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Abstract. Polyglot is an extensible compiler framework that supports the easy
creation of compilers for languages similar to Java, while avoiding code duplica-
tion. The Polyglot framework is useful for domain-specific languages, exploration
of language design, and for simplified versions of Java for pedagogical use. We
have used Polyglot to implement several major and minor modifications to Java;
the cost of implementing language extensions scales well with the degree to which
the language differs from Java. This paper focuses on the design choices in Poly-
glot that are important for making the framework usable and highly extensible.
Polyglot source code is available.

1 Introduction

Domain-specific extension or modification of an existing programming language en-
ables more concise, maintainable programs. However, programmers construct domain-
specific language extensions infrequently because building and maintaining a compiler
is onerous. Better technology is needed. This paper presents a methodology for the con-
struction of extensible compilers and also an application of this methodology in our
implementation of Polyglot, a compiler framework for creating extensions to Java [14].
Language extension or modification is useful for many reasons:

– Security. Systems that enforce security at the language level may find it useful to
add security annotations or rule out unsafe language constructs.

– Static checking. A language might be extended to support annotations necessary
for static verification of program correctness [23], more powerful static checking of
program invariants [10], or heuristic methods [8].

– Language design. Implementation helps validate programming language designs.
– Optimization. New passes may be added to implement optimizations not performed

by the base compiler or not permitted by the base language specification.
– Style. Some language features or idioms may be deemed to violate good style but

may not be easy to detect with simple syntactic analysis.
– Teaching. Students may learn better using a language that does not expose them to

difficult features (e.g., inner classes [14]) or confusing error messages [9].
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We refer to the original unmodified language as the base language; we call the modified
language a language extension even if it is not backwards compatible.

When developing a compiler for a language extension, it is clearly desirable to build
upon an existing compiler for the base language. The simplest approach is to copy the
source code of the base compiler and edit it in place. This may be fairly effective if the
base compiler is carefully written, but it duplicates code. Changes to the base compiler—
perhaps to fix bugs—may then be difficult to apply to the extended compiler. Without
considerable discipline, the code of the two compilers diverges, leading to duplication
of effort.

Our approach is different: the Polyglot framework implements an extensible compiler
for the base language Java 1.4. This framework, also written in Java, is by default simply
a semantic checker for Java. However, a programmer implementing a language extension
may extend the framework to define any necessary changes to the compilation process,
including the abstract syntax tree (AST) and semantic analysis.

An important goal for Polyglot is scalable extensibility: an extension should require
programming effort proportional only to the magnitude of the difference between the
extended and base languages.Adding newAST node types or new compiler passes should
require writing code whose size is proportional to the change. Language extensions often
require uniformly adding new fields and methods to an AST node and its subclasses;
we require that this uniform mixin extension be implementable without subclassing all
the extended node classes. Scalable extensibility is a challenge because it is difficult
to simultaneously extend both types and the procedures that manipulate them [30,38].
Existing programming methodologies such as visitors [13] improve extensibility but are
not a complete solution. In this paper we present a methodology that supports extension
of both compiler passes and AST nodes, including mixin extension. The methodology
uses abstract factories, delegation, and proxies [13] to permit greater extensibility and
code reuse than in previous extensible compiler designs.

Polyglot has been used to implement more than a dozen Java language extensions of
varying complexity. Our experience using Polyglot suggests that it is a useful framework
for developing compilers for new Java-like languages. Some of the complex extensions
implemented are Jif [26], which extends Java with security types that regulate infor-
mation flow; PolyJ [27], which adds bounded parametric polymorphism to Java; and
JMatch [24], which extends Java with pattern matching and iteration features. Compil-
ers built using Polyglot are themselves extensible; complex extensions such as Jif and
PolyJ have themselves been extended. The framework is not difficult to learn: users have
been able to build interesting extensions to Java within a day of starting to use Polyglot.
The Polyglot source code is available.1

The rest of the paper is structured as follows. Section 2 gives an overview of the
Polyglot compiler. Section 3 describes in detail our methodology for providing scalable
extensibility. Other Polyglot features that make writing an extensible compiler conve-
nient are described in Section 4. Our experience using the Polyglot system to build
various languages is reported in Section 5. Related work on extensible compilers and
macro systems is discussed in Section 6, and we conclude in Section 7.

1 At http://www.cs.cornell.edu/Projects/polyglot
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Fig. 1. Polyglot Architecture

2 Polyglot Overview

This section presents an overview of the various components of Polyglot and describes
how they can be extended to implement a language extension. An example of a small
extension is given to illustrate this process.

2.1 Architecture

A Polyglot extension is a source-to-source compiler that accepts a program written in
a language extension and translates it to Java source code. It also may invoke a Java
compiler such as javac to convert its output to bytecode.

The compilation process offers several opportunities for the language extension im-
plementer to customize the behavior of the framework. This process, including the even-
tual compilation to Java bytecode, is shown in Fig. 1. In the figure, the name Ext stands
for the particular extended language.

The first step in compilation is parsing input source code to produce anAST. Polyglot
includes an extensible parser generator, PPG, that allows the implementer to define the
syntax of the language extension as a set of changes to the base grammar for Java.
PPG provides grammar inheritance [29], which can be used to add, modify, or remove
productions and symbols of the base grammar. PPG is implemented as a preprocessor
for the CUP LALR parser generator [17].

The extended AST may contain new kinds of nodes either to represent syntax added
to the base language or to record new information in the AST. These new node types are
added by implementing the Node interface and optionally subclassing from an existing
node implementation.

The core of the compilation process is a series of compilation passes applied to the
abstract syntax tree. Both semantic analysis and translation to Java may comprise several
such passes. The pass scheduler selects passes to run over the AST of a single source file,
in an order defined by the extension, ensuring that dependencies between source files are
not violated. Each compilation pass, if successful, rewrites the AST, producing a new
AST that is the input to the next pass. Some analysis passes (e.g., type checking) may halt
compilation and report errors instead of rewriting the AST. A language extension may
modify the base language pass schedule by adding, replacing, reordering, or removing
compiler passes. The rewriting process is entirely functional; compilation passes do
not destructively modify the AST. More details on our methodology are described in
Section 3.

Compilation passes do their work using objects that define important characteristics
of the source and target languages. A type system object acts as a factory for objects
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1 tracked(F) class FileReader {
2 FileReader(File f) [] -> [F] throws IOException[] { ... }
3 int read() [F] -> [F] throws IOException[F] { ... }
4 void close() [F] -> [] { ... ; free this; }
5 }

Fig. 2. Example Coffer FileReader

representing types and related constructs such as method signatures. The type system
object also provides some type checking functionality. A node factory constructs AST
nodes for its extension. In extensions that rely on an intermediate language, multiple
type systems and node factories may be used during compilation.

After all compilation passes complete, the usual result is a Java AST. A Java compiler
such asjavac is invoked to compile the Java code to bytecode. The bytecode may contain
serialized extension-specific type information used to enable separate compilation; we
discuss separate compilation in more detail in Section 4.

2.2 An Example: Coffer

To motivate our design, we describe a simple extension of Java that supports some of the
resource management facilities of the Vault language [7]. This language, called Coffer,
is a challenge for extensible compilers because it makes substantial changes to both the
syntax and semantics of Java and requires identical modifications to many AST node
types. Coffer allows a linear capability, or key, to be associated with an object. Methods
of the object may be invoked only when the key is held. A key is allocated when its
object is created and deallocated by a free statement in a method of the object. The
Coffer type system regulates allocation and freeing of keys to guarantee statically that
keys are always deallocated.

Fig. 2 shows a small Coffer program declaring a FileReader class that guarantees
the program cannot read from a closed reader. The annotation tracked(F) on line 1
associates a key named F with instances of FileReader. Pre- and post-conditions on
method and constructor signatures, written in brackets, specify how the set of held keys
changes through an invocation. For example on line 2, the precondition [] indicates that
no key need be held to invoke the constructor, and the postcondition [F] specifies that F
is held when the constructor returns normally. The close method (line 4) frees the key;
no subsequent method that requires F can be invoked.

The Coffer extension is used as an example throughout the next section. It is im-
plemented by adding new compiler passes for computing and checking held key sets
at each program point. Coffer’s free statements and additional type annotations are
implemented by adding new AST nodes and extending existing nodes and passes.

3 A Methodology for Scalable Extensibility

Our goal is a mechanism that supports scalable extension of both the syntax and semantics
of the base language. The programmer effort required to add or extend a pass should be
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proportional to the number of AST nodes non-trivially affected by that pass; the effort
required to add or extend a node should be proportional to the number of passes the node
must implement in an interesting way. When extending or overriding the behavior of
existing AST nodes, it is often necessary to extend a node class that has more than one
subclass. For instance, the Coffer extension adds identical pre- and post-condition syntax
to both methods and constructors; to avoid code duplication, these annotations should
be added to the common base class of method and constructor nodes. The programmer
effort to make such changes should be constant, irrespective of the number of subclasses
of this base class. Inheritance is the appropriate mechanism for adding a new field or
method to a single class. However, adding the same member to many different classes
can quickly become tedious. This is true even in languages with multiple inheritance: a
new subclass must be created for every class affected by the change. Modifying these
subclasses later requires making identical changes to each subclass. Mixin extensibility
is a key goal of our methodology: a change that affects multiple classes should require
no code duplication.

Compilers written in object-oriented languages often implement compiler passes
using the Visitor design pattern [13]. However, visitors present several problems for
scalable extensibility. In a non-extensible compiler, the set of AST nodes is usually
fixed. The Visitor pattern permits scalable addition of new passes, but sacrifices scalable
addition of AST node types. To allow specialization of visitor behavior for both the
AST node type and the visitor itself, each visitor class implements a separate callback
method for every node type. Thus, adding a new kind of AST node requires modifying
all existing visitors to insert a callback method for the node. Visitors written without
knowledge of the new node cannot be used with the new node because they do not
implement the callback. The Visitor pattern also does not provide mixin extensibility. A
separate mechanism is needed to address this problem.

An alternative to theVisitor pattern is for eachAST node class to implement a method
for each compiler pass. However, this technique suffers from the dual problem: adding
a new pass requires adding a method to all existing node types.

The remainder of this section presents a mechanism that achieves the goal of scalable
extensibility. We first describe our approach to providing mixin extensibility. We then
show how our solution also addresses the other aspects of scalable extensibility.

3.1 Node Extension Objects and Delegates

We implement passes as methods associated with AST node objects; however, to provide
scalable extensibility, we introduce a delegation mechanism, illustrated in Fig. 3, that
enables orthogonal extension and method override of nodes.

Since subclassing of node classes does not adequately address orthogonal extension
of methods in classes with multiple subclasses, we add to each node object a field, labeled
ext in Fig. 3, that points to a (possibly null) node extension object. The extension
object (CofferExt in the figure) provides implementations of new methods and fields,
thus extending the node interface without subclassing. These members are accessed
by following the ext pointer and casting to the extension object type. In the example,
CofferExt extends Node with keyFlow() and checkKeys() methods. Each AST
node class to be extended with a given implementation of these members uses the
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keyFlow() {...}
checkKeys() {...}

CofferExt

typeCheck() {...}
print() {...}

Node
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print() {node.print();}
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Fig. 3. Delegates and extensions

same extension object class. Thus, several node classes can be orthogonally extended
with a single implementation, avoiding code duplication. Since language extensions can
themselves be extended, each extension object has an ext field similar to the one located
in the node object. In effect, a node and its extension object together can be considered
a single node.

Extension objects alone, however, do not adequately handle method override when
the base language is extended multiple times. The problem is that any one of a node’s
extension objects can implement the overridden method; a mechanism is needed to
invoke the correct implementation. A possible solution to this problem is to introduce a
delegate object for each method in the node interface. For each method, a field in the node
points to an object implementing that method. Calls to the method are made through its
delegate object; language extensions can override the method simply by replacing the
delegate. The delegate may implement the method itself or may invoke methods in the
node or in the node’s extension objects.

Because maintaining one object per method is cumbersome, the solution used in
Polyglot is to combine delegate objects and to introduce a single delegate field for each
node object—illustrated by the del field in Fig. 3. This field points to an object imple-
menting the entire Node interface, by default the node itself. To override a method, a
language extension writer creates a new delegate object containing the new implemen-
tation or code to dispatch to the new implementation. The delegate implements Node’s
other methods by dispatching back to the node. Extension objects also contain a del
field used to override methods declared in the extension object interface.

Calls to all node methods are made through the del pointer, thus ensuring that the
correct implementation of the method is invoked if the delegate object is replaced by
a language extension. Thus, in our example, the node’s typeCheck method is invoked
via n.del.typeCheck(); the Coffer checkKeys method is invoked by following the
node’s ext pointer and invoking through the extension object’s delegate: ((CofferExt)
n.ext).del.checkKeys(). An extension of Coffer could replace the extension ob-
ject’s delegate to override methods declared in the extension, or it could replace the
node’s delegate to override methods of the node. To access Coffer’s type-checking func-
tionality, this new node delegate may be a subclass of Coffer’s node delegate class or
may contain a pointer to the old delegate object. The overhead of indirecting through
the del pointer accounts for less than 2% of the total compilation time.
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3.2 AST Rewriters

Most passes in Polyglot are structured as functional AST rewriting passes. Factoring out
AST traversal code eliminates the need to duplicate this code when implementing new
passes. Each pass implements an AST rewriter object to traverse the AST and invoke
the pass’s method at each node. At each node, the rewriter invokes a visitChildren
method to recursively rewrite the node’s children using the rewriter and to reconstruct
the node if any of the children are modified. A key implementation detail is that when a
node is reconstructed, the node is cloned and the clone is returned. Cloning ensures that
class members added by language extensions are correctly copied into the new node.
The node’s delegates and extensions are cloned with the node.

Each rewriter implements enter and leave methods, both of which take a node
as argument. The enter method is invoked before the rewriter recurses on the node’s
children using visitChildren and may return a new rewriter to be used for rewriting
the children. This provides a convenient means for maintaining symbol table information
as the rewriter crosses lexical scopes; the programmer need not write code to explicitly
manage the stack of scopes, eliminating a potential source of errors. The leave method
is called after visiting the children and returns the rewritten AST rooted at the node.

3.3 Scalable Extensibility

A language extension may extend the interface of anAST node class through an extension
object interface. For each new pass, a method is added to the extension object interface
and a rewriter class is created to invoke the method at each node. For most nodes, a
single extension object class is implemented to define the default behavior of the pass,
typically just an identity transformation on the AST node. This class is overridden for
individual nodes where non-trivial work is performed for the pass.

To change the behavior of an existing pass at a given node, the programmer creates
a new delegate class implementing the new behavior and associates the delegate with
the node at construction time. Like extension classes, the same delegate class may be
used for several different AST node classes, allowing functionality to be added to node
classes at arbitrary points in the class hierarchy without code duplication.

New kinds of nodes are defined by new node classes; existing node types are extended
by adding an extension object to instances of the class. A factory method for the new
node type is added to the node factory to construct the node and, if necessary, its delegate
and extension objects. The new node inherits default implementations of all compiler
passes from its base class and from the extension’s base class. The new node may provide
new implementations using method override, possibly via delegation. Methods need be
overridden only for those passes that need to perform non-trivial work for that node type.

Fig. 4 shows a portion of the code implementing the Coffer key-checking pass, which
checks the set of keys held when control enters a node. The code has been simplified in
the interests of space and clarity. At each node in the AST, the pass invokes through the
del pointer the checkKeys method in the Coffer extension, passing in the set of held
keys (computed by a previous data-flow analysis pass). Since most AST nodes are not
affected by the key-checking pass, a default checkKeysmethod implemented in the base
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class KeyChecker extends Rewriter {
Node leave(Node n) {
((CofferExt) n.ext).del.checkKeys(held keys(n));
return n;

}
}

class CofferExt {
Node node; CofferExt del;
void checkKeys(Set held keys) { /* empty */ }

}

class ProcedureCallExt extends CofferExt {
void checkKeys(Set held keys) {
ProcedureCall c = (ProcedureCall) node;
CofferProcedureType p = (CofferProcedureType) c.callee();
if (! held keys.containsAll(p.entryKeys()))
error(p.entryKeys() + " not held at " + c);

}
}

Fig. 4. Coffer key checking

CofferExt class is used for these nodes. For other nodes, a non-trivial implementation
of key checking is required.

Fig. 4 also contains an extension class used to compute the held keys for method and
constructor calls. ProcedureCall is an interface implemented by the classes for three
AST nodes that invoke either methods or constructors: method calls, new expressions,
and explicit constructor calls (e.g., super()).All three nodes implement the checkKeys
method identically. By using an extension object, we need only to write this code once.

4 Other Implementation Details

In this section we consider some aspects of the Polyglot implementation that are not
directly related to scalable extensibility.

Data-Flow Analysis. Polyglot provides an extensible data-flow analysis framework.
In Java implementation, this framework is used to check the that variables are initialized
before use and that all statements are reachable; extensions may perform additional
data-flow analyses to enable optimizations or to perform other transformations. Polyglot
provides a rewriter in the base compiler framework that constructs the control-flow graph
of the program. Intraprocedural data-flow analyses can then be performed on this graph
by implementing the meet and transfer functions for the analysis.

Separate Compilation. Java compilers use type information stored in Java class files
to support separate compilation. For many extensions, the standard Java type information
in the class file is insufficient. Polyglot injects type information into class files that can
be read by later invocations of the compiler to provide separate compilation. No code
need be written for a language extension to use this functionality for its extended types.
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Before performing Java code generation, Polyglot uses the Java serialization facility to
encode the type information for a given class into a string, which is then compressed and
inserted as a final static field into the AST for the class being serialized. When compiling
a class, the first time a reference to another class is encountered, Polyglot loads the
class file for the referenced class and extracts the serialized type information. The type
information is decoded and may be immediately used by the extension.

Quasiquoting. To generate Java output, language extensions translate their ASTs to
Java ASTs and rely on the code generator of the base compiler to output Java code. To
enableAST rewriting, we have used PPG to extend Polyglot’s Java parser with the ability
to generate an AST from a string of Java code and a collection of AST nodes to substitute
into the generated AST. This feature provides many of the benefits of quasiquoting in
Scheme [19].

5 Experience

More than a dozen extensions of varying sizes have been implemented using Polyglot,
for example:

– Jif is a Java extension that provides information flow control and features to ensure
the confidentiality and integrity of data [26].

– Jif/split is an extension to Jif that partitions programs across multiple hosts based
on their security requirements [37].

– PolyJ is a Java extension that supports bounded parametric polymorphism [27].
– Param is an abstract extension that provides support for parameterized classes. This

extension is not a complete language, but instead includes code implementing lazy
substitution of type parameters. Jif, PolyJ, and Coffer extend Param.

– JMatch is a Java extension that supports pattern matching and logic programming
features [24].

– Coffer, as previously described, adds resource management facilities to Java.
– PAO (“primitives as objects”) allows primitive values to be used transparently as

objects via automatic boxing and unboxing,
– A covariant return extension restores the subtyping rules of Java 1.0 Beta [33] in

which the return type of a method could be covariant in subclasses. The language
was changed in the final version of Java 1.0 [14] to require the invariance of return
types.

The major extensions add new syntax and make substantial changes to the language
semantics. We describe the changes for Jif and PolyJ in more detail below. The simpler
extensions, such as support for covariant return types, require more localized changes.

5.1 Jif

Jif is an extension to Java that permits static checking of information flow policies. In
Jif, the type of a variable may be annotated with a label specifying a set of principals
who own the data and a set of principals that are permitted to read the data. Labels are
checked by the compiler to ensure that the information flow policies are not violated.
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The base Polyglot parser is extended using PPG to recognize security annotations
and new statement forms. New AST node classes are added for labels and for new state-
ment and expression forms concerning security checks. The new AST nodes and nearly
all existing AST nodes are also extended with security context annotations. These new
fields are added to a Jif extension class. To implement information flow checking, a
labelCheck method is declared in the Jif extension object. Many nodes do no work
for this pass and therefore can inherit a default implementation declared in the base Jif
extension class. Extension objects installed for expression and statement nodes override
the labelCheck method to implement the security typing judgment for the node. Del-
egates were used to override type checking of some AST nodes to disallow static fields
and inner classes since they may provide an avenue for information leaks.

Following label checking, the Jif AST is translated to a Java AST, largely by erasing
security annotations. The new statement and expression forms are rewritten to Java
syntax using the quasiquoting facility discussed in Section 4.

Jif/split further extends Jif to partition programs across multiple hosts based on their
security requirements. The syntax of Jif is modified slightly to also support integrity an-
notations. New passes, implemented in extension objects, partition the Jif/split program
into several Jif programs, each of which will run on a separate host.

5.2 PolyJ

PolyJ is an extension to Java that supports parametric polymorphism. Classes and inter-
faces may be declared with zero or more type parameters constrained by where clauses.
The base Java parser is extended using PPG, and AST node classes are added for where
clauses and for new type syntax. Further, the AST node for class declarations is extended
via inheritance to allow for type parameters and where clauses.

The PolyJ type system customizes the behavior of the base Java type system and in-
troduces judgments for parameterized and instantiated types.A new pass is introduced to
check that the types on which a parameterized class is instantiated satisfy the constraints
for that parameter, as described in [27].

The base compiler code generator is extended to generate code not only for each
PolyJ source class, but also an adapter class for each instantiation of a parameterized
class.

5.3 Results

As a measure of the programmer effort required to implement the extensions discussed
in this paper, the sizes of the code for these extensions are shown in Table 1. To eliminate
bias due to the length of identifiers in the source, sizes are given in number of tokens for
source files, including Java, CUP, and PPG files.

These results demonstrate that the cost of implementing language extensions scales
well with the degree to which the extension differs from its base language. Simple exten-
sions such as the covariant return extension that differ from Java in small, localized ways
can be implemented by writing only small amounts of code. To measure the overhead of
simply creating a language extension, we implemented an empty extension that makes
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Table 1. Extension size

Extension Token count Percent of Base Polyglot

base Polyglot 164136 100%

Jif 126188 77%
JMatch 105269 64%
PolyJ 78159 48%
Coffer 21251 13%
PAO 3422 2%
Param 3233 2%
covariant return 1562 1%
empty 691 < 1%

no changes to the Java language; the overhead includes empty subclasses of the base
compiler node factory and type system classes, an empty PPG parser specification, and
code for allocating these subclasses.

PolyJ, which has large changes to the type system and to code generation, requires
only about half as much code as the base Java compiler. For historical reasons, PolyJ
generates code by overriding the Polyglot code generator to directly output Java. The
size of this code could be reduced by using quasiquoting. Jif requires a large amount of
extension code because label checking in Jif is more complex than the Java type checking
that it extends. Much of the JMatch overhead is accounted for by extensive changes to
add complex statement and expression translations.

As a point of comparison, the base Polyglot compiler (which implements Java 1.4)
and the Java 1.1 compiler, javac, are nearly the same size when measured in tokens.
Thus, the base Polyglot compiler implementation is reasonably efficient. To be fair to
javac, we did not count its code for bytecode generation.About 10% of the base Polyglot
compiler consists of interfaces used to separate the interface hierarchy from the class
hierarchy. The javac compiler is not implemented this way.

Implementing small extensions has proved to be fairly easy. We asked a program-
mer previously unfamiliar with the framework to implement the covariant return type
extension; this took one day. The same programmer implemented several other small
extensions within a few days.

5.4 Discussion

In implementing Polyglot we found, not surprisingly, that application of good object-
oriented design principles greatly enhances Polyglot’s extensibility. Rigorous separa-
tion of interfaces and classes permit implementations to be more easily extended and
replaced; calls through interfaces ensure the framework is not bound to any particular
implementation of an interface. The Polyglot framework almost exclusively uses factory
methods to create objects [13], giving language extensions more freedom to change the
implementation provided by the base compiler by avoiding explicitly tying code to a
particular class.
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We chose to implement Polyglot using only standard Java features, but it is clear that
several language extensions—some of which we have implemented using Polyglot—
would have made it easier to implement Polyglot. Multimethods (e.g., [5]) would have
simplified the dispatching mechanism needed for our methodology. Open classes [6]
might provide a cleaner solution to the extensibility problem, particularly in conjunc-
tion with multimethods. Aspect-oriented programming [20] is another technique for
adding and overriding methods in an existing class hierarchy. Hierarchically extensible
datatypes and functions [25] offer another solution to the extensibility problem. Multi-
ple inheritance and, in particular, mixins (e.g., [4,11]) would facilitate application of an
extension to manyAST nodes at once. Built-in quasiquoting support would make transla-
tion more efficient, though the need to support several target languages would introduce
some difficulties. Covariant modification of method return types would eliminate many
unnecessary type casts, as would parametric polymorphism [27,28].

6 Related Work

There is much work that is related to Polyglot, including other extensible compilers,
macro systems, and visitor patterns.

JaCo is an extensible compiler for Java written in an extended version of Java [39]
that supports ML-style pattern matching. JaCo does not provide mixin extensibility. It
relies on a new language feature—extensible algebraic datatypes [38]—to address the
difficulty of handling new data types without changing existing code. Polyglot achieves
scalable extensibility while relying only on features available in Java.

CoSy [1] is a framework for combining compiler phases to create an optimizing
compiler. Compiler phases can be added and reused in multiple contexts without chang-
ing existing code. The framework was not designed for syntax extension. In the SUIF
compiler [36], data structures can be extended with annotations, similar to Polyglot’s ex-
tension objects; new annotations are ignored by existing compiler passes. Scorpion [31,
32] is a meta-programming environment that has a similar extension mechanism. Neither
SUIF nor Scorpion have a mechanism like Polyglot’s delegate objects to mix in method
overrides.

JastAdd [16] is a compiler framework that uses aspect-oriented programming to add
methods and fields into the AST node class hierarchy to implement new passes or to
override existing passes. The AST node hierarchy may be extended via inheritance, but
duplicate code may need to be written for each pass to support new nodes.

Macro systems and preprocessors are generally concerned only with syntactic ex-
tensions to a language. Recent systems for use in Java include EPP [18], JSE [12], and
JPP [21]. Maya [2] is a generalization of macro systems that uses generic functions
and multimethods to allow extension of Java syntax. Semantic actions can be defined
as multimethods on those generic functions. It is not clear how these systems scale to
support semantic checking for large extensions to the base language.

The Jakarta Tools Suite (JTS) [3] is a toolkit for implementing Java preprocessors
to create domain-specific languages. Extensions of a base language are encapsulated
as components that define the syntax and semantics of the extension. A fundamental
difference between JTS and Polyglot is that JTS is concerned primarily only the syntactic
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analysis of the extension language, not with semantic analysis [3, section 4]. This makes
JTS more like a macro system in which the macros are defined by extending the compiler
rather than declaring them in the source code.

OpenJava [34] uses a meta-object protocol (MOP) similar to Java’s reflection API
to allow manipulation of a program’s structure. OpenJava allows very limited extension
of syntax, but through its MOP exposes much of the semantic structure of the program.

The original Visitor design pattern [13] has led to many refinements. Extensible Visi-
tors [22] and Staggered Visitors [35] both enhance the extensibility of the visitor pattern
to facilitate adding new node types, but neither these nor the other refinements men-
tioned above support mixin extensibility. Staggered Visitors rely on multiple inheritance
to extend visitors with support for new nodes.

7 Conclusions

Our original motivation for developing the Polyglot compiler framework was simply to
provide a publicly available Java front end that could be easily extended to support new
languages. We discovered that the existing approaches to extensible compiler construc-
tion within Java did not solve to our satisfaction the problem of scalable extensibility
including mixins. Our extended visitor methodology is simple, yet improves on the pre-
vious solutions to the extensibility problem. Other Polyglot features such as extensible
parsing, pass scheduling, quasiquoting, and type signature insertion are also useful. Our
experience using Polyglot has shown that it is an effective way to produce compilers
for Java-like languages. We have used the framework for several significant language
extensions that modify Java syntax and semantics in complex ways. We hope that the
public release of this software in source code form will facilitate experimentation with
new features for object-oriented languages.
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