tBoost: Boosting Using an instance-Based
Exponential Weighting Scheme

Stephen Kwek and Chau Nguyen

Computational Learning Group, Department of Computer Science
University of Texas at San Antonio
San Antonio, TX 78249

{kwek, cnguyen}@cs.utsa.edu

Abstract. Recently, Freund, Mansour and Schapire established that us-
ing exponential weighting scheme in combining classifiers reduces the
problem of overfitting. Also, Helmbold, Kwek and Pitt that showed
in the prediction using a pool of experts framework an instance based
weighting scheme improves performance. Motivated by these results, we
propose here an instance-based exponential weighting scheme in which
the weights of the base classifiers are adjusted according to the test in-
stance x. Here, a competency classifier ¢; is constructed for each base
classifier h; to predict whether the base classifier’s guess of x’s label can
be trusted and adjust the weight of h; accordingly. We show that this
instance-based exponential weighting scheme enhances the performance
of AdaBoost.

1 Introduction

Recent research in classification problems has placed an emphasis on ensemble
methods that construct a set of base classifiers instead of a single classifier.
An unlabeled instance is then classified by taking a vote of the base classifiers’
predictions of its class label. Ensemble methods like Bagging [1] and AdaBoost [5]
have been shown to outperform the individual base classifiers when the base
inducer that produces the base classifiers is unstable. An inducer is said to be
unstable if a slight change in the training examples results in a very different
classifier being constructed. Further, the idea of ensemble methods also gives
rise to the use of error-correcting output code technique in enhancing accuracy
in multi-class classification problems.

In ensemble methods, the vote of each base classifier either receives the same
weight (e.g. Bagging and Arcing) or is weighted according to the estimated error
rate (e.g. AdaBoost). Based on a recent work of Helmbold, Pitt and the first
author [6] we propose an instance-based approach of assigning weights to the
base classifiers. Instead of assigning a weight to a base classifier that is fixed for
all instances, we attempt to assign a weight that is based upon how well we think
the base classifier is going to predict on the label of the test instance. Intuitively,
given an unlabeled instance z, if there is some indication that the base classifier’s

T. Elomaa et al. (Eds.): ECML, LNAI 2430, pp. 245-257, 2002.
© Springer-Verlag Berlin Heidelberg 2002

246 Stephen Kwek and Chau Nguyen

prediction is correct then we should increase its weight. Otherwise, we should re-
duce its weight. This paper proposes a new version of boosting algorithm iBoost
that uses such instance-based weighting scheme. We demonstrate that iBoost
enhances the performance AdaBoost. Another difference between iBoost and
AdaBoost is that iBoost adopts the exponential weighting scheme, as the work
of Helmbold et. al. [6] is based on the weighted majority framework (see discus-
sion in Section 3.1). We believe that the technique employed here can be applied
to ensemble methods in general.

2 The AdaBoost Algorithm

Before elaborating further, we shall define some notations that we use in this
proposal. A labeled instance is a pair (x,y) where z is an element from some
instance space X and y comes from a set Y of nominal values. We assume a
probability distribution D over the space of labeled instances. A sample S is
a set of labeled instances S = {(x1,v1), (z2,y2), ...(Tm,Ym)} drawn from the
independent and identical probability distribution D. A classifier or hypothesis
is a mapping from X to Y. An inducer or learner takes a sample S as training
data and constructs a classifier. In ensemble methods, multiple base classifiers
are created by calling a base inducer over different training examples.

Boosting was originally introduced by Schapire to address the question, posed
by Kearns and Valiant [3], of whether a weak PAC (Probably Approximately
Correct [17]) learner (which outputs a hypothesis that is slightly better than
random guess) can be turned into a strong PAC learner of arbitrary accuracy .
Schapire [14] came up with the first provable polynomial time algorithm to
‘boost’ a weak learner into a strong learner. A year later, Freund [3] presented
a much more efficient boosting algorithm. Unfortunately, the strong theoretical
results assume the availability of a (polynomially) large training sample (de-
pending on the desired accuracy and confidence). However, in most practical
applications, the size of training sample is very limited which severely curb the
usefulness of both algorithms.

In 1995, Freund and Schapire [5] attempt to resolve this difficulty by in-
troducing AdaBoost (Adaptive Boosting) as shown in Figure 1. The input to
the algorithm is a set of labeled examples S = {(z1,y1),.-s (Tm, Ym)}. As in
Bagging, AdaBoost calls a base inducer repeatedly in a sequence of iterations
t =1,...,T to produce a set of weak base classifiers {h1, ..., hy }. However, unlike
Bagging where the training sets are drawn uniformly in each iteration, AdaBoost
maintains a distribution or a set of weights over the training set. The weight of
this distribution on training example ¢ on the ¢th iteration is denoted by Dy (7).
Initially, all the weights are set equally to 1/m. On each iteration, the weights
of those incorrectly classified examples are increased while the weights of those
correctly classified are decreased. The base inducer’s task is to construct a base
classifier that minimizes the error e, = Pr;wp, [ht(x;) # y;]. The effect of the

! Assuming ‘polynomial’ number of labeled examples are available and the target
concept to be learned is in the hypothesis class.

1Boost 247

Given: S = (z1,91), .-y (Tm,ym) where z; € X, y; € Y = {—1,+1}
and the number of iterations T°

Initialize D1 (i) = 1/m

fort=1,..,T
Train base learner using distribution Dy
Get base classifier hy : X — R
Compute e; = Pri~p,[he(zi) # i

Update:
P) (yiht (i)

D) (/42
Z

Dyt (i) =
where Z; is a normalization factor that ensures D41 is a probability distribution.

Output the final classifier:

T
) = sign (Z atht(:v)> where oy = %ln (IZ—tet> .
t=1

Fig. 1. The boosting algorithm AdaBoost for binary-class problem.

reweighting is that in the next iteration, the base inducer is forced to concentrate
more on those difficult examples.

For each labeled example (z;, y;) that is 1ncorrect1y labeled by h;, we increase
its weight D41 () by a factor of /(1 — €)/e: (of D¢(i)). Those that are correctly
labeled have their weights reduced by a factor of \/et/(l —¢t). The final or
combined classifier H is a weighted majority vote of the predictions made by
the T base classifiers where the prediction of each h; is assigned a weight of

11 1—615
= —1n
at 2 €¢

3 2Boost

3.1 Inspiration

The inspiration behind the theme for this proposal arises from earlier computa-
tional learning theory (COLT) research work on learning from a pool of experts.
In [11], Littlestone and Warmuth studied the problem of making on-line predic-
tion using a pool of experts. In their model, the learner faces a (possibly infinite)
sequence of trials, with a boolean prediction to be made in each trial. The goal
of the learner is to make minimum number of mistakes. The learner is allowed
to make his prediction by observing how a given pool of experts predict. The

248 Stephen Kwek and Chau Nguyen

underlying assumption is that at least one of these experts will perform well but
the learner does not know which one.

They propose the weighted majority algorithm that works as follows. A
weight is associated with each expert, and is initially set to one. The learner
predicts negative if the sum of the weights of all the experts that predict neg-
ative is greater than that of the experts that predict positive, otherwise the
learner predicts positive. When a mistake is made, the learner simply multiplies
the weights of those experts that predict wrongly by some fixed non-negative
constant § smaller than one. They showed that if the best expert makes at most
7 mistakes, then on any sequence of possibly infinite trials, the weighted majority
algorithm makes at most O(log |€| 4+ 1) mistakes. Various alternative weighting
schemes have also been proposed.

In the weighted majority algorithm and its variants, the weight of an expert
is ™ where m is the number of errors made by the expert so far. Such weighting
scheme is know more generally as exponential gradient descent where the num-
ber of mistakes or the error rate appear in the exponent of the weight. Although
most work are in the online learning model, Freund et. al. [1] recently established
theoretical result in the offline batch model. In their work, the final prediction
is made by taking the weighted average of all hypotheses, weighted exponen-
tially w.r.t. their training errors. They showed that this weighting scheme can
protect against overfitting problem commonly encountered by those algorithms
that predict with the best (single) hypothesis, and hence is more stable.

Out of curiosity, we decided to investigate whether adapting an exponential
weighting scheme in AdaBoost improves prediction accuracy. Unfortunately, we
found a decrease in prediction accuracy. This preliminary study and an earlier
work [6] of the first author (see discussion below), suggest that a better exponen-
tial weighting scheme variant of AdaBoost may have to take into consideration
of the unlabeled test instance in assigning the hypotheses’ weights.

Going back to the framework of prediction using a pool of experts, suppose
the experts’ predictions and the actual outcome depend on some input (instance)
in each trial. Notice that the weighted majority and its variations do not make
use of information specific to the input when calculating the weights of the
experts. This may turn out to be a missed opportunity as this information may
help to determine which experts are likely to predict correctly.

To illustrate this, consider the following example with a boolean instance
space {0,1}" and two experts, Ey and E; that always give opposite predictions.
If £y makes at most a small number, mg, of mistakes when one crucial component
of the instance is set to 0, and F; makes at most m; mistakes when that crucial
component is set to 1, then the weighted majority and similar schemes can
be forced to make a mistake on almost every point in the instance space (more
precisely, 2" —|mo—m; | mistakes). This remains true even if the learner uses table
lookup to remember all the previous mistakes. However, if the learner uses Fy’s
predictions when the crucial input component was set to 0 and E;’s predictions
otherwise, then the learner makes at most mg + m; mistakes when it maintains
a table of labeled counterexamples. In other words, although neither expert is

1Boost 249

very competent, they become competent collectively if we consider restricting
the use of each expert to the appropriate subset of the instance space.

Unfortunately, those algorithms that employ the weighted majority tech-
niques do not take advantage of the above situation. Hence, Helmbold, Pitt and
the first author [6] proposed a theoretical framework to capture this notion of
‘the whole is often greater than the sum of its parts’ by considering the regions in
which the experts are competent in. Within this framework, we established vari-
ous positive theoretical results. The next natural step is to perform experimental
work to empirically verify that the notion of competency regions is superior to
simply taking a weighted vote of the experts. In trying to do so, we realize that
the on-line prediction using a pool of experts bares great similarity to the ensem-
ble methods in that both use a simple weighting scheme where each expert, or
base classifier, has the same weight for all instances. Further, the base-classifiers
in AdaBoost are trained using different distributions hence we expect their com-
petency regions to be different. Thus, we decide to apply the idea of competency
region to AdaBoost and also adopt the exponential weighting scheme.

3.2 The Algorithm :Boost

We started by experimenting with AdaBoost but with the weight of each base
classifier adjusted according to whether there is evidence suggesting that it may
predict well for that specific test instance (in addition to its overall training
error ¢;). The experiment was implemented on top of the open source machine
learning software Weka 3 [18] provided by the University of Waikato in New
Zealand. We call our algorithm, which is shown in Figure 2, iBoost (instance-
based boosting). We use the decision tree inducer J48 in the Weka software
package (which implements a version of C4.5) to construct the base classifiers.

We modify AdaBoost so that in the tth iteration, after the base decision tree
classifier h; has been constructed, we label each sample as ‘\/” or ‘X’ depending
on whether it is labeled correctly by h;. We then use the decision tree inducer J48
to learn from this newly labeled sample a competency predictor ¢; for predicting
whether h;’s prediction can be trusted on a given unlabeled instance. Following
the spirit of the weighted majority paradigm and the work of Freund et. al. [4],
we adopt the exponential weighting scheme by setting the initial weight of each
base classifier h; to e™ €.

Given an unlabeled instance x, the weight h; of the base classifier does not
depend solely on h;’s estimated error rate, €;, but also on whether ¢;(z) is ‘\/’
or ‘x'. If ¢;(x) = 4/ then there is evidence that the prediction of h; on z’s label
can be trusted. Thus, h;’s weight should be increased. In this case, we treat c; as
another expert that makes the same prediction on x as h;. It receives a weight
of e~ where €, is ¢}’s estimated error rate on S. Thus, iBoost sets hy(z)’s weight
ap to pe= ¢t + (1 — 77)6_6;«. Here, 7 is a parameter between 0 and 1 that places
the relative importance of the two experts ¢; and h;. Unless explicitly stated
otherwise, we shall assume throughout this paper that n = 0.5.

On the other hand, if ¢;(z) = x then it suggests that h; may not be competent
in predicting x’s label. Here, we need to reduce the weight of h;. We do this by

250 Stephen Kwek and Chau Nguyen

Given: S ={(z1,y1), -, (@m,ym) :2: € X,y; €Y = {-1,+1}} and
the number of iterations T'

Same code as the original AdaBoost but with the following addition

1]

Create a sample S; from S by labeling each example z; as ” or 7 x”

depending on whether h¢(z;) = y;.
Train competency predictor ¢; using St.
Compute c}’s estimated error rate, €, on S.

Output the final classifier: T
H(z) = sign (at(x)ht(m)> .
t=1

where

ne”°t + (1 — 7])6762 if ci(x) =/
(@) = max (0.000Ie*t,ne*t —(1- n)ei€g> if ci(z) = ‘<’

Fig. 2. iBoost for binary class problems

treating ¢; as another expert that predicts —h;(x), the opposite of h;’s prediction.
As before, ¢; gets a weight of e, and the overall weight of h; is set to ne ¢t —(1—
n)e_ei. We avoid using negative weights because our preliminary investigation
indicates that having negative weights decreases prediction accuracy. Thus, If
this modified weight is zero or negative, we set it to 0.0001e™“. We choose not
to set the weight to 0 in the latter situation just in case all the ¢;’s predict ‘x’.

3.3 Previous Related Work

The idea for adjusting weights based on the unlabeled test instance has been
pioneered earlier in neural network research by Jordan and Jacobs [7]. In their
work, the predictions of the experts (i.e., base classifiers) are combined by a tree
architecture neural network. The weights in the neural network is obtained by
gating networks that take the test instance as input. Thus, the test instance
effectively determined the weights.

A closely related idea is that of RegionBoost proposed by Maclin [12]. In his
work, he aimed to predict, for each base classifier, the probability that the test
instance is misclassified. He proposed to replace the base classifier’s estimated
(overall) error rate by this probability in assigning weight to the base classifier.
He studied the usage of k-Nearest neighbor and neural network approach in esti-
mating this probability. Using UCI data sets, he illustrated that RegionBoost has

1Boost 251

a slight edge over AdaBoost. iBoost is very similar to RegionBoost in the sense
that both try to establish a better assignment of base-classifiers’ weights accord-
ing to the test instance. However, the exponential weighting scheme is motivated
by the work of Freund et. al. [4] and earlier COLT work on weighted majority
weighting scheme. More importantly, the improvements obtained by iBoost are
larger than that of RegionBoost. Further, while RegionBoost is even more sus-
ceptible to overfitting than AdaBoost [12], iBoost seems to better reduce the
problem of overfitting (see Section 4). This is not surprising since Freund et.
al. [4] have established theoretically that (weighted) averaging experts’ predic-
tion using exponential weighting scheme protect against the overfitting problem.

Besides taking a weighted vote, another popular way of combining base clas-
sifiers’ predictions is stacking [19]. In stacking, an inducer is used to learn how
to combine the predictions of the base-classifiers. In this stacking framework,
Todorovski and Dzeroski [16] proposed constructing a decision tree that selects
a (single) base classifier to use. As in their work, iBoost invokes a decision tree
inducer to learn to combine the base classifiers’ predictions. However, iBoost
constructs multiple decision trees, one for each base classifier. Instead of select-
ing a single predictor, we take a weighted vote of the predictions. Further, their
work is for combining heterogeneous classifiers produced by different inducers
while iBoost is concerned about combining homogeneous classifiers obtained by
bootstrap sampling (or reweighting) and using the same inducer.

4 Results

Improve Prediction Accuracy. At first we ran the algorithm through 32
UC Irvine data sets for classification problems over 10 iterations (See Table 1).
Our iBoost algorithm beats AdaBoost on 19 data sets, loses to AdaBoost on
6 data sets and draws on 6 data sets. The average improvement based on 10-
fold cross-validation is about 0.6% which is not extremely impressive. However,
upon closer inspection, there are significant number of data sets where AdaBoost
predicts with error less than 5% and probably very close to the actual noise rate.
This leaves very little room for improvement. Nevertheless, on the 12 data sets
where AdaBoost achieves accuracy in the 90% range (See Table 1(C)), we still
manage to squeeze in an improvement of 0.31% after 100 iterations, with iBoost
winning AdaBoost on 6 data sets and losing on 2 data sets.

In the 707% range, the improvement seems to be more noticeable. See Ta-
ble 1. Among the 10 data sets, iBoost consistently improves over the performance
of AdaBoost, except for one or two data sets. Further, the difference in their av-
erage performance widens from 0.80% at 10 iterations to 1.14% at 100 iterations.
We perform Student’s one-sided t-test on the improvements obtained at 50 it-
erations where AdaBoost has the best performance. The level of significance
is tabulated in Table 2A which shows that for many data sets, the confidence
that iBoost outperforms AdaBoost is near or above 90%. The improvements
are slightly more significance if we allow the mixing rate 1 to varies in incre-
mental of 0.1. Here, for 6 out of the 10 data sets, the best performance is still

252 Stephen Kwek and Chau Nguyen

Table 1. The performance of iBoost vs. AdaBoost. Those numbers in bold face
indicate the winner between AdaBoost and ‘Boost with the same number of
iterations

Data Sets in the 707 % range
Iterations = 10||Iterations = 25||Iterations = 50||Iterations = 100|
Data set Ada | tBoost || Ada | iBoost || Ada | ‘Boost || Ada iBoost
A1l Balance-Scale || 78.08| 78.24 |[76.00| 77.60 ||75.36| 76.80 |[|74.56| 76.16
A2 Breast-Cancer ||69.58 | 72.38 ||70.28| 73.78 || 70.28 | 74.81 || 70.28| 74.48

A3 Credit (G) 72.60| 74.90 ||75.00| 75.70 ||74.40| 76.00 ||74.10| 74.70
A4 Diabetes 73.31| 73.70 |[|73.70| 73.96 || 72.79| 73.57 |[|73.57| 74.58
A5 Glass 73.83| 74.77 ||76.17| 75.23 ||77.57| 78.04 || 78.04| 79.44
A6 Heart-C 77.89| 77.23 ||78.55| 79.87 ||78.55| 79.87 ||79.54| 80.63
AT Heart-H 76.19| 76.87 ||77.21| 77.21 77.89| 78.57 ||78.23| 77.99
A8 Heart-Statlog || 80.00| 80.37 |/ 81.85| 81.48 |[82.59| 82.59 ||81.11| 81.95
A9 Sonar 79.33| 80.29 |(|84.62| 83.65 ||84.62| 85.10 [|83.65| 84.72
A10 Vehicle 76.48 | 76.60 ||78.25| 77.54 ||78.72| 78.37 ||77.42| 77.31
Average 75.73| 76.53 ||77.16| 77.60 |[77.28| 78.37 |[|77.05| 78.19
Win 1 9 4 5 1 8 2 8

Data Sets in the 80T % range
Iterations = 10||Iterations = 25||Iterations = 50|| Iterations = 100

Data set Ada | ‘Boost || Ada | iBoost || Ada | ‘Boost || Ada iBoost
B1 Audiology 84.07| 84.96 [[84.96] 84.96 [[84.96] 84.96 [[84.96] 85.50
B2 Autos 82.44| 83.90 |[84.39| 84.88 |[85.37| 87.32 ||86.34| 86.93
B3 Horse Colic 83.97| 83.97 ||82.07| 84.78 ||81.79| 85.87 ||81.79| 85.43
B4 Credit (A) 84.93| 85.80 |[86.38| 87.10 |[85.94| 86.52 ||87.10| 87.59
B5 Heart-Statlog || 80.00| 80.37 ||81.85| 81.48 |[82.59| 82.59 |[{81.11| 81.95
B6 Hepatitis 83.87| 81.94 [|85.16| 81.94 ||84.52| 85.16 ||85.81| 85.46
B7 Lymphography||83.78| 81.08 || 82.43| 82.43 |[84.46| 83.11 ||83.78 83.78
B8 Waveform 81.08| 81.54 |[82.92| 84.06 || 84.58| 84.60 ||84.94| 84.90
Average 83.02| 82.94 [|83.39| 83.95 [|84.28| 85.02 || 84.48| 85.18
Win 2 5 2 4 1 5 2 5

Data Sets in the 90T % range
Iterations = 10||Iterations = 25||Iterations = 50|| Iterations = 100

Data set Ada | ‘Boost || Ada | iBoost || Ada | ‘Boost || Ada iBoost
C1 Anneal 99.67 | 99.78 {[99.67| 99.67 |[99.67| 99.67 [[99.67| 99.67

C2 Breast-W 95.85| 95.57 |[|95.99| 96.28 (| 95.99| 96.28 |/96.42| 96.57
C3 Hypothyroid 99.73| 99.73 {[99.68| 99.68 |[99.71| 99.71 |{99.71 99.71

C4 Ionosphere 93.73| 93.73 ||95.16| 94.59 |(94.87| 94.30 || 94.87 94.87

C5 Iris 94.67| 94.67 ||94.67| 94.00 ||94.00| 94.67 ||{94.67| 94.67

C6 Kr-Vs-Kp 99.50(99.47 |(|99.50| 99.47 (| 99.53| 99.53 |/99.47| 99.50
C7 Segment 98.57| 98.61 ||98.70| 98.70 ||98.57| 98.57 ||98.79| 98.74

C8 Sick 99.15| 99.07 [|99.02| 98.99 (|99.15| 99.05 |{98.99| 98.91

C9 Soybean 92.83| 92.97 |[92.39| 94.00 || 92.53| 94.14 |{92.39| 94.29
C10 Vote 94.94| 95.17 ||94.94| 95.86 || 94.94| 95.40 |{94.94| 95.40
C11 Vowel 92.22| 93.03 ||95.25| 96.06 ||96.26| 96.57 ||96.77| 97.17
C12 Zoo 95.05| 95.05 ||95.05| 96.04 ||95.05| 96.04 ||{95.05| 96.04
Average 96.33| 96.40 [[96.67] 96.94 [[96.69] 96.99 [[96.81] 97.13
Win 3 5 4 5 2 6 2 6

7 = 0.5 (i.e., placing equal importance in both base classifiers and competency
predictors.).

The relative performance of iBoost and AdaBoost on the 807% data sets is
somewhat in between the performance of those 707% and 907% data sets (see
Table 1(B)). Although the average improvements on the 80" % and 90" % data

1Boost 253

Table 2. (A) Test of significance using Student t-test. The average improvement
is computed based only on those data sets that iBoost performs better in both
cases where n = 0.5 and 7 is optimized. These data sets are marked with an
asterisk (B) Using exponential weighting scheme alone (i.e. 7 = 1) does not
increase accuracy

n=0.5 best n accuracy
data set |-Aerror| t-test || n |-Aerror| t-test data set |p =1|n=0.5
Al 1.44 199.2% *{|0.5| 1.44 [99.2% * Al 75.36 | 76.80
A2 4.53 196.0% *{|0.5| 4.53 (96.0% * A2 169.93|74.81
A3 1.60 {99.6% *|[0.5| 1.60 |99.6% * A3 | 74.28|76.00
A4 0.78 189.2% *|(0.5| 0.78 [89.2% * A4 |72.79|73.57
A5 0.47 169.8% *||0.1] 0.93 [82.7% * A5 77.10| 78.04
A6 1.32 [94.9% *{|0.6| 1.65 |97.5% * A6 78.22 | 79.87
AT 0.68 (65.0% *|[0.5| 0.66 |65.0% * AT |77.89|78.57
A8 0.00 50% {|0.7] 0.37 | 83.0% A8 |82.22]82.59
A9 0.48 [62.2% *{|0.5| 0.48 |62.2% * A9 |85.10| 85.10
A10 -0.35 | 25.0% |[0.9] -0.12 | 38.8% Al10 |78.61| 78.37
Average *|| 1.41 | 84.5% 1.51 | 86.0% Average:| 77.14 | 78.37
™) ®)

sets are smaller that that of the 70T % data set, the t-test results yield similar
level of confidence 2. Lastly, the improvement is also more pronounced if we
consider only those binary class data sets?.

Competency Predictors Help. It is possible that the improvements obtained
by iBoost is not so much due to the use of competency predictor but rather to
the usage of exponential weighting scheme. To show that this is not the case, we
compare 7Boost with boosting using exponential weighting scheme but without
adjusting the weights using the competency predictors. We can do this by simply
setting n = 1. Table 2(B) shows the results obtained for those data sets having
70% accuracy where iBoost continues to outperform. The result indicates that
the improvement is due to the use of competency predictors.

Margin Distribution. The performance of AdaBoost has been studied in terms
of the margins of the training examples [15]. The margin of an example (z,y) is
defined to be

T
h
margin(x,y) = Y 2up=1 @TLT) Zt:j} i f(x)
Dt lou]

The magnitude of the margin can be interpreted as a measure of confidence
in the prediction. It ranges from -1 to +1 and is positive if and only if AdaBoost
predicts correctly. Schapire et. al. [15] proved that larger margins of the training
set translate into a superior upper bound on the generalization error. Figure 3

2 Details omitted due to page limitation. More details will be provided in a full version
of this paper.

254 Stephen Kwek and Chau Nguyen

10 iterations 50 iterations
1 T T - 1 T T =
Adaboost - Adaboost -
0.8 - iBoost —— 0.8 - iBoost ——/
: :
£ 0.6 - 1 £ 0.6 - -
= =
g 04 4 7 04F -
S 5
02) - 02 -
0 S L 0 1T | 1
-1 05 0 05 1 -1 05 0 05 1
margins margins

Fig. 3. The margin distributions of iBoost vs. AdaBoost on the Colic data set

shows the cumulative distributions of the margins for both AdaBoost and iBoost
on the H. Colic data set at the 10th iterations and 50th iterations. The negative
margins near zero tend to increase and many become positive. Further, The pos-
itive margins increase further towards one. We believe that this shift in margin
gives rise to the improvement in accuracy. The observation is very typical on
almost all data sets which iBoost performs well.

Minimize Overfitting. Optiz and Maclin [13] illustrated that AdaBoost suf-
fers from overfitting in certain situations. They illustrated this by using artifi-
cial data sets with one-sided noise. The data sets are defined over two relevant
attributes and four irrelevant attributes. The target concept is a simple linear
halfspace based on the relevant attributes. Points are generated within the target
concept with 10% of the points being mislabeled. They showed that AdaBoost
often produced significant increase in error (i.e. overfit). Maclin’s RegionBoost
algorithm worsens this overfitting problem [12]. However, Our experiment (see
figure 4) with 250 randomly generated data points indicates that iBoost tends
not to overfit as badly. This is not surprising since Freund et. al. [4] had shown
theoretically that the exponential weighting scheme reduces overfitting.
Bias-Variance Analysis. Another way to understand how iBoost improves
prediction accuracy is to decompose the estimated error rate into the bias and
variance components [2,9]. The bias component measures how closely the learn-
ing algorithm’s average guess (over all possible training sets of the same size
as the given labeled sample) matches the target, while the variance component
measures how much the learning algorithm’s guess fluctuates for different train-
ing sets of a given size. Experiments performed using Dietterich and Kong’s
definition® of bias and variance [10] suggest that most of iBoost’s improvements
are due to the reduction of the variance component, while the bias component

1Boost 255

Overfitting

| | T T T I |
Adaboost -

iBoost ———— —

Error (%)

10 15 20 25 30 35 40 45

iterations

Fig.4. iBoost seems to minimize overfitting

remain fairly stable. This is somewhat surprising since in AdaBoost, the bias
component is much larger than the variance component. However, this is some-
what unfortunate since it places a limitation of how much iBoost can outperform
AdaBoost. Due to page limitation, we shall defer our discussion to a later full
version of this paper.

5 Conclusion

In this paper, we introduce a variant of boosting, iBoost, that employs the
exponential weighting scheme and the use of competency predictors in predicting
whether the base classifiers can be trusted. The latter allows us to adjust the
weights of the base classifiers by taking into consideration of how confident we
are with their predictions on the unlabeled test instance.

Although iBoost allows us to adjust the relative importance of the base clas-
sifiers and competency predictors, our experiments suggest that often it is best
to place equal emphasis on both (i.e. setting 7 = 0.5). This also implies that
the improvement is not solely due to the use of exponential weighting scheme
(i.e. ignoring the competency predictors totally). However, due to the use of
the exponential weighting scheme, which has been shown theoretically to reduce
overfitting, iBoost tends to overfit less as compared to AdaBoost and Region-
Boost. Thus, on the UCI benchmark data sets, iBoost exhibits a significant
improvement in accuracy over AdaBoost. Bias-Variance decomposition of the
error rates obtained by AdaBoost and iBoost suggests that the improvement
of iBoost is due to the reduction of the variance component of the error rate. An
inspection of the margin distributions on those data sets where iBoost performs

256 Stephen Kwek and Chau Nguyen

well indicate that iBoost does so by shifting the positive margins and negative
margins close to zero towards 1.

Acknowledgement

This work is partially supported by NSF grant CCR-0208935. We like to thank
the reviewers for valuable comments and references to some relevant work. We
also want to thank Tom Bylander for helpful suggestions. This project would
have taken a longer time to complete if not for the open source code of Weka.

References

1. L. Breiman. Bagging predictors. In Machine Learning, volume 24, pages 123-140,
1996. 245

2. T. G. Dietterich and E. B. Kong. Machine learning bias, statistical bias, and
statistical variance of decision tree algorithms. Technical report, Department of
Computer Science, Oregon State University, 1995. 254

3. Y. Freund. Boosting a weak learning algorithm by majority. Inform. Comput.,
121(2):256-285, September 1995. Also appeared in COLT90. 246

4. Yoav Freund, Yishay Mansour, and Robert Schapire. Why averaging classifiers can
protect against overfitting. In Proc. of the 8th International Workshop on Artificial
Intelligence and Statistics, 2001. 248, 249, 251, 254

5. Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.
In Proc. 13th International Conference on Machine Learning, pages 148-146. Mor-
gan Kaufmann, 1996. 245, 246

6. David Helmbold, Stephen Kwek, and Leonard Pitt. Learning when to trust
which experts. In Computational Learning Theory: EuroColt ’97, pages 134—149.
Springer-Verlag, 1997. 245, 246, 248, 249

7. Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the
EM algorithm. CBCL Paper 83, M. I. T. Center for Biological and Computational
Learning, August 1993. 250

8. Michael Kearns and Leslie Valiant. Cryptographic limitations on learning Boolean
formulae and finite automata. J. ACM, 41(1):67-95, 1994. 246

9. Ron Kohavi and David H. Wolpert. Bias plus variance decomposition for zero-one
loss functions. In Proc. 13th International Conference on Machine Learning, pages
275-283. Morgan Kaufmann, 1996. 254

10. Eun Bae Kong and Thomas G. Dietterich. Error-correcting output coding corrects
bias and variance. In Proc. 12th International Conference on Machine Learning,
pages 313-321. Morgan Kaufmann, 1995. 254

11. N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Inform.
Comput., 108(2):212-261, 1994. 247

12. Richard Maclin. Boosting classifiers regionally. In Proceedings of the 15th National
Conference on Artificial Intelligence (AAAI-98) and of the 10th Conference on
Innovative Applications of Artificial Intelligence (IAAI-98), pages 700-705, Menlo
Park, July 26-30 1998. AAAT Press. 250, 251, 254

13. D. Optiz and R. Marlin. Popular ensemble methods: An empirical study. CBCL
Paper UMD CS TR 98-1, University of Maryland, 19938. 254

14.

15.

16.

17.

18.

19.

1Boost 257

Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197—
227, 1990. 246

Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the
margin: a new explanation for the effectiveness of voting methods. In Proc. 1jth
International Conference on Machine Learning, pages 322-330. Morgan Kaufmann,
1997. 253

Ljup¢o Todorovski and Saso Dzeroski. Combining classifiers with meta decision
trees. In Machine Learning Journal, 2002. to appear. 251

L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134-1142,
November 1984. 246

I. H. Witten and E. Frank. Nuts and bolts: Machine learning algorithms in java,.
In Data Mining: Practical Machine Learning Tools and Techniques with Java Im-
plementations., pages 265—-320. Morgan_Kaufmann, 2000. 249

D. Wolpert. Stacked generalization. Neural Networks, 5(2):241-260, 1992. 251

	iBoost: Boosting Using an instance-Based Exponential Weighting Scheme
	Introduction
	The AdaBoost Algorithm
	iBoost
	Inspiration
	The Algorithm iBoost
	Previous Related Work

	Results
	Conclusion
	Acknowledgement
	References

