ljubljana, Slovenia

{Ljupco.Todorovski,Saso.Dzeroski}@ijs.si
2 Department of Computer Science, Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Heverlee, Belgium
{Hendrik.Blockeel}@cs.kuleuven.ac.be

Abstract. A novel class of applications of predictive clustering trees is
addressed, namely ranking. Predictive clustering trees, as implemented
in Clus, allow for predicting multiple target variables. This approach
makes sense especially if the target variables are not independent of each
other. This is typically the case in ranking, where the (relative) per-
formance of several approaches on the same task has to be predicted
from a given description of the task. We propose to use predictive clus-
tering trees for ranking. As compared to existing ranking approaches
which are instance-based, our approach also allows for an explanation of
the predicted rankings. We illustrate our approach on the task of rank-
ing machine learning algorithms, where the (relative) performance of the
learning algorithms on a dataset has to be predicted from a given dataset
description.

1 Introduction

In many cases, running an algorithm on a given task can be time consuming,
especially when the algorithm is complex and complex tasks are involved. It is
therefore desirable to be able to predict the performance of a given algorithm on a
given task from a description (set of properties of the task) and without actually
running the algorithm. The term “performance of an algorithm” is often used to
denote the quality of the solution provided, the running time of the algorithm
or some combination of the two.

When several algorithms are available to solve the same type of task, the
problem of choosing an appropriate algorithm for the particular task at hand
arises. An appropriate algorithm would be an algorithm with a good performance
on the given task. Being able to predict the performance of the algorithms,
without actually starting them on a given task, will make the problem of choosing
easier and less time consuming. We can view performance prediction as a multi-
target prediction problem, where the same input (the task description) is used
to predict several related targets (the performances of the different algorithms).
In this context, it is the relative performance of the different algorithms that
matters, and not so much the absolute performance of each of them. We are

T. Elomaa et al. (Eds.): ECML, LNAI 2430, pp. 444–455, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Ranking with Predictive Clustering Trees 445

thus interested in obtaining an ordering of the algorithms (called also ranking)
in terms of their expected relative performance.

Within the area of machine learning, many learning algorithms have been
developed, especially for classification tasks. A classification task is specified by
giving a table of data and indicating the target column: the pair is often referred
to as a dataset. The task of predicting the performance of learning algorithms
from dataset properties has been addressed within the StatLog project [6], while
the task of ranking learning algorithms has been one of the major topics of
study of the METAL project [1]. Both are treated as learning problems, where
the results of applying selected learning algorithms on selected datasets (base-
level learning) constitute a dataset for meta-level learning.

A typical meta-level dataset for ranking thus consists of two parts. The first
set of columns (attributes) contains a description of the task at hand. In the
case of ranking learning algorithms, it typically contains general and statistical
properties of datasets (such as the number of examples and class value and
the average kurtosis per numerical attribute). The second set of columns (class
values) contains the performance figures for the learning algorithms on the given
datasets (e.g., the classification error of C5.0, RIPPER, etc.).

Many different variants of ranking have been studied within the METAL
project. A prototypical ranker uses a case-based (nearest neighbor) approach. To
produce a ranking of the learning algorithms on a new dataset, the most similar
datasets from the meta-level dataset are chosen and the performances (rankings)
of the algorithms on these datasets are averaged to obtain a prediction of the
performance (ranking) on the new dataset [11]. In an alternative approach to
ranking, proposed in [2], regression methods are used to estimate the (absolute)
performance of each of the learning algorithms on a given task. These individual
predictions are then used to obtain the ranking of the algorithms. In this paper,
instead of using regression methods for predicting performances of individual
algorithms, we propose the use of predictive clustering trees for ranking. In this
case, a single predictive clustering tree has the ability to predict performances
of all the learning algorithms at once. Thus, in addition to obtaining a ranking,
we also obtain an explanation for it.

The remainder of this paper is organized as follows. Section 2 describes in
more detail the task of ranking of learning algorithms. Section 3 briefly describes
predictive clustering trees and describes the particular formulation of the multi-
target (relative) performance prediction used in our experiments. Section 4 de-
scribes the experimental setup and the results of evaluating our approach to
ranking learning algorithms. Finally, Section 5 concludes with a summary and
possible directions for future work.

2 Ranking of Learning Algorithms

This section describes in more detail the task of ranking of learning algorithms.
This includes the machine learning algorithms ranked, the base-level datasets,
the descriptions of the datasets, and the performance evaluation methodology.

446 Ljupčo Todorovski et al.

Table 1. Eight machine learning algorithms for classification tasks used in our
study

Acronym Brief description

c50tree (c50t) C5.0 - decision trees based classifier
c50rules (c50r) decision rules extracted from a C5.0 tree
c50boost (c50b) boosting C5.0 decision trees
ltree (lt) linear discriminant decision trees
ripper (rip) decision rules based classifier
mlcnb (nb) naive Bayes classifier (MLC++)
mlib1 (nn) 1-NN nearest neighbor classifier (MLC++)
lindiscr (ld) linear discriminant classifier

2.1 The Machine Learning Algorithms and Datasets

In this study, we analyze the relative performance of eight machine learning
algorithms for classification tasks. The same set of classifiers and algorithms
has been used in the related study of estimating the predictive performance
of individual classifiers [2]. The set of algorithms is presented in Table 1: this
is a subset of the set of ten algorithms used within the METAL project [1].
Representatives of different classification approaches are included in this set,
such as decision trees, decision rules, naive Bayes, nearest neighbor and linear
discriminant classifiers.

The performance of these eight algorithms has been measured on a set of
sixty-five classification tasks (datasets) from the UCI repository [3] and from
the METAL project. The list of datasets is given in Table 2.

2.2 Dataset Descriptions

Finding a dataset characterization method that would provide a solid basis for
prediction of performance of learning algorithms is probably most important

Table 2. Sixty-five classification datasets used in our study

.
abalone, acetylation, agaricus-lepiota, allbp, allhyper, allhypo, allrep, australian,
balance-scale, bands, breast-cancer-wisconsin, breast-cancer-wisconsin nominal, bupa,
car, contraceptive, crx, dermatology, dis, ecoli, flag language, flag religion, flare c,
flare c er, flare m, flare m er, flare x, flare x er fluid, german numb, glass, glass2,
heart, hepatitis, hypothyroid, ionosphere, iris, kp, led24, led7, lymphography,
monk1, monk2, monk3-full, mushrooms, new-thyroid, parity5 5, pima-indians-
diabetes, processed.cleveland 2, processed.cleveland 4, processed.hungarian 2, pro-
cessed.hungarian 4, processed.switzerland 2, processed.switzerland 4, quisclas, sick-
euthyroid, soybean-large, tic-tac-toe, titanic, tumor-LOI, vote, vowel, waveform40,
wdbc, wpbc, yeast

Ranking with Predictive Clustering Trees 447

Table 3. DCT dataset properties

DCT

nr examples nr num attributes nr classes
nr sym attributes missvalues total missvalues relative
lines with missvalues total lines with missvalues relative countattr count all value
ndiscrimfunct fract cancor
meanskew meankurtosis classentropy
entropyattributes mutualinformation equivalent nr of attrs
noisesignalratio avgattr multicorrel minattr multicorrel
maxattr multicorrel sdratio avgattr gini sym
minattr gini sym maxattr gini sym avgattr relevance
minattr relevance maxattr relevance numattrswithoutliers
avgattr gfunction minattr gfunction maxattr gfunction

aspect of meta-learning.1 Several different dataset descriptions have been used
for meta-learning.

One approach to dataset characterization, proposed within the StatLog pro-
ject [6], is to use a set of general, statistical and information theory based mea-
sures of the dataset. The general properties include properties such as number
of examples, classes and (symbolic and numeric) attributes in the dataset. Sta-
tistical properties are used to characterize numeric attributes in the dataset
and they include measures such as average skewness and kurtosis of numeric
attributes. Characteristics of discrete attributes are measured with information
theory based measures such as average entropy and average mutual information
between discrete attributes and the class.

The StatLog approach gave rise to the development of the Data set Charac-
terizing Tool (DCT) [9] within the METAL project. The set of DCT properties
extends the initial set of StatLog properties. Table 3 presents the set of DCT
properties used in this study.

The DCT properties include also properties of the individual attributes in
the dataset, such as kurtosis of each numerical attribute or entropy of each
symbolic attribute. These properties cannot be directly used in propositional
meta-learning, where the dataset description is a fixed-length vector of proper-
ties. In order to use the DCT properties of the individual attributes, we have to
aggregate them using average, minimum or maximum function.

Kalousis and Theoharis [8] have proposed an alternative approach to dataset
characterization. They use histograms for fine grained aggregation of the DCT
properties of the individual attributes. Histograms, used as an aggregation me-
1 Note that there is an important constraint on the complexity dataset characterization
method. The dataset description should be generated faster than evaluating the
performance of the learning algorithms on the dataset. Otherwise, the task of meta-
level leering would be meaningless. However, analysis of computational complexity
of different dataset description approaches is beyond the scope of this paper, it be
found in [7].

448 Ljupčo Todorovski et al.

thod, preserve more information about the DCT properties of the individual
attributes compared to the simple aggregation functions of average, minimum
and maximum used in the DCT approach. For detailed description of how ag-
gregations based on histograms are calculated see [8]. In this paper, we used
the same set of histograms as the one used in [2]. This set includes histograms
for four DCT properties of individual attributes and twelve DCT properties of
the whole dataset. We refer to the histogram approach to dataset description as
HISTO.

Finally, in the landmarking approach to dataset description [10], the perfor-
mances of a set of simple and fast learning algorithms, named landmarkers, are
estimated and used as dataset properties. In the original study on using land-
markers for meta-learning, a set of seven landmarkers was proposed. This set
includes simple classifiers, such as different versions of a decision node classifier
(i.e., a decision tree with a single decision node), naive Bayes, linear discriminant
and 1-nearest neighbor. However, three of the landmarkers are already included
in the list of classifiers from Table 1 for which we predict the performance. There-
fore, in the present study, we use the set of the remaining four landmarkers and
we will refer to this approach to dataset description as LAND.

2.3 The Performance of a Learning Algorithm

When building a dataset for meta-learning, we also need an estimate of the
performance of the learning algorithms on a given classification task. Most often,
the performance of a learning algorithm a on a given classification task d is
measured by the predictive error ERR(a, d), i.e., the percentage of incorrectly
classified examples. To estimate the predictive error on test examples, unseen
during the training of the classifier, a standard ten-fold cross validation method
has been used.

2.4 The Performance of Ranking

The performance of ranking is measured by comparing the ranking predicted by
the ranking method with the true ranking of the learning algorithms on a given
dataset. We used a standard measure of similarity of two rankings, Spearman’s
rank correlation coefficient [11]:

rs = 1− 6(
∑n

i=1 Di
2)

n3 − n
, (1)

whereDi is the difference between actual and predicted rank of the i’th algorithm
and n is the number of learning algorithms. Again, to estimate the performance
of ranker on test datasets, unseen during the training of the ranker, a standard
ten-fold cross validation method has been used.

Ranking with Predictive Clustering Trees 449

3 Ranking with Predictive Clustering Trees

This section first briefly describes predictive clustering trees. It then discusses
how they could be used to predict the errors of different learning algorithm on
a given dataset simultaneously. It finally proposes to use the ranks calculated
from the errors as the target variables, rather than the errors themselves.

3.1 Predictive Clustering Trees

Decision trees are most often used in the context of classification or single-target
regression; i.e., they represent a model in which the value of a single variable
is predicted. However, as a decision tree naturally identifies partitions of the
data (course-grained at the top of the tree, fine-grained at the bottom), one can
also consider a tree as a hierarchy of clusters. A good cluster hierarchy is one in
which individuals that are in the same cluster are also similar with respect to a
number of observable properties.

This leads to a simple method for building trees that allow the prediction of
multiple target attributes at once. If we can define a distance measure on tuples
of target variable values, we can build decision trees for multi-target prediction.
The standard TDIDT algorithm can be used: as a heuristic for selecting tests
to include in the tree, we use the minimization of intra-cluster variance (and
maximization of inter-cluster variance) in the created clustering.

A detailed description of the algorithm can be found in [4]. An implementa-
tion is publicly available in the first-order learner Tilde that is included in the
ACE tool [5]; however for this paper we have used Clus, a downgrade of Tilde
that works only on propositional data.

3.2 Ranking via Predicting Errors

The instance-based approaches to ranking predict rankings of algorithms on a
dataset by predicting the errors of the algorithms on the dataset, then creating
a ranking from these [11]. An instance here consists of a description of a dataset,
plus the performance of eight different algorithms on that dataset. Based on
these eight target values, an example can be positioned in an eight-dimensional
space.

In its standard mode of operation, Clus builds its trees so that the intra-
cluster variance is minimized, where variance is defined as

∑N
j=1 d(xj , x̄)2 where

x̄ is the mean vector of the cluster, xj is an element of the cluster, N is the
number of elements in the cluster, and d represents the euclidean distance. So,
what Clus does is trying to create clusters in such a way that a given algorithm
will perform similarly on all datasets in that cluster.

Note that this is different from what we want: creating clusters in which
several algorithms have the same relative performance. To illustrate this, suppose
we have four algorithms which on two datasets score the following errors:

{(0.1, 0.2, 0.3, 0.4), (0.5, 0.6, 0.7, 0.8)}

450 Ljupčo Todorovski et al.

Clearly the relative performance of the four algorithms is exactly same on the
three datasets, so they belong to the same cluster. However, the variance in this
cluster is relatively large. Compare this to

{(0.1, 0.2, 0.3, 0.4), (0.4, 0.3, 0.2, 0.1)}

which has a smaller variance than the previous cluster but is clearly worse: the
relative performances are opposite.

3.3 Ranking Trees

A solution for this problem is to first rank the algorithms and to predict these
ranks instead of the errors themselves. In this way, we obtain ranking trees.
A ranking tree has leaves in which a ranking of the performance of different
algorithms is predicted.

This transformation removes fluctuations in the variance that are caused by
differences in absolute rather than relative performance. Moreover, given the
formula for the Spearman’s rank correlation coefficient (1), it is clear that a
linear relationship between variance and expected Spearman correlation exists.
Indeed, note that in the case when the ranks are predicted, the variance d(xi, x̄)2

equals
∑n

i=1 Di
2 from the formula (1). This is true under an assumption that

the exact ranking number of each algorithm is predicted. This assumption is
not fulfilled. Instead of predicting exact ranks, the clustering tree predicts only
approximations of rank numbers, e.g.:

(6.0, 6.4, 3.65, 6.1, 5.65, 3.5, 5.65, 3.7).

Of course, by comparing these approximations we can easily obtain the following
exact ranking:

(6, 8, 2, 7, 4.5, 1, 4.5, 3)

of the eight algorithm. However, the aforementioned equivalence of variance
and Spearman’s correlation coefficient does not hold anymore. Thus, minimizing
intra-cluster variance should be seen as an approximation to maximizing Spear-
man’s correlation coefficient. Note, however, that this approximation is far better
than minimizing intra-cluster variance based on the error rates themselves.

4 Experiments

Our experiments investigate the performance of ranking with predictive cluster-
ing trees induced using the three different dataset characterization approaches
presented in Section 2. Following the discussion from Section 3.3, we transformed
the target error values into ranks. The remainder of this section first describes
the experimental setup. It then presents the experimental results, including an
example ranking tree and performance figures on the correlation between actual
and predicted rankings.

Ranking with Predictive Clustering Trees 451

4.1 Experimental Setup

Clus was run several times with the same system settings, but on different
datasets that vary along two dimensions:

– Language bias: DCT, HISTO, LAND, DEF
– Targets: errors, ranks

The first three language bias settings correspond to the three dataset characteri-
zation approaches described in Section 2. DCT uses set of properties of the whole
dataset and aggregations of the properties of the individual attributes. HISTO
uses more sophisticated aggregation method of histograms for aggregating the
properties of the individual attributes. LAND uses estimated performances of
four landmarkers for dataset description. Finally, DEF uses no information at
all to induce a “default” model tree that consists of a single leaf (i.e., a model
that just predicts the average of the performances encountered in the training
set). For the first three cases, tests in the constructed tree are always of the form
A < c, where A is a numerical attribute from one of the DCT, HISTO or LAND
datasets (note that all meta-level attributes are numeric) and c some value for
it (any value from A’s domain was allowed).

The target values were either the errors themselves, which allows us to com-
pare some results directly with [2], or the ranks, which (according to our expla-
nation in Section 3.3) we hope to yield better results w.r.t. the Spearman’s rank
correlation coefficient.

Our evaluation is based on a ten-fold cross validation, in order to maximize
comparability with the results in [2]. Unfortunately we could not use exactly the
same cross validation folds.

The Clus system has a number of parameters with which it can be tuned.
One parameter that influences the results quite strongly is the so-called “ftest”
parameter. Clus uses a stopping criterion that is based on a statistical F-test
(the standard way to test whether the average intra-cluster variance after a split
is significantly smaller than the original variance); the “significance level” at
which this test is performed is the “ftest” parameter. Values close to 0 cause
Clus to quickly stop adding nodes to the tree, yielding small trees; the value 1
yields trees of maximal size.

Preliminary experiments with Clus and Tilde on this and similar datasets
indicated that ftest=1 yielded best results. Therefore we adopted this setting for
all the experiments described here. Except for this ftest parameter, the default
values were used for all parameters.

4.2 Experimental Results

Table 4 shows the mean absolute deviations of the predicted error rates from
the true ones for different learning algorithms. The left-hand side (Clus - ranks)
gives results of clustering trees: these are compared to the results in the right-
hand side taken from [2]. We can see that on average, predictive clustering trees
score approximately equally good as the Kernel or Cubist methods on DCT

452 Ljupčo Todorovski et al.

and HISTO meta-level datasets. Clustering trees perform worse on the LAND
dataset. This is due to the fact that we decided to use a set of landmarkers that
are disjoint with the set of target classifiers. In [2] seven landmarkers have been
used, three of them being the same as the target classifiers. However, having
meta-level attributes (landmarkers) that are the same to the meta-level class to
be predicted (target classifiers) makes the task of predicting their performance
trivial. Thus, the results on the LAND dataset are hard to compare.

Note, however, that a single predictive clustering tree predicting the perfor-
mance of all the learning algorithms at once has a very important advantage
over the set of eight regression trees for predicting the performance of individual
algorithms. A clustering tree provides a single model that can be easily inter-
preted.

While the above MAD values are useful to compare our approach with pre-
vious approaches, our ultimate criterion is the Spearman’s rank correlation co-
efficient between the predicted ranking and the actual ranking of the methods.
Spearman correlations are shown in Table 5.

Table 4. Mean absolute deviations (MADs) for a single predictive clustering
tree (predicting all the error rates at once) induced with Clus compared to the
MADs of a set of regression trees (one for each learning algorithm) induced with
Kernel and Cubist methods. The Kernel and Cubist results are taken from [2].
Note that LAND and LAND* meta-level datasets are different

Clus - errors Kernel Cubist
Classifier DCT HISTO LAND DEF DCT HISTO LAND* DCT HISTO LAND*

c50boost 0.105 0.114 0.139 0.136 0.112 0.123 0.050 0.103 0.128 0.033
c50rules 0.100 0.110 0.136 0.135 0.110 0.121 0.051 0.121 0.126 0.036
c50tree 0.101 0.109 0.137 0.139 0.110 0.123 0.054 0.114 0.130 0.044
lindiscr 0.119 0.124 0.126 0.139 0.118 0.129 0.063 0.118 0.140 0.054
ltree 0.106 0.107 0.123 0.134 0.105 0.113 0.041 0.114 0.121 0.032
mlcib1 0.120 0.124 0.144 0.155 0.120 0.138 0.081 0.150 0.149 0.067
mlcnb 0.124 0.135 0.145 0.149 0.121 0.143 0.064 0.126 0.149 0.044
ripper 0.135 0.114 0.138 0.147 0.113 0.128 0.056 0.128 0.131 0.041

Table 5. Spearman’s rank correlation coefficients (SRCCs) for the predictive
clustering trees (predicting error rates and rankings) approach compared to SR-
CCs of other ranking approaches. Results for Cubist, Kernel and Zooming are
taken from [2]

Clus regression trees
ranks errors Kernel Cubist Zooming

DEF 0.372 0.349 0.330 0.330 0.330
DCT 0.399 0.380 0.435 0.083 0.341
HISTO 0.429 0.426 0.405 0.174 0.371
LAND 0.266 0.197 - ∗0.090 ∗0.190

Ranking with Predictive Clustering Trees 453

A first observation is that for each meta-level dataset, ranking trees built
from ranks score better than ranking trees built directly from error rates. This
corresponds with our intuition, explained in Section 3.3. Furthermore, both clus-
tering trees approaches have better scores than all the others, except for the
kernel method with the DCT dataset, which has also the highest overall value.

These experimental results provide support for the two effects we identified
earlier as possibly positively influencing the results. First, predictive clustering
trees capture dependencies between different algorithms better than separate
predictive models for each algorithm can. Second, when using intra-cluster vari-
ance minimization as a heuristic, it is better to first convert values into ranks.

We conclude this discussion with an example tree. Table 6 shows a predictive
clustering tree induced on the DCT dataset with ranks as target values. Each
leaf node in the tree predicts a ranking of the eight algorithms from Table 1. For
example, first leaf node in the tree (marked with (*)) predicts that c50boost
(c50b) will perform better than c50rules (c50r) that will perform better than
ltree (lt) and so on. The tree indicates that the number of attributes with
outliers is most influential for the ranking of the algorithms. It also indicates
that the two properties of number of symbolic and numeric attributes in the
dataset seem to have good predictive power. Further interpretation and analysis
of the tree is possible but it is beyond the scope of this paper.

5 Summary and Further Work

We have used predictive clustering trees to rank (predict the relative performance
of) classification algorithms according to the performance on a given dataset
using dataset properties. Three different dataset descriptions were used. Two
different tasks were considered: predicting actual performances and predicting
relative performances (ranking).

On the first task of predicting the performance of classifiers, a single clus-
tering tree predicting performances of all classifiers at once performs as well as
a set of regression trees, each of them predicting performances of an individual
classifier. However, the important advantage of the clustering trees approach is
that it provides a single interpretable model.

On the second task of predicting ranking, the experimental results show
that using ranks as target variables in clustering trees works better than using
actual performances for all dataset descriptions. Ranking with a single clustering
tree performs better than ranking with a set of regression trees for two out
of three dataset description approaches. Finally, ranking with clustering trees
outperforms also instance-based approach of Zooming.

An immediate direction for further work is to extend our ranking approach
to work with relational dataset descriptions, similar to the one presented in [12].
Following the relational approach, properties of individual attributes can be in-
cluded in the dataset description without being aggregated using mean, maximal
and minimal values or histograms. This can be easily done, due to the fact that

454 Ljupčo Todorovski et al.

Table 6. An example ranking tree (see Table 1 for the legend of the algorithms’
acronyms. Note that symbol < in the leaves denotes “performs better than”

NumAttrsWithOutliers > 3
+-yes: AVGAttr_gFunction > -1.236
| +-yes: ClassEntropy > 0.977
| | +-yes: ClassEntropy > 0.999
| | | +-yes: c50b<c50r<lt<nn<c50t<rip<ld<nb (*)
| | | +-no: c50b<nn<c50t<c50r<rip<nb<lt<ld
| | +-no: Nr_sym_attributes > 6
| | +-yes: Nr_sym_attributes > 10
| | | +-yes: ClassEntropy > 0.445
| | | | +-yes: c50b<rip<c50t<c50r<lt<nb<nn<ld
| | | | +-no: MINAttr_Gini_sym > -0.068
| | | | +-yes: c50t<c50b<c50r<lt<rip<nn<ld<nb
| | | | +-no: c50r<c50t<c50b<rip<lt<nn<ld<nb
| | | +-no: c50r<c50t<lt<rip<c50b<nn<ld<nb
| | +-no: lt<c50b<ld<c50t<c50r<nn<rip<nb
| +-no: Nr_num_attributes > 0
| +-yes: Nr_sym_attributes > 4
| | +-yes: c50b<c50r<c50t<rip<lt<nb<ld<nn
| | +-no: c50b<lt<c50r<c50t<nn<rip<ld<nb
| +-no: c50b<ld<nb<lt<c50t<c50r<nn<rip
+-no: MAXAttr_gFunction > -1.064

+-yes: Nr_examples > 303
| +-yes: Nr_num_attributes > 0
| | +-yes: SDRatio > 1.085
| | | +-yes: c50b<c50r<lt<c50t<ld<nn<rip<nb
| | | +-no: ld<c50b<lt<c50r<nb<c50t<rip<nn
| | +-no: Nr_examples > 1,728
| | +-yes: c50b<rip<c50t<nn<nb<lt<c50r<ld
| | +-no: ClassEntropy > 0.914
| | +-yes: Nr_sym_attributes > 9
| | | +-yes: c50t<c50r<lt<c50b<rip<nn<ld<nb
| | | +-no: c50b<c50r<nn<c50t<lt<rip<nb<ld
| | +-no: c50r<c50t<lt<rip<ld<c50b<nn<nb
| +-no: Nr_classes > 3
| +-yes: c50r<nb<c50t<lt<rip<c50b<nn<ld
| +-no: Nr_examples > 215
| +-yes: ld<nb<lt<c50r<c50b<rip<nn<c50t
| +-no: lt<nb<rip<c50r<c50b<nn<ld<c50t
+-no: Equivalent_nr_of_attrs > 9.738

+-yes: MeanKurtosis > 2.891
| +-yes: Nr_examples > 303
| | +-yes: Nr_classes > 6
| | | +-yes: ld<nb<lt<c50b<c50t<c50r<nn<rip
| | | +-no: ld<lt<c50b<c50r<c50t<nb<nn<rip
| | +-no: lt<ld<nb<c50b<rip<nn<c50r<c50t
| +-no: c50b<lt<ld<c50r<nb<c50t<rip<nn
+-no: Nr_classes > 3

+-yes: c50b<nn<c50r<c50t<nb<ld<lt<rip
+-no: lt<ld<c50b<c50r<nb<rip<nn<c50t

Tilde allows for relational tests to be used in the nodes of predictive clustering
trees by using an appropriate language bias.

Other directions for further work include consideration of additional dataset
properties. Dataset properties based on the shape of decision trees induced from
a datasets could be interesting in this respect. Finally, the ranking methodol-
ogy proposed in the paper can be also used and evaluated on other ranking

Ranking with Predictive Clustering Trees 455

tasks. A possible application would be ranking of the optimization algorithms
performance on the basis of the optimization problem description.

Acknowledgments

This work was supported in part by the METAL project (ESPRIT Framework
IV LTR Grant Nr 26.357). Hendrik Blockeel is a post-doctoral fellow of the Fund
for Scientific Research (FWO) of Flanders. The Clus system was implemented
by Jan Struyf. Thanks to Alexandros Kalousis for providing the meta-level data.

References

[1] ESPRIT METAL Project (project number 26.357): A Meta-Learning Assis-
tant for Providing User Support in Machine Learning and Data Mining.
http://www.metal-kdd.org/. 445, 446

[2] H. Bensusan and A. Kalousis. Estimating the predictive accuracy of a classifier.
In Proc. of the Twelfth European Conference on Machine Learning, pages 25–36.
Springer, Berlin, 2001. 445, 446, 448, 451, 452

[3] C. L. Blake and C. J. Merz. UCI repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html. Irvine, CA: University
of California, Department of Information and Computer Science, 1998. 446

[4] H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering trees.
In Proc. of the Fifteenth International Conference on Machine Learning, pages
55–63. Morgan Kaufmann, 1998. 449

[5] H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecas-
teele. Improving the efficiency of inductive logic programming through the use of
query packs. Journal of Artificial Intelligence Research, 2002. In press. 449

[6] P. B. Brazdil and R. J. Henery. Analysis of results. In D. Michie, D. J. Spiegel-
halter, and C. C. Taylor, editors, Machine learning, neural and statistical classi-
fication, pages 98–106. Ellis Horwood, Chichester, 1994. 445, 447

[7] A. Kalousis. Algorithm Selection via Meta-Learning. PhD Thesis. University of
Geneva, Department of Computer Science, 2002. 447

[8] A. Kalousis and T. Theoharis. NEOMON: design, implementation and perfor-
mance results of an intelligent assistant for classifier selection. Intelligent Data
Analysis 3(5): 319–337, 1999. 447, 448

[9] G. Lindner and R. Studer. AST: Support for algorithm selection with a CBR ap-
proach. In Proc. of the ICML-99 Workshop on Recent Advances in Meta-Learning
and Future Work, pages 38–47. J. Stefan Institute, Ljubljana, Slovenia, 1999. 447

[10] B. Pfahringer, H. Bensusan and C. Giraud-Carrier. Meta-Learning by Land-
marking Various Learning Algorithms. In Proc. of the Seventeenth International
Conference on Machine Learning: 743–750. Morgan Kaufmann, San Francisco,
2000. 448

[11] C. Soares and P. B. Brazdil. Zoomed ranking: Selection of classification algorithms
based on relevant performance information. In Proc. of the Fourth European
Conference on Principles of Data Mining and Knowledge Discovery, pages 126–
135. Springer, Berlin, 2000. 445, 448, 449

[12] L. Todorovski and S. Džeroski. Experiments in meta-level learning with ILP.
In Proc. of the Third European Conference on Principles of Data Mining and
Knowledge Discovery, pages 98–106. Springer, Berlin, 1999. 453

	Ranking with Predictive Clustering Trees
	Introduction
	Ranking of Learning Algorithms
	The Machine Learning Algorithms and Datasets
	Dataset Descriptions
	The Performance of a Learning Algorithm
	The Performance of Ranking

	Ranking with Predictive Clustering Trees
	Predictive Clustering Trees
	Ranking via Predicting Errors
	Ranking Trees

	Experiments
	Experimental Setup
	Experimental Results

	Summary and Further Work
	Acknowledgments
	References

