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Abstract.  UML-RT is achieving increasing popularity as a modeling language 
for real-time applications. Unfortunately UML-RT is not formally well defined 
and it is not well suited for supporting the specification stage: e.g., it does not 
provide native constructs to represent time and non-determinism. UML+ is an 
extension of UML that is formally well defined and suitable for expressing the 
specifications of real-time systems (e.g., the properties of a UML+ model can be 
formally verified). However, UML+ does not support design and development. 
This article addresses the translation of UML+ into UML-RT, thus posing the 
basis for a development framework where UML+ and UML-RT are used to-
gether, in order to remove each other’s limitations. Specifications are written us-
ing UML+, they are verified by means of formal methods, and are then con-
verted in an equivalent UML-RT model that becomes the starting point for the 
implementation. 

1 Introduction 

Formal methods have demonstrated to be effectively applicable in the industrial de-
velopment of real-time safety critical systems. Nevertheless, formal methods are not 
widely used in industry. The problem is that while the demand for real-time software 
increases very fast, the availability of developers who can master formal methods 
remains little. The consequence is that formal methods are generally considered too 
difficult or too expensive to be used in “ordinary” real-time software development. On 
the contrary, UML [14] has achieved a great popularity, essentially because it is a 
semi-formal notation relatively easy to use and well supported by tools. 

Interestingly, UML is gaining popularity also for real-time developments. In fact, 
UML for Real-Time (alias UML-RT) has been defined on the basis of ROOM [18] 
and has been rapidly adopted by many developers: it is likely that OMG will include 
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UML-RT features in the definition of UML 2.0. However, the application of UML-RT 
to the real-time domain is still suffering from several problems: 
• UML-RT is not formally well defined. This is a relevant limitation of UML-RT, 

since very often real-time applications are also safety-critical, and thus call for ac-
tivities like the verification of properties (such as safety, utility, liveness, …), the 
simulation of the system, the generation of test cases, etc. It is very hard – if at all 
possible – to carry out such activities when the specifications are written in semi-
formal notations like UML or UML-RT. 

• UML-RT is an effective notation for the design and implementation of systems, 
but not very well suited for representing requirements or specifications. For in-
stance, when modeling the environment in which a real-time system has to work it 
is often necessary to represent non-deterministic behavior or simultaneous events. 
These phenomena are not supported by UML-RT. 

• Finally, time issues (i.e., the representation of time and time constraints) are not 
treated at a native level: ad-hoc components (like timers) have to provide time-
related information to the system. This is not generally perceived as a big problem 
at the design level, as designers consider quite natural to model the existence of 
timers and similar objects. 

In previous work we addressed some of the above problems. In fact we adopted a dual 
language approach to real-time software development: in a first phase models are 
written in UML according to the usual modeling practices; in a second phase UML 
models are automatically translated into one or more formal notations, which provide 
support to activities such as the simulation, the verification of properties, the  genera-
tion of test cases, etc. In this way, developers exploit the advantages of formal nota-
tions while skipping the complex and expensive formal modeling phase, since they 
can use the notation they are familiar with. 

Actually we had to extend UML in order to let it satisfactorily specify real-time 
systems and to provide it with formal semantics [11,5,7,6]. The models written in the 
resulting language (called UML+ throughout this paper) can be automatically trans-
lated into equivalent TRIO temporal logic formulas [9] or into timed automata [1]. In 
this way existing formal methods can be applied. For instance the properties of the 
model can be verified by means of the Kronos model checker [20]. 

Although such work demonstrated the viability of the approach, our approach did 
not support the design and implementation activities. Consistently with our goal of 
defining a development method that can be effectively applied in industrial settings, 
we chose UML-RT as a target language. The reasons for this choice are that UML-RT 
is a very good notation for component-based developments, it is going to become a 
standard (it is very likely that it will be included in UML 2.0) and it is already very 
popular in industry. The aim of the work reported here is thus to build a bridge be-
tween our specification-oriented UML+ and the design-oriented UML-RT. 

The paper is structured as follows. Section 2 provides a brief introduction to 
UML+. Section 3 briefly recalls the main characteristics of UML-RT. Section 4 illus-
trates the problems for translating UML+ models into UML-RT and describes the 
proposed solutions. Section 5 describes the development environment that implements 
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the proposed approach. Section 6 presents a simple case study as a proof of concepts. 
Finally, Sect. 7 draws some conclusions and briefly accounts for related work. 

2 A Brief Introduction to UML+ 

The semantics associated with UML+ is directly inspired by the Timed Statecharts 
defined by Kesten and Pnueli [11]. This formalism extends the traditional statecharts 
by specifying time limits for the execution of transitions. The semantics is defined 
with reference to a dense time domain. This implies that the system may deal with 
events that are arbitrarily close in time to each other. Transitions are classified in two 
types: immediate ones and timed, or waiting, transitions. Immediate transitions do not 
depend on time: they are executed when a triggering event occurs. When no immedi-
ate transition is enabled, the time can flow with the state of the system remaining 
unchanged. On the contrary, timed transitions are independent from events. They are 
associated with a time interval that specifies a minimum and a maximum waiting 
time: the transition cannot be executed before the minimum or after the maximum 
waiting time. If no event changes the current state, the timed transition must be exe-
cuted before the maximum waiting time. In Timed Statecharts negated events can 
appear in the conditions which guard the execution of transitions. The concept of 
“step” is associated with the execution of an immediate transition; a reaction to an 
event may occur several steps after its generation, but still in the same timestamp. This 
kind of semantics is based on the fact that every generated event “persists” until the 
time does not flow. The time may flow only if all the transitions which were enabled 
by that event have been executed. In this way, several transitions triggered by the 
same event e are executed before the time becomes grater than the time of the occur-
rence of e. 
 

 
Fig. 1. A UML+ statechart 

Timed Statecharts have been further extended in UML+ to accommodate most of the 
syntax of UML State Diagrams that is not present in Timed Statecharts; for instance, 
inter-level transitions and fork transitions are allowed in UML+. In UML+ it also 
possible to associate transitions with both events and time intervals (see for instance 
the transition from S3 to S1 in Fig. 1). 

UML+ allows the modeler to associate a set of events to a transition, indicating that 
the transition is triggered by the concurrent occurrence of the set of events (see the 
transition from S2 to S1 in Fig. 1). 
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In UML+ guards can make reference to events. It is possible, for instance, to spec-
ify that a given transition is executed if event e1 occurs while event e3 is not occurring 
(see the transition from S2 to S3 in Fig. 1). 

Besides the modification of statecharts, UML+ does not exhibit differences with re-
spect to standard UML. However, our approach to verification of models based on 
UML+ only takes into account class diagrams, state diagrams and object diagrams. 
Other diagrams are ignored if present. The elements of the class diagrams are em-
ployed with their usual role and meaning. However, it must be noted that – being our 
approach devoted to the verification of real-time properties only – the attributes and 
the methods that do not affect real-time behavior of the models are ignored. 

A detailed definition of UML+ can be found in [12,5,7]. 

3 A Brief Introduction to UML-RT 

UML-RT is an extension of UML that addresses real-time issues.  It provides a for-
malism to handle active objects. An active object is called a Capsule in UML-RT and 
it communicates with other capsules through asynchronous messages, which are sent 
and received through Ports. A Port is defined by a Protocol that defines which mes-
sages can be sent through a port (Out messages) and which messages a port accepts (In 
messages). Given a Protocol, its conjugate is always defined by simply inverting the In 
and Out messages. 

The State Diagrams associated to each capsule have the usual syntax and semantic 
as in plain UML, including the “run to completion” behavior [14]. The only additional 
constraint is that any message (except internal messages, which remain in the bounda-
ries of the State Diagram) is always associated with a Port. 
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Fig. 2.  Capsules and ports in UML-RT 

Capsules are connected through Connectors. A Connector binds two different Ports 
with compatible Protocols. A protocol is always compatible with its conjugate. More-
over, a protocol P1 is compatible with another protocol P2 if P1 accept as In messages 
a superset of the P2’s Out messages and the set of P1’s Out messages is a subset of the 
messages accepted by P2. 
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Fig. 3. Connectors and state diagrams in UML-RT 

UML-RT mainly focuses on the concept of active component (the Capsule) and does 
not directly address real-time constraints. The concept of time can be found in stan-
dard UML-RT libraries – mainly thanks to the Timer class stereotype– but not directly 
in the modeling language.  

UML-RT is implementation-oriented: it is conceived to be used with a complete li-
brary in a language of choice, usually abstracting form the underneath platform. By 
embedding code fragments in transitions and states (as defined in plain UML) a UML-
RT model can be directly translated into code (Rational Rose RealTime being the 
reference tool for generating working embedded distributed systems from UML-RT 
models). 

4 From UML+ to UML-RT 

UML+ is a formal notation to express the desired behavior and the constraints of real-
time systems; i.e., it can be used to formalize real-time requirements. UML+ models 
are written in a visual language very close to standard UML 1.4, and can be translated 
in a formal language and checked to verify that the systems behave as required and 
that the constraints are satisfied. 

4.1 A Case Study 

In the rest of the paper an example is used to illustrate the proposed approach. The 
system to be modeled and developed is the Generalized Railroad Crossing (GRC) 
[10], one of the best known benchmarks proposed in the literature for evaluating for-
malisms and tools dealing with real-time software. 

The system to be modeled operates a gate at a railroad crossing. The railroad crossing 
I lies in a region of interest R (see Fig. 4). Trains travel through R on K tracks in one 
direction  (having trains  traveling in both  directions does not change the complexity and  
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Fig. 4. GRC regions of interest 

relevance of the case study). Trains can proceed at different speeds, and can even pass 
each other. Only one train per track is allowed to be in R at any moment.  Sensors 
indicate when each train enters and exits regions R and I. Point RI and RO indicate the 
position of the entrance and exit sensors for region R. II indicates the position of the 
sensor which detects trains entering region I. dm and dM are the minimum and maxi-
mum time taken by a train to cross RI-II zone. hm and hM are the minimum and 
maximum time taken by a train to cross zone I. g is the time taken by the bars of the 
gate to move from the completely open to completely closed position. 

4.2 UML+-RT: Making UML+ Component-Aware  

In order to support component-based development we have to make UML+ compo-
nent-aware. For this purpose we adopt the representation of components proposed by 
UML-RT, i.e., the capsules. This choice was taken because capsules are a satisfactory 
formalism, and because in this way it is easier to convert UML+ models into UML-
RT models. The result of merging UML+ (featuring the Timed Statecharts [11]) and 
UML-RT is a new modeling language called UML+-RT. 

UML+ specifications of real-time system are essentially composed of class dia-
grams and object diagrams; the instances of classes are active objects and their behav-
ior is defined by the associated Timed Statecharts. The structure of the system is de-
fined by an Object Diagram that is used to connect the class instances that compose 
the system. In UML+-RT we retain the same organization. As an example, let us con-
sider the model of the GRC. Figure 5 illustrates the class diagram of the system, where 
capsules, ports and protocols are explicitly modeled. The object diagram is used to 
define the first level capsule. This is relatively straightforward, since the Component 
Diagram of UML-RT is a specialization of the UML Collaboration Diagram [16,18], 
as are the object diagrams. Figure 6 illustrates the structure of the railroad crossing 
system in terms of capsules and connections, highlighting the connections to ports. 
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Fig. 5. UML+-RT class diagram 

 

 

Fig. 6. Main capsule: UML+-RT component diagram 

 
The behavior of a Capsule is defined by the associated Timed Statechart. For instance, 
Fig. 7 describes the behavior of class Gate: it clearly indicates that the events which 
cause the state transitions are received through the gatePort. 

 

 

Fig. 7. Timed statechart for the Gate class 
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4.3 Dealing with Synchronous Semantics 

UML+ adopts the synchronous semantics of Timed Statecharts. Synchronous seman-
tics – although useful in the analysis phase and ideal for the verification by model 
checkers – is unrealistic in the implementation phase. In a real system there are no 
cheap and easy ways to verify that two events are concurrent, to make two transitions 
fire simultaneously, and when the system is distributed it is not even easy to process 
messages in the same order in which they were generated. On the contrary, systems 
are implemented according to an asynchronous semantics. Most of the modeling tools 
that generate an implementation are based on asynchronous models. Hence it would be 
desirable to be able to transform UML+ synchronous specifications into asynchronous 
models, like UML-RT models. UML-RT was chosen as the target notation because it 
is probably going to become a standard, it is component-oriented (an important feature 
to facilitate reuse), and it is equipped with tools (one for all, Rational Rose RealTime) 
to generate working systems. 

The translation from UML+-RT to UML-RT is not simple. The “run to comple-
tion” semantics of the UML-RT State Diagrams is quite different from the “synchro-
nous execution of transitions” semantics of Timed Statecharts adopted in UML+ and 
UML+-RT. This difference can lead to some hard problems, described in Sect. 4.4. 
The problems that can arise are of two types: 

• Some model fragments simply do not make sense in UML-RT. For instance, in 
UML-RT it is not possible to deal with negated events or to associate a transition 
with a set of simultaneous events. 

• Some models have the same general meaning in UML-RT as in UML+, but their 
behavior is not actually the same. 

In the first case it is difficult to devise which UML-RT model would more closely 
represent the intended meaning of the given UML+ model. Therefore we decided not 
to translate models having this kind of characteristics, i.e., it is responsibility of the 
modeler to correct these situations. 

In the second case the model interpreted according to the UML-RT semantics could 
violate the properties that were proved valid for the same model interpreted according 
to UML+ semantics. In this case the modeler is invited to build a second, more realis-
tic UML+ model that takes into account the execution environment, and is therefore 
able to predict whether properties will remain valid also in the implementation-
oriented UML-RT model. 

The next section describes the problems mentioned above (and how to deal with 
them). 

4.4 Issues and Problems with the Translation from UML+-RT to UML-RT 

Consider the transition from S2 to S1 and the transition from S2 to S3 in Fig. 1: man-
aging concurrent events and negated events in UML-RT is impossible, therefore in 
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these cases the translator issues a warning and does not produce any UML-RT model. 
It is the modeler who has the responsibility to produce a more realistic model having 
similar characteristics. For instance the transition from S2 to S1 could be modified as 
shown in Fig. 8. 

 
Fig. 8. A statechart handling “almost concurrent” events 

The statechart in Fig. 8 prescribes that the transition from S2 to S1 happens when 
events e1 and e2 occur (in any order) in a [0, dt] interval. If dt is little the transition 
will happen when e1 and e2 occur in a very short – though finite – interval, while the 
original condition (given in Fig. 1) required that e1 and e2 occurred exactly at the 
same time. In practice there is generally no difference between the two specifications. 
In any case it is always possible to model-check the new version of the model contain-
ing the transition from S2 to S1 redefined as shown in Fig. 8, in order to assure that 
the desired properties still hold. 

Transitions involving negated events, timed transitions having tmin = tmax (i.e., transi-
tions reacting to events that must occur at a precise time) and instantaneous transitions 
(i.e., transitions that take null time to execute, even though they are associated with 
some action), can be treated in a similar way. In particular, we can specify that two 
events do not occur in a short finite interval, or that an event occurs in a short finite 
interval, or that an action takes a short finite time to complete. 
 

 

Fig. 9. A model containing simultaneous events (left) and the equivalent model with no simul-
taneous events 

Timed transitions, i.e., transitions bounded with a time interval [tmin, tmax], are easily 
represented in UML-RT when tmax > tmin. When a state having one or more of such 
outgoing timed transitions is entered clocks are set (via the UML-RT libraries) to tmin. 
When the state completes its activities (if any), it waits the expiration of the appropri-
ate clock before evaluating the guards associated with the timed transitions, and finally 
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fires one of the enabled transitions. Clocks can be set also on the upper bound tmax. In 
this case, if the state completes its activities after the upper bound, an exception is 
raised, reporting that the state activities have not respected the timing constraints 
specified in the original UML+-RT model. These exceptions are useful for testing; in 
any case it is a design decision how to handle them, i.e., whether to execute a transi-
tion even if the upper bound time has passed or to take a different action. 

Now let us consider the statechart reported in the left part of Fig. 9. In this case the 
statechart has a well defined meaning in UML-RT, but unfortunately the behavior of 
the system in UML-RT is not the same as in UML+. In fact in UML+ events e1 and 
e2 occur at the same time (i.e., in the same timestamp), while in UML-RT e2 will 
follow e1 with a finite (though probably little) delay, since events are extracted from 
the event queue one at a time. This means that the properties that hold for the UML+ 
model could be violated by the same model behaving according to UML-RT seman-
tics. 

In these cases we have models that are easily translated into UML-RT, but whose 
behavior will not match the previously model-checked one. We decided to solve this 
problem by maintaining two models: one for the purpose of translation, and another 
for the purpose of model checking (see Sect. 5). The latter model must reflect the 
behavior of the target UML-RT model. This can be achieved in two ways: 

1. The modeler explicitly represents that transitions take a non-null time, e.g., by 
assigning a positive lower bound to the time intervals associated with the transi-
tions. For instance, the UML+ model reported in the right part of Fig. 9 behaves as 
the UML-RT model reported in the left part of the same figure: event e2 follows 
event e1 after a finite time (not grater than dt). 

2. The modeler explicitly models in UML+ the event queue that is implicitly assumed 
by UML-RT statecharts. This requires to set the maximum size of the queue. 

In both cases the size of the model increases very fast as the number of events that 
have to be taken into account in the realistic delay period increases. 

Figure 10 illustrates a model exploiting a queue. The queue is a FIFO container that 
is loaded with the arriving events and releases them in a finite time, which represents 
the time actually needed to perform a transition. In the left part of Fig. 10 when e1 (or 
e4) occur, instead of issuing the events e2 (or e3) which would imply an instantaneous 
transition to state sy (or sz), the events e2q (or e3q) are issued. These events are “cap-
tured” by the queue (right part of Fig. 10), which will issue the event e2 (or e3) after a 
finite delay ≤ dt, thus causing the transition to sy (or sz). Note that here we made two 
assumptions: 

• The maximum time to handle a transition is dt.  Therefore the transition is associ-
ated with a time interval (0,dt]. If a minimum time dt_min were also defined the 
time interval would be [dt_min,dt]. 

• The length of the queue is 1. In general the length of the queue is given by the 
maximum number of events that can arrive during time interval [0, dt]. In the case 
depicted in Fig. 10 e2 and e3 are considered mutually exclusive (at least in the 
considered situation, i.e., immediately after the transition from s1 to s2 or s3). 
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Fig.  10. A model featuring a queue 

In Fig. 10 the notation t(0-dt] associated with a transition indicates that the transi-
tion has to occur in the interval (t,t+dt]. The notation t=0 indicates that clock t is reset. 
In this simple case this notation is actually not necessary (since t is always reset when 
exiting from state initial,  t(0-dt] is equivalent to (0-dt] in the transitions from sq2 and 
sq3 towards initial). However, in longer queues it is necessary to use this notation to 
express properly the time constraints. 

5 The Development Environment 

Thanks to the adoption of Timed Statecharts, UML+-RT has well-defined semantics. 
This allowed us to write a program that translates UML+-RT models into timed auto-
mata, so that the model checking tool Kronos [20] can be used to verify properties [3]. 
This is sufficient to support the specification phase, but does not help much in the 
design and implementation phase. For this purpose we want to generate a UML-RT 
model that preserves the properties already formally verified. However, the original 
model has to be modified, since it features perfect concurrency or synchronicity, 
which cannot be generally implemented in a model featuring asynchronous semantics. 
The problem is to preserve the properties of the original model, but also to check that 
these properties do not rely on characteristics of the model that cannot be implemented 
in the real world. Our approach is to make incremental refinements of a UML+-RT 
model until we achieve a model that can be safely translated into UML-RT. At first 
sight, this approach could seem to be a not very good trade-off, as long as most of the 
difficulties of the conversion are left with the modeler. However we believe that in 
this way some relevant advantages are achieved: 

• the modeler is guaranteed that the properties of the original model are maintained; 
• the modeler is guided in the modification of the model by the diagnostic  messages 

provided by the translator; 
• the modeler achieves a deeper understanding of the model, as new details (like the 

realistic duration of a transition) are added; 
• the final model actually reflects the ideas of the modeler. 
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Fig. 11. The envisaged programming environment 

Figure 11 illustrates the programming environment that implements the proposed 
approach. This environment supports a development process organized as follows. 

Initially the modeler creates a UML+-RT model without worrying about the im-
plementation of the model. The product of this phase is an “ideal” model, whose prop-
erties are verified by means of the model checker. 

The ideal model is then processed by the translator, which tries the conversion into 
UML-RT. In general the translator will find problems with the synchronicity of the 
model (see Sect.4.4) that are notified to the modeler. The latter modifies the model in 
order to remove the most obvious problems (simultaneous events, negated events, 
etc.). The new model is again verified by means of the model checker. 

The resulting “more realistic” model M is finally translated into a UML-RT model 
MRT. This step is mainly devoted to replacing timed transitions with transitions trig-
gered by events generated by timers; the setting, resetting, etc. of timers is determined 
by the translator on the basis of the timed transitions. However, MRT will not behave 
exactly like M, e.g., because in M transitions are instantaneous, while in MRT they take 
a finite time. In order to verify the properties of MRT the modeler builds a second 
UML+-RT model M’, which modifies M in order to represent its behavior according 
to the rules of the UML-RT environment (e.g., by introducing suitable queues of 
events). In practice in this phase the modeler maintains two models: M’ for the pur-
pose of model checking, and M for the purpose of translation into MRT. The behavior 
of  MRT in the UML-RT environment is equivalent to the behavior of M’ in the syn-
chronous model-checking environment. This equivalence descends from the fact that 
the modeler built M’ as a version of M where the “non-ideality” of the execution envi-
ronment is adequately considered. We considered the automatic construction of M’ 
too complex and/or too impractical to be attempted. The result is that the responsibil-
ity of maintaining M and M’ equivalent remains with the modeler. Generally, he/she is 
in a very good position to judge which features of the model M are too idealized, and, 
in these cases what are the sufficiently realistic corresponding models. For instance, 
the modeler can evaluate if a delay in handling a signal is long enough to alter the 
behavior of the system, and – if so – to explicitly model that delay (note: a prudent 
approach is to model the delay, and then remove it if the behavior is not affected). 
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At the end of this process, MRT is the starting point for the coding and testing 
phases. In UML-RT it is still possible to refine the model, but the refinements should 
be careful to preserve the properties that were successfully checked (the verification of 
the properties of component-based implementations in known run-time environments 
is the subject of an ongoing research activity). 

As a final observation, it should be noted that UML-RT is also used for introducing 
components in UML-based development of non real-time software in a more effective 
way than using standard UML components in deployment diagrams. Our approach is not 
very effective for this kind of developments. In fact, although it is possible to build 
UML+ (and UML+-RT) models of any system, in general systems that do not exhibit a 
real-time behavior do not need to be translated and model-checked as discussed above. 

6 Validation 

The system described in Sect. 4.1 has to operate the crossing gate in a way that satis-
fies the following two properties: 

Safety: The gate is closed during all occupancy intervals. 
Utility: If no train is in any occupancy interval, nor within ξ1 prior to an occupancy 

interval, nor within ξ2 after an occupancy interval, then the gate is open. 
Point X (see Fig. 4) is thus defined as follows: when a train enters zone X-II it is time 
to start closing the gate, so that the bar will be completely lowered when the train 
arrives at II. The exact position of X depends on the speed of the fastest trains. In 
order to have the gate closed when the fastest trains arrive at II, we must begin to 
close the gate dm-g time units after the train entered region R. If the train is slower the 
gate will be already closed when it enters the crossing region I. 

 

 
Fig.  12. The statechart of capsule controller 

 
The behavior of the controller is defined as specified in Fig. 12. The idea is that the 
Controller counts the trains in the X-RO zone (by means of variable ccr) and in the II-
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RO zone (by means of variable cir). As soon as ccr becomes grater than zero the con-
troller sends the close command to the gate. When ccr and cir become zero the open 
command is sent to the gate. The signals crossing and leaving correspond to the sig-
nals generated by the sensors II and RO, while signal arriving corresponding to point 
X must be delayed of dm-g time units with respect to the signal generated by sensor 
RI. It is responsibility of the Track components (whose statecharts are omitted because 
of space reasons) to satisfy these rules. The parameter n of the  arriving, crossing and 
leaving events is the identifier of the track which issues the signal. 
An important observation: the statechart given in Fig. 12 cannot be analyzed by Kronos as it is, 
because integer variables (like ccr and cir) are not allowed in the timed automata analyzed by 
Kronos. Since the number of tracks is limited  this problem can be easily solved by replacing 
the integer counters with finite state automata where each state represents a value. Moreover, 
the events cannot be parameterized: in the Kronos model arriving(n) must be replaced by arriv-
ing1, arriving2, …, arrivingN (where N is the number of tracks). This applies of course to 
crossing and leaving events as well.  

The model of the GRC described above was translated into a set of timed automata 
that satisfies the required properties (this was proven by means of the Kronos model 
checker). 

The model is relatively simple, thus it can be directly translated  into a UML-RT 
model, but the latter would not always behave as the original UML+-RT model. In 
fact by applying our translator (which implements the concepts described in section 4) 
we obtain a set of warnings, indicating that a new model is needed to verify the actual 
behavior of the UML-RT system. The warnings by the translator concern the follow-
ing issues: 

• In the statechart of capsule Gate the reactions to events open and close are im-
mediate. We need a queue to simulate non instantaneous transactions: in this case 
a 2 events, 2 place queue. The distance between an open and a close event is no 
less than g+hm (due to the behavior of the Controller). Being dt1 the time to 
handle one event, it must be 2 dt1 < (hm+g). For a real computer-based system 
this condition is very easily satisfied. 

• In the statechart of capsules CounterCir and CounterCcr (not shown) there are 
instantaneous transactions. In the worst case, N fastest trains enter region R si-
multaneously: they will enter region X-II simultaneously, they will enter region 
II-RO simultaneously and finally they will exit region I simultaneously. We need 
2 queues to manage these simultaneous transitions: one for CounterCir and one 
for CounterCcr. In both cases two pairs of events are relevant: arriving-leaving 
for CounterCcr and crossing-leaving for CounterCir. Both the queues are organ-
ized as follows (N being the number of tracks). The queues are a 2 events 2N 
place queue. Being dt2 the time taken to process a single event, it must be (2 N 
dt2) < (dm+hm). In fact, in the worst case, N fastest trains entering simultane-
ously fill the queue with  2N events, which must be handled in no more than 
(dm+hm) time units (i.e., before all the trains leave the crossing). For a real 
computer-based system this condition is very easily satisfied. 

• Capsule Track generates signal arriving exactly dm-g time units after receiving 
the signal generated by sensor RI. Signal arriving is communicated instantly to 
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the Controller. This is unfeasible in a real-life environment. We have to give 
time to a real-world controller to react: for this purpose we specify that signal ar-
riving is issued (dm–g)–d_react time units after the signal from the sensor is re-
ceived, where d_react is the time taken by the real environment to react to an 
event (including event handling, transmission, etc.). 

 
Following the principles illustrated in Sect. 5 we built a “more realistic” UML+-RT 
model. This model was then translated into UML-RT, and the resulting model was 
tested by means of AnyLogic, a tool that provides a simulation environment for UML-
RT models. The simulation showed that the system actually behaves as required. The 
simulation can be seen at http://www.xjtek.com/applications/?area=traffic (the model 
can be downloaded from the same site). Of course the simulation does not guarantee 
that sooner or later an erroneous situation will occur. In order to exclude this possibil-
ity we need to formally prove the properties of the system. For this purpose, we also 
built –following the indications of the translator reported above– the model that repro-
duces the behavior of the environment. This model – translated into timed automata 
and checked by means of Kronos – showed that the system’s behavior actually satis-
fies the requirements. Note that in order to satisfy the requirements, d_react has to be 
given a proper value. Such value can be computed taking into account the delays in-
troduced by the queues and the characteristics of the model or – more simply – by 
means of a trial-and-error process. In fact by running Kronos with half a dozen differ-
ent values of  d_react we were able not only to find safe values, but also the minimum 
safe value. 

The Kronos model was also used to find unsafe working conditions for the system 
(e.g., dm too short with respect to the speed of the gate). Modifying the simulation 
model accordingly we were able to simulate with AnyLogic the occurrence of errone-
ous situations. 

7 Conclusions and Related Work 

Several research activities were carried out in order to provide UML with formal se-
mantics. However, such initiatives assume perfect technology (like [8]) or are oriented 
to providing UML with a precise underlying model (like [17]).  

In fact, one of the main obstacles to the application of rigorous development tech-
niques is the difference between real-time application software and functional design 
(which adopt simplifying assumptions, like instantaneous and perfect communications, 
synchrony of interaction with the environment, or atomicity of actions) and the physi-
cal real-time systems [19]. 

In order to solve the “synchrony assumption” Taxys provides a compiler that de-
rives a verifiable model from programs written in Esterel and C [2]. In particular, the 
model includes the specification of an “event handler” that represents the interface 
between the external environment and the real-time application (and plays a role simi-
lar to our event queues). 
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The work presented here is an initial effort to tackle the problem of bridging a per-
fect, synchronous, specification-oriented UML-based formalism with the real, imper-
fect, asynchronous implementation world. In particular we addressed the conversion 
of UML+ (an extension of UML that is suitable for the specification of real-time sys-
tems [5]) into a notation suitable for implementation, namely UML-RT, with the con-
straint that the final model retains the properties of the original model. This goal re-
quired to add the concept of component (or capsule) to UML+, and to map the syn-
chronous semantics of UML+ onto the asynchronous semantics of UML-RT. The first 
task was easily solved by borrowing the component notation of UML-RT. The graphi-
cal language obtained (called UML+-RT) integrates the component-oriented concepts 
of UML-RT with the elements of UML+, and specially with Timed Statecharts [11]. 
Much harder is the conversion of a synchronous model into an asynchronous one. We 
propose a translation process based on incremental refinements of the original UML+-
RT model, guided by the translation tool and aiming at the complete removal of the 
features that model “ideal” situations that cannot be achieved in practice. In particular 
we propose to use two models, one to be translated into UML-RT for implementation, 
and another explicitly modeling the mechanisms of the real execution environment, in 
order to formally prove the properties of the system in real working conditions. 

Figure 11 illustrates the development environment which exploits UML+-RT and 
the associated tools. The construction of the tools is complete, while their integration 
is in progress. The environment will enable a development process where the devel-
opment is mainly based on model construction, and the relevant properties of the 
models can be checked step-by-step. 
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