
A Description Language for Composable
Components

Ioana Şora1, Pierre Verbaeten2, and Yolande Berbers2

1 Universitatea Politehnica Timisoara, Department of Computer Science
Bd. V.Parvan 2, 1900 Timisoara, Romania

ioana@cs.utt.ro
2 Katholieke Universiteit Leuven, Department of Computer Science

Celestijnenlaan 200A, 3001 Leuven, Belgium
{pierre.verbaeten,yolande.berbers}@cs.kuleuven.ac.be

Abstract. In this paper1 we present CCDL, our description language for
composable components. We have introduced hierarchically composable
components as means to achieve finetuned customization of component
based systems. A composable component is defined by a fixed contrac-
tual specification of its external view and a set of structural constraints
for its internal configuration. The internal configuration of a composa-
ble component is not fixed, but will be composed according to different
requirements and has to comply with the structural constraints. This
permits a high degree of unanticipated variability. Our approach is ar-
chitectural style specific and addresses multiflow architectures. The goal
of CCDL is to describe contractual specifications and structural con-
straints of composable components, as guidelines for their composition.
CCDL descriptions can be used by automatic composition tools that
implement requirements driven composition strategies.

1 Introduction

The growing complexity of modern software systems has lead to an empha-
sis on compositional approaches for system development. The advantages of a
component-based approach to software engineering are twofold. Firstly, it can re-
duce production time through discipline and re-use, leading to more manageable
systems. Secondly, such assembled systems can be easily updated by changing
one or more components. These changes make it possible to respond to unan-
ticipated future requirements or to a larger and better offer on the component
market.

An important research topic is to be able to predict the properties of a
component assembly, based on the properties of its components. In the case of
software composition, predictable assembly means to find a set of components
and to determine the collaborations between them so that it forms a software
1 This research has been partially carried out in order of Alcatel Bell with finan-

cial support of the Flemish institute for the advancement of scientific-technological
research in the industry (IWT SCAN # 010319)

M. Pezzè (Ed.): FASE 2003, LNCS 2621, pp. 22–36, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



A Description Language for Composable Components 23

system that complies with a given set of requirements. However, composing a
whole system only from its requirements is not feasible, additional constraints
and guidelines are needed.

Automatic component composition can be used as a mechanism to achieve
(dynamic) self-customizable systems that are able to adapt themselves to chan-
ging user requirements or to their evolving environment. The general issues of
software composition apply as well in the case of automatic component compo-
sition. Also, there is a need to support unanticipated customization: solutions
should not be limited to the use of a set of known in advance components or
configurations. Solutions must be open to discover and integrate new compo-
nents and configurations, in response to new types of requests or to improve
existing solutions when new components become available. The problem that
arises here is to balance between the support for unanticipated customizations
and the need for constraints that guarantee a correct composition of a system
with required properties. Such constraints are essential especially in the case
of non-computable properties, that means when the properties of the assembly
cannot be calculated from individual components properties. The fact that in
case of automatic component composition the composition decision is a machine
decision requires additional rigor and thoroughness. Automatic software compo-
sition has to be built on a systematic compositional model that must comprise
a component description scheme and formalism, and a coordinated, well defined
requirements driven composition strategy.

We developed a composable components model, together with CCDL as
its description formalism, in the context of a compositional model for self-
customizable systems. The internal configuration of a composable component,
while not fixed, must comply to a fixed set of structural constraints, part of
the component description. These structural constraints are only guidelines for
future composition of the internal structure and not a full configuration de-
scription. The structural constraints are flexible enough to allow unanticipated
compositions. The actual internal structure of a composable component is dy-
namically determined according to current requirements. This component de-
scription model establishes what information is needed to be known about the
components in order to make composition decisions while CCDL defines a for-
malism that can be processed by automatic composition tools. Compositional
decisions are made in knowledge of the architectural style, but ignoring some de-
tails of the underlying component technology, as long as this complies with the
architectural assumptions. Working at the architectural level has the advantage
that it abstracts domain-specific issues and permits implementation of generic
composition strategies. We are developing a compositional model, targeted at
multi-flow architectures. This establishes a framework for finding a component
composition with desired properties, based on properties of individual compo-
nents. We have built a Composer tool to automatize the requirements driven
composition of systems.

The remainder of this paper is organized as follows: Section 2 presents the
overall picture of our automatic component composition approach. Section 3



24 I. Şora, P. Verbaeten, and Y. Berbers

introduces the basic concepts of our architectural component model. We describe
the composable component approach and CCDL in Sect. 4. Section 5 presents
deployment scenarios for CCDL descriptions. In Sect. 6 we discuss our approach
in the context of related work. The last section presents the concluding remarks.

2 Background

The automatic composition problem, as we address it, is the following: given a set
of requirements describing the properties of a desired system, and a component
repository that contains descriptions of available components, the composition
process has to find a set of components and their configuration to realize the
desired system. All components can be composable, that means that determining
their internal structure is also a recursive composition problem.

The compositional decision making system (the Composer) operates on an
architectural model [OGT+99] of the system. This architectural model is a struc-
ture description of the composed system. The Composer finds the structure of
the target system starting from the imposed requirements. The Composer is
architecture-style specific, the composition decisions implemented by the Com-
poser do not contain application-specific code. The Composer determines and
maintains the structure description of the composed system, while a Builder uses
this structure description to build or maintain the system. The Builder depends
upon (or is part of) the underlying component technology and framework. This
integrated approach for self-customizable systems is depicted in Fig. 1.

The Composer operates with requirements stated as expressions that contain
component properties. In the case when self-customization is used as start-up
time configuration according to user requirements, an optional Translator front-
end (i.e., in form of a Wizard) could be deployed to generate the requirements
in form of properties expressions from a more domain-specific form.

The Composer has access to a repository containing CCDL descriptions of
available components. The target of the composition is also a composable com-
ponent and it has its structural constraints described in CCDL. The structural
constraints have the role of guidelines for the composition, as they will be dis-
cussed further in Sect. 4.2

As we describe in Sect. 3.2, our model comprises simple and composable
components. The composition will result through stepwise refinements: after a
composition process has determined that it wants a certain component type in
place, and this is a composable one, a new composition search may be launched
for composing the internal structure of it, in order to finetune its properties.

We have used the Composer to achieve self customizable network protocol
stacks, as presented in [SMBV02] and [SVB02].

3 The Architectural Component Model

The compositional model proposed by us assumes that the system architecture
belongs to a certain architectural style. Some details of the component model



A Description Language for Composable Components 25

Requirements

Translator

Composer

Requirements
for target

Composed
System

Component Framework

Component
Implementations

Builder

CCDL
Component
DescriptionsStructure

Description of
Composition

Structural
constraints
for target
(CCDL)

Application
Domain

System
Architecture

Component
Framework

Fig. 1. Integrated approach for self-customizable systems

(like the programming interfaces) are not presented here, since they are not
used in the composing phase, only later in the building phase of the system (as
mentioned before in Sect. 2).

3.1 Basic Concepts

We present briefly the basic component concepts that we use and that are consi-
stent, in the main, with the software component bibliography [BBB+00,Szy97].
We emphasize here our personal interpretations and particularities.

Software component: is an implementation of some functionality, available
under the condition of a certain contract, independently deployable and subject
to composition. A component in our approach is also an architectural abstrac-
tion.

Component contract: specifies the services provided by the component and
the obligation of clients and environment needed by the component to provide



26 I. Şora, P. Verbaeten, and Y. Berbers

these services. In our approach, contracts are expressed through sets of required-
provided properties.

Component property: “Something that is known and detectable about the
component” [HMSW02]. In our approach, a property is expressed through a
name (a label) from a vocabulary set. These names are treated in a semantic-
unaware way [SMBV02]. In our more recent approach, values can be also asso-
ciated with properties.

Port: “a logical point of interaction between the component and its environ-
ment” [AG97]. There are input ports, through which the component receives
data, and output ports, through which the component generates data.

Flow: the data-flow relation among pairs of ports. A flow has parts where it
is internal to a component (from an input to an output port of that component)
and parts where it is between two components (a connection).

Multi-flow architecture: it is a variation of the pipes-and-filters [Gar01] ar-
chitecture. An informal example is presented in Fig. 2. The particularity of this
architectural style is that dataflow relations are defined first (the “flows” in our
terminology) and components must fit on them. For every component the inter-
nal flows must be known so that they can be integrated in the flow architecture.
In the example in Fig. 2, the system S has two flows on which it contains the
subcomponents (Fig. 2a). The system S can be realized as different compositions
of components on these flows, two possibilities are depicted in Fig. 2b.

S S.In S.InS.Out S.Out

REL

UDP

IP

ETH

ETHNI

TCP

IP

ETH

ETHNI

S.In S.Out

a.) b.)

Fig. 2. Multi-flow architecture example. System S is defined by two flows and can be
realized as different component compositions on these



A Description Language for Composable Components 27

3.2 Hierarchical Relationships between Components

Our model comprises simple and composed components. A simple component
is the basic unit of composition, has one input port and one output port. A
composed component appears as a grouping mechanism, may have several input
and output ports. The whole system may be seen as a composed component, as S
being both the system and a composed component in the example in Fig. 2. The
internal structure of a composed component is aligned on a number of flows that
connect its input ports with some of its output ports. For the internal structure
of a composed component the same style of multi-flow architecture applies.

Composed components are “first class” components, they have their own
properties and contractual interfaces and fixed internal flows. The composed
component as a whole is always defined by its own set of provided properties,
which expresses the higher-abstraction-level features gained through the compo-
sition of the subcomponents. The vocabulary used to describe the own provides
of a composed component is distinct from the vocabulary deployed for describing
the provides of its subcomponents. This abstraction definition must be done by
the designer of the composed component. The properties of the subcomponent
are causally linked to the properties of the composed component, but often they
cannot be computed or deducted from them, as it is the case for example with
the functional properties. Many properties of an assembly are emergent pro-
perties, they are related to the overall behavior of the assembly and depend on
the collaboration of several components and can be seen as expressed at a higher
abstraction level.

The internal structure of a composed component is mostly not fixed, these
components are composable in the limits of certain structural constraints, as will
be presented in Sect. 4.2.

3.3 Contracts Expressed through Properties

Contracts are expressed through required-provided properties. Provided pro-
perties are associated with the component as a whole. Requirements are asso-
ciated with the ports. A contract for a component is respected if all its required
properties have found a match. Requirements associated with an input port
Cx.Iny are addressed to components which have output ports connected to the
flow ingoing Cx.Iny. Requirements associated with an output port Cx.Outy are
addressing components which have inputs connected to the flow exiting Cx.Outy.

In the case of composed components, provided properties can also be asso-
ciated with ports, reflecting the internal structure of the component.

We assume that in the underlying component model, every input port may
be connected to every output port. The meaningful compositions are determi-
ned by the criteria of correct composition, based on matching required with
provided properties. A properties match is primarily defined by the match of
the properties names. Properties values, if present, are used as parameters for
further component configuration. By default, it is sufficient that requirements
are met by some components that are present in the flow connected to that



28 I. Şora, P. Verbaeten, and Y. Berbers

port, these requirements are able to propagate. The mechanism of propagation
of requirements and the basic composition strategy are presented in [SMBV02].
One can specify immediate requirements, which are not propagated, these apply
only to the next component on that flow. Negative requirements specify that a
property should not be present on the referred flow. Pair requirements refer to
pairs that must be always matched in the same relative order.

As an example, in Fig. 3 is presented a simple assembly of fully mat-
ched components. The example presents a data flow part of a sender-receiver
system, where encryption and compression of the transmitted data must oc-
cur and also the data transmission time must be calculated. The example sy-
stem in the figure comprises seven components, and the assembly fulfills the
system requirements and all component requirements are fully matched. The
TripT imeCalculator component calculates the time delay on a given flow. It
requires that timestamps are attached to the data on its incoming flow (has
the requirement timestamp at its input port TripT imeCalculator.In. This is
a propagateable requirement, it can be provided by a component at any place
in the incoming flow of TripT imeCalculator, as it is the case with component
Timestamper that provides the property timestamp. The Encrypter compo-
nent has the requirement for decryption on its outgoing flow, declared as a pair
requirement. Also the Compresser has a pair requirement for decompression.
Since requirements declared as pairs must be matched in the same order as
they were posed, the Compresser − Decompresser sequence may either con-
tain the Encryptor−Decryptor sequence or be contained by it. A sequence like
Encryptor−Compresser−Decryptor−Decompresser is not permitted due to
the requirements being declared as pair.

TripTimeCalculator

Timestamper

Encrypter Decrypter

timestamp

timestamp

encryption
[pair]

decryption
[pair]

encryption

triptime

decryption

In

In

In

In

Out

Out

Out

Out

Compresser

compression

decompression
[pair]

Decompresser

compression
[pair]

decompression

C

In

Out

Out

In

p1, p2

Fig. 3. Contracts expressed through required-provided properties



A Description Language for Composable Components 29

4 CCDL – The Description Language for Composable
Components

We have developed CCDL, a description language that allows the specification
of composable components. Current interface definition languages do not provide
sufficient information about the described components for automatic component
composition. Architectural description languages do not support the undefined
variable internal structure of composable components. As presented in [MT00],
a condition for a language to be an ADL is to be able to represent compo-
nents, connectors and architectural configurations. Architectural configurations
describe an architectural structure (topology) of components and connectors.
The point is, in our case, the internal structure of composable components
needs to be not represented, its configuration must remain open. In CCDL,
only “structural constraints” have to be specified, leaving open the possibili-
ties of composition. The structural constraints in our component descriptions
are just flexible guidelines for future configuration compositions and not a full
architecture configuration description.

We have defined CCDL, our component description language for composable
components, as a XML Schema. The XML Schema standard is a meta-language
suitable for developing new notations. This choice for XML [XML00] simplifies
the implementation and later the use of the description language due to the large
availability of tools for creating, editing and manipulating XML documents. We
use the Apache Xerces XML parser in our implementation. Editing a CCDL
description can be done with aid of syntax-directed editing tools for XML.

The CCDL description of a component comprises two main parts: the exter-
nal view (contractual specification through information about global provided
properties and information on the ports) and the internal view, if it is a compo-
sed component. The internal view may specify either structural constraints, if
the component is composable, or a complete structural description, if the compo-
nent has an already fixed internal configuration. The description of the external
and internal view will be detailed in the next sections.

4.1 External View Description

The component externals contain the set of provided properties and informa-
tion about all the ports. Sets of properties are used to describe the component
contracts – for requirements and provides. As mentioned before, properties are
in the essence names, and they are treated in a semantic-unaware way by the
Composer. Properties can be further specified by values that are configuration
parameters. Properties may come with a list of subproperties (introduced by
the WITH tag after a property definition). The list of subproperties represents
finetuning options. Subproperties are often used to finetune a requirement ad-
dressed to a composable component. I.e., for a requirement p1 WITH p11, p12, a
match is a component C that exposes the provided property p1, and the internal
structure of C must be further composed so that it will provide the finetuning
properties p11 and p12. Subproperties can also be present in the definition of a



30 I. Şora, P. Verbaeten, and Y. Berbers

composed component if its structure is already fixed. A composable component
has usually no subproperties in its definition.

4.2 Internal View Description

The composable components do not have a fixed internal structure. In this ap-
proach lies a powerful part of the customization capability: the full internal
configuration of the component will be composed as a result of external requi-
rements allowing fine-tuning of properties [SJBV02,SVB02].

As mentioned before (in Sect. 3.2), composed components are first class enti-
ties, that have their own interfaces with ports, provided and required properties.
They have also well defined internal flows. These are the fixed elements of a
composed component. The internal structure is not fixed, but still some structu-
ral constraints must exist in order to always enforce compliance with the global
component description.

The structural constraints of a composable component comprise: basic struc-
tural constraints, structural context-dependent requirements for components and
inter-flow dependencies.

The basic structural constraints describe the minimal properties that must be
assembled on particular flows for the declared provides of the composed compo-
nent to emerge. These constraints virtually define a “skeleton” of the composed
component. This “skeleton” is not a rigid structure, it fixes only the flows and
establishes order relationships between properties that must be present on these
flows. Figure 4 presents as an example the basic structural constraints for a
component S, that represents a customizable network protocol stack. The basic
structural constraints of S specify that it has two flows, corresponding to the
downgoing (sending) and upgoing (receiving) path of packets through the stack.
On these flows arbitrary protocol layer components can be added. The structural
constraints specify that at the bottom of the stack the property NetwInt must
be provided.

The basic structural constraints must be specified by the developer of the
composed component.

The structural context-dependent requirements express requirements related
to other components when deployed here as subcomponents. If a certain compo-
nent X can act as a subcomponent in the context of a composed component C,
and the basic structural constraints of C are not sufficient to fully specify the
correct deployment of X in the context of C, then appropriate specifications have
to be added to the structural context-dependent requirements of C. These struc-
tural context-dependent requirements in C will be added by the developer of the
subcomponent X. Syntactically, they are expressed also in terms of properties
contained on flows and order relationships between these properties. The pre-
sence of these contained properties or order relationships as context-dependent
requirements does not impose a mandatory skeleton as for the basic structural
constraints. They specify the terms under which a certain subcomponent may
be deployed here, but only if it considered necessary by external requirements.



A Description Language for Composable Components 31

S
S.In S.Out

stack

NetwInt

* > NetwInt

NetwInt

NetwInt > *

Fig. 4. Basic structural constraints example for composable component S

The inter-flow dependencies specify relationships between the flows. These
relationships between flows can express continuation (a flow might be a logical
continuation of another) or connections between flows. In the example in Fig. 4,
there is a logical continuation relationship between the two flows.

The full CCDL description of S, the composable stack component, is given
in Fig. 5.

A concrete stack will be built after determining its structure according to
specific requirements. For example, if the current requirements are:
stack WITH rel, transp, two possible component assemblies that match these
requirements are these depicted in Fig. 2b.

5 Repositories

The deployment of components is supported by information from a component
repository and an implementation repository. The component repository contains
CCDL descriptions of components. The implementation repository contains im-
plementation descriptions for existing component description. Not every com-
ponent description must have a known implementation, the composable compo-
nents usually do not have known implementations. Different ways of implemen-
tation descriptions are possible: by having specified the implementation classes
or referring to the structure of a composed component. The implementation de-
scription may add also the implementation characteristics – a set of properties
particular only for the implementation. This decoupling between component de-
scriptions and implementation descriptions facilitates an easy deployment as well
for using components as for introducing new component types.

The decision to use an existing component is made based on the component
description. Later, an implementation must be found for that component, using
the implementation repository. While the choice of a component made on hand
of its properties handles the functional features of the composed system, non-
functional requirements are handled by the choice of a right implementation,



32 I. Şora, P. Verbaeten, and Y. Berbers

<?xml version="1.0" encoding="UTF-8"?>
<!--CCDL for composable Stack component-->
<component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="E:\comp.xsd" name="Stack">

<componentExternals>
<provides>

<property name="stack"/>
</provides>
<port name="in" type="in" entrance="true"/>
<port name="out" type="out" entrance="true"/>

</componentExternals>
<componentInternals>

<structuralConstraints>
<basicStructuralConstraints>

<start name="start_up">
<out name="out"/>

</start>
<end name="end_down">

<in name="in"/>
</end>
<flow name="downgoing" from="in" to="end_down.in"/>
<flow name="upgoing" from="start_up.out" to="out"/>
<containedProperty name="nw_interface" flowlocation="downgoing"/>
<containedProperty name="nw_interface" flowlocation="upgoing"/>
<orderRelation below="nw_interface" above="any" flowlocation="downgoing"/>
<orderRelation below="any" above="nw_interface" flowlocation="upgoing"/>

</basicStructuralConstraints>
<interflowDependencies>

<continuation from="downgoing" to="upgoing"/>
</interflowDependencies>
<contextDependencies/>

</structuralConstraints>
</componentInternals>

</component>

Fig. 5. CCDL description

based on the implementation characteristics. If there is no known implemen-
tation, or if the implementation is not according to all the requirements, the
component will be composed according to the requirements and in the limits of
the structural constraints specified in the component description.

New components may be easily introduced to the system, following a scenario
like depicted in Fig. 6, that presents the actions to make a new component CX
known to the system. First, the new component has to be described, using for its
properties terms from the established vocabulary, or extending the vocabulary
when introducing new properties. The vocabulary of properties can be extended
with new properties definitions. However, the extension of the vocabulary as well
as deploying properties in component description should be subject to certifi-
cation. Secondly, a CCDL description of the new component must be added. It
may appear the need to define special interactions for the component CX when
used in certain contexts. This leads to an update of the structural requirements
of the components where it might be deployed. It is the task of the designer
of the component CX to provide a list of updates for the use of CX in the



A Description Language for Composable Components 33

Component
Repository

Implementation
Repository

CA

CB

Vocabulary
of

properties

CX

CCUse/
Update
vocabulary

Update
structural
requirements

CX

Add
Description Add

Implementation(s)

1

3

2
4

Fig. 6. Deployment of repository tools. Example of introducing a new component CX
to the system

context of different compositions. For example, when using CX in the composi-
tion of CB, special restrictions might appear as to where CX should be placed
in CB’s internal structure. This is the case when CX provides new properties,
which were unknown at the moment of CB’s development. Ordering relations
on the flows between these new properties and the other properties that might
be involved must be specified. Final step is to provide implementation(s) for it,
either in form of implementation classes or a complete description of the internal
structure of a composed component. Composed components do not necessarily
have implementations specified.

6 Discussion and Related Work

Our insight is that a composition model should address the architectural level,
to be usable across different applications that share that architectural style.
The approach is to build a system by assuming a certain defined architectural
style. This approach of component composition being treated in the context
of architecture is largely accepted in the research community [Ham02,IT02b,
Wil01,IS01,BG97,KI00], as it makes the problem manageable and eliminates the
problems of architectural mismatch [GAO95]. In this context, we present a model
for composable components in multiflow architectures, together with CCDL, its
description language.

CCDL is neither an interface description language nor an architectural de-
scription language, but presents some concepts related with both of them. Issues



34 I. Şora, P. Verbaeten, and Y. Berbers

of composition of architectural components have been addressed within ADL’s
(see [MT00] for an comprehensive overview). In these cases, deciding a good
component combination is done statically and relies completely on the applica-
tion programmer. Even within ADL’s that support dynamic architectures, the
dynamism is a “programmed” one. Here the goal of CCDL is different than that
of ADL’s. The role of ADL’s is to model and describe software architectures, with
their explicit configuration. The information contained in an architectural de-
scription can be used in tools to analyze properties of the architectural structure.
On the other hand, CCDL does not fully describe a composed system, neither
a composed component. It states only guidelines for future composition of that
system or component, in form of structural constraints. The role of CCDL is to
describe minimal requirements for the system configuration, leaving the confi-
guration itself open. Tools take CCDL descriptions and generate the concrete
structural configuration according to requirements. We might relate to xADL
[DvdHT01], that has the capability to make conceptually distinction between
architectural prescription (design-time template) and architectural description
(runtime state of system). However, xADL prescriptions accept a reduced degree
of variability, it can specify that certain components are optional. Nearer to our
goal are [IB96] with ASTER, an interconnection language for specification of
application requirements. It is used to automatically build a distributed runtime
system customized to meet the requirements [KI00].

We relate also with research on predictable component assembly. An impor-
tant research topic in component composition is the prediction of the assembly-
level properties of a component composition [HMSW02,CBS01]. Here most effort
is directed toward prediction of static properties (end-to-end latency, memory
consumption [FEHC02]), where the same property of an assembly can be cal-
culated from the properties of the components, requiring no additional informa-
tion. For non-quantitative properties, approaches focus on usually one property:
deadlock [IT02a], reliability [SM02]. We consider mostly non-computable pro-
perties in our model. The properties of a composed component in our model
are usually seen as abstract features, expressed at a higher semantic abstraction
level than the properties of the parts. Having the structural constraints as part
of a composable component’s description specifies which properties put together
and assembled will emerge the higher-level assembly property. The structural
constraints are a flexible mechanism to enforce a predictable assembly of non-
quantitative and non-computable properties.

7 Conclusions

In this paper we present CCDL, a description language for composable compo-
nents in multi-flow architectures. We have introduced hierarchically composable
components as a means to achieve finetuned customization of component based
systems.

The goal of CCDL is to express guidelines for the component composition.
CCDL descriptions can be used by automatic composition tools that implement



A Description Language for Composable Components 35

requirements driven compositions strategies. We have built a Composer and used
it in achieving self-customizable network protocols.

A strength of our approach is that it permits a high degree of unanticipa-
ted variability, it permits to easily formulate and solve new requirements and to
discover and use in given composition problems new component types, with mi-
nimal user intervention, which is very important in the case of self-customizable
systems. Composable components as deployed in our model and the mechanism
of defining them through their structural constraints offer the necessary flexibi-
lity, while guaranteeing a predictable assembly.

References

[AG97] Robert Allen and David Garlan. A formal basis for architectural connec-
tion. ACM Transactions on Software Engineering and Methodology,
6(3):213–249, 1997.

[BBB+00] Felix Bachman, Len Bass, Charles Buhman, Santiago Comella-Dorda,
Fred Long, John Robert, Robert Seacord, and Kurt Wallnau. Technical
concepts of component-based software engineering, CMU/SEI-2000-TR-
008. Technical report, Carnegie Mellon Software Engineering Institute,
May 2000.

[BG97] Don Batory and Bart Geraci. Composition validation and subjectivity in
GenVoca generators. IEEE Transactions on Software Engineering, 23(2),
February 1997.

[CBS01] Proceedings of the 4th ICSE Workshop on Component-Based Software
Engineering dedicated to Component Certification and System Predic-
tion, 2001.

[DvdHT01] Eric M. Dashofy, Andre van der Hoek, and Richard N. Taylor. A highly-
extensible, XML-based architecture description language. In Procee-
dings of the Working IEEE/IFIP Conference on Software Architectures
(WICSA 2001), Amsterdam, Netherlands, 2001.

[FEHC02] A.V. Fioukov, E.M. Eskenazi, D.K. Hammer, and M.R.V. Chaudron. Eva-
luation of static properties for component-based architectures. In Procee-
dings 28th EUROMICRO conference on Component-based Software En-
gineering, Dortmund, Germany, September 4th–6th 2002.

[GAO95] David Garlan, Robert Allen, and John Ockerbloom. Architectural mis-
match, or, why it’s hard to build systems out of existing parts. In Pro-
ceedings of the 17th International Conference on Software Engineering,
pages 179–185, Seattle, Washington, April 1995.

[Gar01] David Garlan. Software architecture. In J. Marciniak, editor, Wiley
Encyclopedia of Software Engineering. John Wiley & Sons, 2001.

[Ham02] Dieter K. Hammer. Component-based architecting for component-based
systems. In Mehmet Askit, editor, Software Architectures and Component
Technology. Kluwer, 2002.

[HMSW02] Scott A. Hissam, Gabriel A. Moreno, Judith A. Stafford, and Kurt C.
Wallnau. Packaging predictable assembly. In IFIP/ACM Working Confe-
rence on Component Deployment (CD2002), Berlin, Germany, June 20–21
2002.



36 I. Şora, P. Verbaeten, and Y. Berbers

[IB96] Valerie Issarny and Christophe Bidan. Aster: A framework for sound
customization of distributed runtime systems. In Proceedings of the 16th
International Conference on Distributed Computing Systems, pages 586–
593, Hong-Kong, May 1996.

[IS01] Paola Inverardi and S. Scriboni. Connectors synthesis for deadlock-free
component based architectures. In Proceedings of the 16th ASE, Coronado
Island, California, USA, November 2001.

[IT02a] Paola Inverardi and Massimo Tivoli. Correct and automatic assembly
of COTS components: an architectural approach. In Proceedings of the
5th ICSE Workshop on Component-Based Software Engineering, Orlando,
Florida, USA, May 19–20 2002.

[IT02b] Paola Inverardi and Massimo Tivoli. The role of architecture in com-
ponent assembly. In Proceedings Seventh International Workshop on
Component-Oriented Programmin (WCOP) at ECOOP, Malaga, Spain,
June 2002.

[KI00] Christos Kloukinas and Valerie Issarny. Automating the composition of
middleware configurations. In Automated Software Engineering, pages
241–244, 2000.

[MT00] N. Medvidovic and R. Taylor. A classification and composition framework
for software architecture description languages. IEEE Transactions on
Software Engineering, Vol. 26 (No. 1):70–93, January 2000.

[OGT+99] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heim-
bigner, Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S. Ro-
senblum, and Alexander L. Wolf. An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, May/June
1999.

[SM02] Judith Stafford and John McGregor. Issues in predicting the reliability
of composed components. In Proceedings of the 5th ICSE Workshop on
Component-Based Software Engineering, Orlando, Florida, USA, May 19–
20 2002.

[Szy97] Clemens Szypersky. Component Software: Beyond Object Oriented Pro-
gramming. Addison-Wesley, 1997.

[SJBV02] Ioana Şora, Nico Janssens, Yolande Berbers, and Pierre Verbaeten. A
component composition model to support unanticipated customization
of systems. In Workshop on Unanticipated Software Evolution (USE) at
ECOOP 2002, Malaga, Spain, June 2002.

[SMBV02] Ioana Şora, Frank Matthijs, Yolande Berbers, and Pierre Verbaeten. Au-
tomatic composition of systems from components with anonymous de-
pendencies. In Proceedings of TOOLSEE 2001 - Technology of Object-
Oriented Languages and Systems (TOOLS) East-Europe 2001, Sofia, Bul-
garia, March 2002.

[SVB02] Ioana Şora, Pierre Verbaeten, and Yolande Berbers. Using component
composition for self-customizable systems. In I. Crnkovic, J. Stafford,
and S. Larsson, editors, Proceedings - Workshop On Component-Based
Software Engineering: Composing Systems from Components, pages 23–
26, Lund, Sweden, 2002.

[Wil01] D.S. Wile. Ensuring general-purpose and domain-specific properties using
architectural styles. In CBSE4 Proceedings, Toronto, Canada, May 2001.

[XML00] Extensible Markup Language (XML) 1.0 (second edition) W3C recom-
mendation 6 october 2000, http://www.w3.org/tr/rec-xml, 2000.

http://www.w3.org/tr/rec-xml

	A Description Language for Composable Components
	Introduction
	Background
	The Architectural Component Model
	Basic Concepts
	Hierarchical Relationships between Components
	Contracts Expressed through Properties

	CCDL -- The Description Language for Composable Components
	External View Description
	Internal View Description

	Repositories
	Discussion and Related Work
	Conclusions




