Probe Mechanism for
Object-Oriented Software Testing

Anita Goel!, S.C. Gupta?, and S.K. Wasan?

! University of Delhi, Dyal Singh College
New Delhi-110003, India
aagoel@vsnl.com
2 National Informatics Center, NIC, A Block

New Delhi-110003, India
scgupta@hub.nic.in
3 Jamia Millia Islamia, Department of Mathematics
New Delhi-110025, India
skwasan@yahoo.com

Abstract. This paper presents a probe-based testing technique that facilitates
observing internal details of execution at different levels of abstraction-unit,
integration and system levels, during testing of object-oriented software. Our
technique adapts probe, an observability measure, to suit the testing needs of
object-oriented software. It uses source-code instrumentation, which requires
probes to be pre-determined and pre-built in the software during the develop-
ment phase. Test coverage reports are generated from the information gathered
by the executed probes. It includes coverage of probes at probe, method, class,
inheritance, regression and dynamic binding levels. During regression testing,
our technique helps in the selection of test cases that must be re-executed. Fur-
thermore, the log generated by active probes can be used for post-analysis.

1 Introduction

The unique architecture and features of object-oriented software introduce new kind
of errors in the software. As a result, some issues involved in the testing of object-
oriented software are different from the conventional software testing issues [1, 2]. In
order to handle the unique testing issues of object-oriented software, the conventional
software testing techniques require improvisation or new ones need to be developed.
During testing, a correct output result does not always ensure correctness of proc-
essing. An incorrect state may not be reflected in the output, but it governs the future
behavior of methods. An incorrect output will have to be diagnosed in terms of the
various execution steps. This requires access to the internal behavior [20].
Object-oriented software is tested at unit, integration and system levels. Class is
the basic unit of testing. Class is composed of data structure and a set of methods.
Objects are run time instances of the class. The data structure defines the state of the
object that is modified by the methods defined in the class. The encapsulation feature
of object-oriented software hides the ﬁa structure, posing difficulty in accessing the

M. Pezze (Ed.): FASE 2003, LNCS 2621, pp. 310-324, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Probe Mechanism for Object-Oriented Software Testing 311

state of the object, which is essential for verifying the correctness of processing and
for error diagnosis. The already tested units integrated via relationships like inheri-
tance and aggregation are tested during integration testing. The focus is on the inter-
action among the units. System testing at input/output level requires information
about the interaction among the integrated units.

We see that the focus of testing shifts as we move from unit to system testing. Cor-
respondingly, the focus of internal execution details observed during testing must also
shift as we move from unit to system testing. Several techniques exist [5, 12, 14, 15,
16] that verify/display the state of the object. Tools exist that provide method-level or
statement-level trace [7, 11] of execution details or allow specific values to be ob-
served [6, 9, 13, 18] during testing. But, none of them address the issue of observing
internal execution details at different levels of abstraction during testing,

In this paper, we focus on observing internal execution details at different levels
of abstraction- unit, integration and system levels, during testing of object-oriented
software. During unit testing, the input/output of the methods and the impact of
method execution on the state of the object are observed. The sequence of execution
of classes and input/output of the class is observed during integration testing. The in-
put/output of the integrated units is observed during system testing.

Here, we present a probe-based testing technique that adapts probe-an observabil-
ity measure for object-oriented software testing. It uses source-code instrumentation.
Probes are pre-determined and pre-built in the software during design and coding
phases, for observability needed at different levels of abstraction. During testing,
probes are externally activated/deactivated, facilitating visual display of execution
details at unit, integration and system levels. Probes can be turned off when internal
execution detail is not needed. Probes left embedded in software results in creation of
testable software for further modifications and easy corrective maintenance.

The coverage of inheritance hierarchy and dynamic binding relationship is needed
to ensure adequate testing of these relationships. Our technique uses the internal exe-
cution details to generate test coverage of probes at probe, method, class, inheritance
and dynamic binding levels. Due to the iterative and incremental nature of object-
oriented software, regression techniques are needed during development phase as
well as during maintenance. Our technique helps to identify the test cases to be re-
executed during regression testing. It also generates coverage of the changed unit.

A probe-based testing tool based on the probe-based testing technique has been
developed. It is implemented in Java and designed using use case driven object-
oriented approach. The probe-based testing technique has been applied to test UIS-
erver-a translator software that translates UIML (User Interface Markup Language)
document to WML (Wireless Markup Language) or CHTML (Compact- HyperText
Markup Language) document. UlServer has been developed using Java and XML.

In this paper, Section 2 discusses probe- an observability measure. Section 3 de-
scribes the probe-based testing technique. In section 4, the probe-based testing tech-
nique during testing phase is discussed. Section 5 describes in brief, the experience in
testing of UlServer software using our technique. Section 6 describes related work.
Section 7 states the conclusion.

312 A. Goel, S.C. Gupta, and S.K. Wasan

2 Probe - An Observability Measure

Observability measures are provisions in the software that facilitate observation of
internal and external behavior of the software, to the required degree of detail [20].
The need to build observability in object-oriented software has been stressed by
Binder [17]. According to Binder, “if you cannot observe the output of a component
under test, you cannot be sure how a given input has been processed”.

Traditionally, print statements and debuggers have been used, to get access to in-
ternal information. Print statements require frequent commenting, uncommenting and
recompilation of code each time changes are made. As we move from unit testing to
system testing, deciding what to comment/uncomment becomes difficult. It requires
intimate knowledge of the software. Moreover, print statements are not structured,
posing hindrance in the analysis of internal information details. Debuggers give ac-
cess to all the information, at a point in execution. But what is important to observe
becomes harder and harder to decide, as the size of the software increases.

The concept of probe is an effective observability measure for observing internal
details of the software. Probe is a method invocation having a structured probe identi-
fier and a message [20]. The syntax of probe method invocation is probe(probe_id,
probe_message) where, probe is a method name, probe id is a unique structured
identifier identifying the location of probe message and probe message contains
state-related attributes, parameter values, temporary variables or a message, relevant
at the location of probe in the code. Probes are inserted in the software at locations
where information relevant at that point is needed. During execution of software,
probe can be activated/deactivated and probe breakpoints can be set, externally. An
active probe on execution generates a message carrying the internal information along
with its identity. Probes can be turned on/off as and when required. Probes do not in-
terfere with the logic of the software and can be left embedded in the software.

3 Probe-Based Testing Technique

The probe-based testing technique facilitates observation of internal execution details
during testing of object-oriented software. The execution details consist of the-

Class being executed

Method of the class being executed

Value of parameters or messages at method entry/exit or within the method

Hierarchy of execution of classes

Probe identification to locate probe displaying parameter/message, in the code

These execution details are displayed at unit, integration and system levels. The

idea behind our testing technique is quite simple. Our technique uses probe, an ob-
servability measure, to observe the internal details of execution during testing. Probes
are inserted in the source-code during software development. During testing, probes
are controlled externally— activate/deactivate, to display execution details at unit, in-
tegration and system levels. A point to be noted here is that our technique gathers in-
ternal details of execution from the probes inserted in the software. Thus, the content

Probe Mechanism for Object-Oriented Software Testing 313

of the probe must be carefully decided and probes must be inserted at proper loca-

tions. Our technique is defined in three phases -

(1) Probe Structure defines the structure of probe_id and probe_message.

(2) Probe Insertion defines locations in the software where probes are to be inserted.

(3) Probe Subsystem defines the different subsystems that operate on the software
embedded with probes, during testing.

Using our technique requires- defining the probes, inserting probes in the software
and using probe subsystem during testing. The software developer should have
knowledge of our technique during the design and coding phases.

We illustrate our technique with an example of link list, written in Java, shown in
Program code 1(relevant details shown). For the time being, we do not focus on the
“Log” statements. The program is one integrated unit consisting of three classes (1)
Userlnterface (2) LinkList (3) Node. Userlnterface accepts input from the user to
add/delete to link list. LinkList has methods to create list, add/delete nodes from the
list. Node has methods to create node with string data, get and set data etc. LinkList
creates a link list, where each node is of type class Node. We extend this example to
create heterogeneous link list, to show coverage at inheritance and dynamic binding
levels (code not shown). Class IntNode is derived from the class Node. IntNode cre-
ates node with integer data. A node in link list is of type IntNode or Node. IntNode
inherits getNext() and setNext() from Node and defines its own methods getData(),
setData(), printData() etc. The method printData() is dynamically bound.

Program code 1. Example of Link List (relevant details
shown)

class UserInterface{
public static void main(String[] args) {
1. Log d = new Log("UserInterface");
2. Log.penter ("L1/1", "msg:start main");
LinkList lst = new LinkList () ; // Create a list

get string from user to be inserted in the list
1st.addNodeAtHead (new String(str));

get string to be deleted from the list
lst.deleteNode (new Node (str)) ;

NN
NN

lst.printList () ;
3. Log.pexit ("L1/5", "msg:end main") ;
4. Log.close () ;
class LinkList{

private Node head;
public LinkList(){...} // head = null
public Node getHead()({...} //returns head
public void addNodeAtHead(Strlng s){...}

//adds node with data s at head

public void printList(){...} //prints link list
public void deleteNode (Node n) {
Log.penter ("L2/9", "delete node=" + n);

if (head == null) {
Log.pexit ("L2/10","msg:1list empty") ;

314 A. Goel, S.C. Gupta, and S.K. Wasan

return; }
if (n.equals(head)) {
head = head.getNext () ;

5. Log.pmsg ("L3/11", "msg:node deleted at head");}
else { Node p = head, g = null;
while((g = p.getNext()) != null) {

if (n.equals(q)) {
p.setNext (g.getNext ()) ;
Log.pmsg ("L3/12", "deleted node=" + q);}
elsep = g;
Log.pexit ("L2/13","msg:end delete node") ;
return; }
class Node {
private String data;
private Node next;

public Node (String wrd) {...} //initialises data = wrd
protected Node getNext (){...} // returns next node
protected void setNext (Node n){...} //sets next to n
public String getData(){...} //returns string data
public void setData(String s){...} //sets data to s
public void printData(){...} //prints data
public boolean equals (Object o) {
Log.penter ("L2/13", "compare=" + 0O);
boolean bool = false;
if (this == o)
Log.pmsg ("L3/14", "msg:object equal");
bool = true;
else if (! (o instanceof Node)) {
Log.pmsg ("L3/15", "msg:object not equal") ;
bool = false; }
else if ((((Node)o).data).equals (this.data))
Log.pmsg ("L3/16", "msg:data equal");
bool = true;
else { bool = false;
Log.pmsg ("L3/17", "msg:not equal"); }
Log.pexit ("L2/18", "comparison was= " + bool) ;
return bool; } }

3.1 Probe Structure

Our technique associates level number with the probe, to display execution details at
different levels of abstraction. Also, each probe must be uniquely identifiable, to lo-
cate probe in the code. Probe structure defines probe id as-
“level number/probe_number” where, level number indicates the testing level. The
level number is L1, L2 and L3 for probes that display interaction among the inte-
grated units (system level testing), interaction among the classes of integrated unit
(integration level testing) and code level behavior of a class (unit level testing) re-
spectively. The probe number uniquely identifies a probe in a class. For each class, it
starts from 1 for the first probe and is incremented for every other probe in the class.
It may be in any order within the class. E.g. “L2/2” represents an integration level
probe having probe number 2.

Probe Mechanism for Object-Oriented Software Testing 315

The structure of probe message is defined as “variablel:val variable2:val
..variableN:val msg:string” where, val is the value of a variable, and, msg displays a
message. E.g. “msg:start main” is interpreted as, start main is a message.

The designer and code developer decide the level number and probe_message re-
spectively, during the design and coding phases of software development.

3.2 Probe Insertion

Our technique requires probes to be inserted at the beginning, end (before return
statement) and anywhere between begin and end of the method (if needed) like in if-
statement or loop statements, as shown in Program code 1, line 2, 3, 5 respectively.
Probe insertion is the responsibility of the developer.

The methods are of three kinds in object-oriented software- public, protected and
private. Public methods are invoked from outside the class. Private methods are in-
voked by public methods. Protected methods are private to the class but can be in-
voked from the derived classes. The level number in probe_id is decided based on
the kind of method and the location of probe in the method. Probes defined at the be-
ginning and end of a method have level number L1 in the public methods of classes
that interact with other integrated units, L2 in the public methods of rest of the
classes, and, L3 in private and protected methods of a class. Probes defined anywhere
in between the beginning and end of any method has level number L3.

To display the hierarchy of execution of classes and the parameter values at
method entry/exit, probe insertion defines static methods-- penter, pexit and pmsg, for
probes inserted in the beginning, end and anywhere in between a method respec-
tively. Probes are inserted as Log.penter, Log.pexit, Log.pmsg, as shown in Program
code 1, line 2, 3, 5 respectively. The class “Log” defined in our technique interacts
with the software embedded with probes during testing. To start and stop recording
information from probe, line 1 and 4 in Program code 1 are needed respectively.

3.3 Probe Subsystem

The probe subsystem work on the software embedded with probes, during testing. It
has four components —Preprocessor, OnLineTest, OffLineTest, and Report. Preproc-
essor works on the compiled software before its execution. Its functions are- (1) store
details of inheritance hierarchy- classes, declared and inherited methods of each class,
and class to which inherited method belongs. (2) Store details of dynamic binding
relationship- classes, the dynamically bound methods and method from where the dy-
namically bound methods are invoked. (3) Store “level number/
probe_number/class_name/tag/method _name” for each probe. It is needed to display
the execution details during testing. The level number and probe number are defined
in probe id. Tag is probe method penter, pexit and pmsg. The class name and
method_name is the class and method respectively, in which the probe is defined. To
get class executed during testing, Preprocessor inserts “class_name” in probe id of
probes. (4) Insert “getClass()” in probe_message of probes of inherited methods, to
find the class invoking the inherited method. The function getClass() must be sup-

316 A. Goel, S.C. Gupta, and S.K. Wasan

ported by the programming language. It is supported in Java. (5) Identify modified
classes and help in selection of test cases to be re-executed, during regression testing.
OnlLineTest is invoked on execution of the software, for testing. It defines probe set-
tings for probe activation and probe breakpoint to facilitate observation of internal
execution details at unit, integration and system levels. Output of active probes is
stored in /og file. Output of all executed probes is also stored in a file. OffLineTest is
invoked after testing, to analyze the log file and to get details about the software-
classes, methods etc. Report is invoked after testing to generate coverage report.

4 Using Probe Subsystem

The components of probe subsystem facilitate observation of internal execution de-
tails at unit, integration and system levels, selection of test cases to be re-executed
during regression testing, post-analysis of log file and report generation.

4.1 Probe Settings

Probe settings allow the tester to externally control the probes during online and off-
line testing. Probe Activation defines commands to selectively activate/deactivate
probes, externally, during testing. Output of only active probes is displayed on the
screen and stored in the log file. Probes are referred to in a generic style so that a
group of probes can be addressed through a single command. The format of probe
activation command to activate and deactivate probe is

A: class_name/method _name/level number/probe_number (1)

D: class_name/method _name/level number/probe_number (2)
respectively. The level number in (1) and (2) results in activation of probes at the
specified level number and at lower level number, and, deactivates probes at the
specified level number respectively. E.g. “A:*/*/L2/*” activates all probes having
level number 11 and L2 in all classes of all methods. The command
“D:Node/*/L3/*” deactivates all probes having level number L3 in all methods of
class Node. A “*’ used for level number, class_name or method_name matches with
all level number, class_name and method name respectively.

Probe BreakPoint allows breakpoints to be set on selected probes. On occurrence
of break, execution of the software pauses. The tester can observe the already dis-
played probes and change the probe settings to observe rest of the execution details.
Probe breakpoint can be set as follows:
class_name/method_name/level number/probe_number 3)
A String 4)

In (3), break occurs when the level number, class name, method name and
probe_number are true in the probe being executed. In (4) break occurs when output
of a probe contains the specified string. E.g. string “start deleting” results in a break
when it is encountered in the probe output.

Probe Mechanism for Object-Oriented Software Testing 317

Probe settings are made during testing based on what is to be observed and at what
level of detail. All probe settings are stored in a file and can be modified during test-
ing. All commands in the file are applied sequentially, to find active probes.

4.2 OnLine Testing

During testing, activating/deactivating the level number in probe activation command
facilitates observation of internal execution details at different levels of abstraction.
The class_name, method name and probe_number can be activated or deactivated to
“fine-tune” the execution details to be observed during testing. Probe breakpoint is
set to observe the already displayed probes.

Table 1. Internal execution details at unit level (delete node from list) of Program code 1
(->enter, <-exit, --between)

Class Name Method Name LevelNo./Probe No.
ListClient main(String[]) L.3/3 msg: Start deleting
|[>Node Node(String) L2/1->msg: create string node
|&Node L2/2<-data=stringB
|>List deleteNode(Node) | L2/9->delete node=Node@f133f325
|[>Node equals(Object) L2/13->compare=Node@?2debf324
|--Node equals(Object) L3/16 msg: data equal
|&Node L2/18<-comparison was=true
|[>Node getNext() L3/3->msg: get next node
|&Node L3/4-> next=Node@e96£324
|--List deleteNode(Node) | L3/11 msg: node deleted at head
|&List L2/13<-msg: end delete node

Unit Testing: Probes at level number L3 are activated during unit testing. It re-
sults in activation of probes at level number 1.1, L2 and L3. The internal execution
detail of deleting a node from the link list, at unit level, is shown in Table 1. It dis-
plays code level behavior of the program- the executed public, private and protected
(getNext()) methods, the part of if-condition executed (msg.data equal) and a mes-
sage in between the method (msg:node deleted at head), at begin and end.

Integration Testing: During integration testing, probes at level number L2 are ac-
tivated. It results in activation of probes at level number L1and L2. The internal exe-
cution detail of link list at integration level is shown in Table 2. It displays sequence
of execution of classes and their input/output. E.g. for node deletion it displays that
the node was compared, found to be equal and deleted. It does not display the internal
execution details of the class as shown during unit testing in Table 1.

Table 2. Internal execution details at integration level of Program code 1

Class Name Method Name LevelNo./Probe No.
ListClient main(String[]) L1/1->msg: start main
|>List List() L2/1->msg: List()
|&List L2/2<-head=null

318 A. Goel, S.C. Gupta, and S.K. Wasan

|>List addNodeAtHead(String) L2/5->add node=stringA
|[>Node | Node(String) L2/1->msg: create string node
|&Node L2/2<-data=stringA
|&List addNodeAtHead(String) L2/6<-added at head=Node@e96{f324
|>List addNodeAtHead(String) L2/5->add node=stringB
|[>Node | Node(String) L2/1->msg: create string node
|&Node L2/2<-data=stringB
|&List addNodeAtHead(String) L2/6<-added at head=Node@2debf324
|[>Node Node(String) L2/1 ->msg: create string node
|&Node L2/2 <-data=stringB
|>List deleteNode(Node) L2/9->delete node=Node@f133f325
[>Node | equals(Object) L2/13->compare=Node@2debf324
|&Node L2/18<-comparison was=true
|&List deleteNode(Node) L2/13<-msg: end delete node
|>List printList() L2/14->msg: print list
|[>Node | printData() L2/11->msg: print string data
|&Node L2/12<-data=stringA
|&List printList() L2/15<-msg: list printed
ListClient main(String[]) L1/5<-end main

System Testing: Probes at level number L1 are activated to observe interaction
among the integrated units of the system.

Corrective Maintenance: It involves fixing reported errors in released and in-use
software. For this, there is a need to understand the software to identify the compo-
nent containing the error and to locate erroneous code in it. Since maintenance team
is generally not same as development team, understanding the software is difficult
due to its large size and complexity. The erroneous code cannot be isolated using the
limited information available at user interface.

Our technique helps in the corrective maintenance activity. The software is re-
executed with probes on, with input that resulted in error. Observing the internal exe-
cution details at system level, integration level and unit level helps to identify the in-
tegrated unit, the class of the integrated unit, and, the method and probe of the class
displaying incorrect value, respectively. The probe number in the probe displaying
incorrect value is used to locate the probe in the class. Code near the probe is exam-
ined to isolate erroneous piece of code.

4.3 Regression Test Cases

Regression testing is the process of validating modified software to detect whether
new errors have been introduced into previously tested code and to provide confi-
dence that modifications are correct [8]. An overview of regression testing techniques
is given in [8][21]. Here, we focus on selection of regression test cases. Having
known the unit (method, class etc.) of change (add, delete, modify), there is a need to
select the test cases to be re-executed, from the already executed test cases.

Our technique identifies class as the unit of change. It includes classes in the hier-
archy, if changed class is part of inheritance hierarchy. Preprocessor identifies the test
cases to be re-executed in two steps. First, it identifies the test cases containing the

Probe Mechanism for Object-Oriented Software Testing 319

changed class name, from the file storing all executed probes. It includes classes im-
pacted by changed class, since the impacted class invokes it or is invoked by it. Next,
from this subset, test cases containing unique sequence of probe_number, class_name
(invoking the changed class - of the changed class - invoked by changed class) is
identified. The resulting test cases are to be re-executed.

4.4 OffLine Testing

OffLineTest facilitates analysis of log file using probe setting defined in OnLineTest.
Probe settings allow the tester to “play” with the contents of log file. The behavior of
a class or a method can be observed/analyzed. For very large software, execution de-

tails of a portion of the software can be observed.

Table 3. Information about the Program code 1

Class Name Method Name LevelNo./Probe No
ListClient main(String[] args) L11
L3/2
Total Classes=3 Total methods=13 Total Probes=36

OffLineTest also provides details of the software- (1) classes, methods and probes.
(2) Inheritance hierarchy, inheritance category, and, declared and inherited methods
of each class, and (3) Dynamic binding relationship. It also provides count of these
relationships, as shown in Table 3. It retrieves these details from Preprocessor.

4.5 Report Generation

All probes traversed (active/inactive) are logged, which, help to generate coverage of
probes at- probe, method, class, inheritance, regression and dynamic binding levels.
The logged probes can also help to identify covered path sequences, for test data ade-
quacy. Coverage reports can be viewed as %ocoverage and in the form of list, for- a
single, set and all test cases combined. The list of uncovered probes generated at
these levels helps to locate untested code. To calculate coverage, Report gathers de-
tails of the executed and total probes from OnLineTest and Preprocessor respectively.
Probe, Method and Class Coverage: The coverage of probes at probe, method and
class levels 1is displayed as (class _nameprobe numberl,...,), (class name,
method_namel, ...) and (class_name) respectively, as shown in Table 4.

Table 4. Coverage at probe, method and class levels of Program code 1

Uncovered Probes Uncovered Methods Uncovered Classes
(Node, 7, 8, 9, 10, 14, 15, 17) | (Node, getData(), None

(List, 10, 12,) setData(String))

Y%coverage: 75.0% % coverage: 84.61539% | %coverage:100.0%

320 A. Goel, S.C. Gupta, and S.K. Wasan

Inheritance Coverage: The creation or modification of an inheritance hierarchy
falls in four categories [1][2]-

(A) Creation/Modification of superclass

(B) Creation/Modification of subclass

(C) Modification of superclass data structure from subclass, and,

(D) Pure extension of superclass.

Testing for category

(A) and (C) necessitates retesting of superclass, all subclasses and units de-
pendent on it

(D) requires testing of subclass only, and,

(B) requires testing of subclass and retesting of inherited methods of super-
class. Retesting is needed because inheritance provides new context for the
inherited methods. The inherited methods, thus, must be executed from the
class in which it is declared and from the class inheriting it.

Our technique calculates coverage at inheritance level based on inheritance cate-
gory. Inheritance coverage is displayed as (probe number/class_name/method name
/class invoking the inherited method). The class invoking the inherited method gets
value from getClass() (inserted by Preprocessor). It is blank if method is executed
from the class in which it is declared. As shown in Table 5, getNext(), setNext() de-
fined in class Node are invoked from Node itself, statement (1), (3) and from IntNode
(inheriting class), statement (2), (4).

Table 5. Coverage at inheritance level (of inherited methods)

3/Node/getNext() (1)
3/Node/getNext()/IntNode (2)
5/Node/setNext() 3)

5/Node/setNext()/IntNode 4)

Dynamic Binding Coverage: Testing a dynamic binding relationship requires test-
ing of all possible methods that can get bind at runtime for a single method invoca-
tion. Coverage at dynamic level is displayed as (probe number/class name/
method_name/method _name from where invoked). The “method name from where
invoked” is the method enclosing call to the dynamically bound method. As shown in
Table 6, printData() defined in Node and IntNode, is invoked from method print-
List().

Table 6. Coverage at dynamic binding level (as list of covered probes)

11/Node/printData()/printList()
8/IntNode/printData()/printList()

Regression Coverage: Coverage at regression level is displayed as coverage at
probe level of the modified unit. It includes coverage of probes at inheritance level if
modified class is part of the inheritance hierarchy.

Probe Mechanism for Object-Oriented Software Testing 321
5 A Case Study - UlServer

The probe-based testing technique has been used during testing of an XML based
software-UlServer, written in Java. UlServer operates in the web environment. It
translates a UIML (User Interface Markup Language) document to WML (Wireless
Markup Language) or CHTML (Compact-HyperText Markup Language) document.
UlServer consists of three integrated units- Validate, ParseTree and GenerateTML.
Validate receives URL of the UIML document and the http request-UAData
(UserAgentData) from the web engine. It fetches the UIML document, checks its va-
lidity according to UIML 2.0a DTD (Document Type Definition- it defines the
structure of UIML document. It specifies the tags, attributes of these tags and their ar-
rangement with each other. UIML document can contain 28 tags.). Validate returns
valid/invalid UIML document. If document is valid, ParseTree is invoked. It parses
the UIML document and builds a tree based on the tag hierarchy defined in
UIML2.0a DTD. It stores the tags defined in UIML document as nodes of the tree. If
no error found, GenerateTML is invoked. GenerateTML uses the tree to generate
WML/CHTML document as the output. In case of error, an error message is output.
Our technique was used to observe the internal execution details at different levels
of abstraction during the testing of UlServer. We discuss an instance, where without
our technique, locating the erroneous code was a difficult task. During system test-
ing, for a UIML document as input, the WML document generated was incorrect. No
error message was displayed. Observing the internal execution details at system level
displayed error in the output of the integrated unit- ParseTree. Next, the execution
details observed at integration level, displayed error in the output of class Par-
seUIML, of ParseTree. While observing the internal execution details of ParseUIML
at unit level, it was found that the code developer had not taken any action for the tag
<attribute> defined in the tag <call> of UIML document. The error was notified.

Table 7. Characteristics and test execution result of UlServer

#of #of Execution Execution | Coverage | Coverage | Cover-
lines of | probe time with | time with | at probe | at method | age at
code inserted | probes on probes off | level level class
level
8994 705 5.85s 5.60s 84% 88% 100%

Table 7 shows characteristics of UlServer and test execution result using our tech-
nique. It includes number of lines of code and probes in the software, execution time
with probes on and off, and coverage of probes at probe, method and class level. The
uncovered probes helped to locate the untested portion of code.

6 Related Work

This work is related to observability measures in object-oriented software and testing
of object-oriented software.

322 A. Goel, S.C. Gupta, and S.K. Wasan
6.1 Observability Measures

Previous research focuses on observing state of the object during testing of object-
oriented software. Assertions, [5][12] are injected at key locations in the source code
and state-space monitored. Assertion monitoring does not display internal execution
details as long as assertions evaluate to true. It only verifies state of the object. False
assertion evaluation triggers an exception. McGregor and Korson [14] emphasize
functional testing and provide observer methods to check externally observable
states. Murphy et al. [16] provide state-reporting methods with every class. Dorman
[15] uses friend declaration to observe private data of C++ program. To check
method call sequence, it inserts callback functions before and after the call.

Probes are used in tools to trace execution details or observe values of specific
variables during testing. Compaq’s JTREK, JOIE [6] and BIT [9] use byte-code in-
strumentation for troubleshooting Java applications. It requires watch points to be in-
serted in the software, to observe values of selected parameters, return values etc. The
selective instrumentation, based on what needs to be observed is a limitation for test-
ing. It requires understanding of the internal behavior of the software. JIE [11] and
instr [7] use source-code instrumentation of Java programs for method-level tracing,
test coverage, execution logs, debugging etc. But, the trace needed to understand the
behavior of software, itself needs to be understood owing to its large size.

Probes are also used for profiling in compiler optimization feedback and perform-
ance tools. Hundt [18] describes HP Caliper, which uses dynamic instrumentation to
provide a framework for building tools for performance analysis, coverage analysis
and correctness checking. DeRose et al. [13] describe- Dynamic Probe Class Library
(DPCL) an infrastructure for developing instrumentation for performance tools.

Tools like Panorama JavaTest, CodeWork JCover and TestWorks” TCAT instru-
ment the code to generate test coverage report at class, method, statement and branch
levels. They also display the executed and the unexecuted part of the code.

6.2 Testing Object-Oriented Software

Unit Testing: Most of the research work in class testing is based on generation of
method sequences as test cases, execution and result validation. Souter et al. [3] de-
velop a code-based testing and analysis tool- TATOO to generate test tuples based on
object manipulation. Chen et al. [10] develop a tool TACCLE that selects fundamen-
tal pairs of equivalent ground terms and checks the observational equivalence of re-
sulting objects. Turner et al. [5] use automata to model internal representations of the
class, generate test cases using state-based test suites and verify the final state.
Integration testing: According to Chen et al. [10], little study has been made on
cluster-level testing or its relationship with class-level testing. They perform static
cluster testing on horizontal interactions among classes using individual message-
passing rule. Jin and Offutt [22] generate test cases using coupling based criteria.
Dynamic binding: Alexander and Offutt [19] extend coupling-based testing to
detect faults from polymorphic relationships among components. Orso et al. [4] ex-
tend traditional data flow test selection criterion. They define def-use sets to select

Probe Mechanism for Object-Oriented Software Testing 323

execution paths that can reveal failures due to incorrect combination of polymorphic
calls. Payne et al. [12] implement inheritance hierarchy such that pre and post condi-
tions made in base class are not violated by polymorphic methods.

Inheritance Testing: Dorman [15] uses call-interface instrumentation to determine
coverage of inherited methods of base class in context of their usage. Payne et al. [12]
use down-call technique to restrict inheritance to be a sub-typing relationship.
Retesting of base class in context of the derived class is not needed.

7 Conclusion

In this paper, we present a probe-based testing technique that adapts probe-an observ-
ability measure for object-oriented software testing. It facilitates observation of inter-
nal execution details at different levels of abstraction- unit, integration and system
levels, during testing. Our technique requires probes to be pre-determined and pre-
built in the software during design and code phases of software development. During
testing, probes are externally activated/deactivated facilitating observation of internal
details of execution at unit, integration and system levels. Coverage of inheritance hi-
erarchy and dynamic binding relationship generated using our technique helps in de-
termining the adequacy of testing these relationships. Our technique also aids in the
selection of regression test cases. Probes can be turned off when the internal execu-
tion details are not needed. Probes left permanently embedded in the software results
in creation of testable software for further modifications and easy corrective mainte-
nance.

Acknowledgement

We are grateful to Dr. Mukul Sinha, Director, Expert Software Consultants Limited,
for his valuable comments and suggestions in the development of the testing tech-
nique and application of our technique to UlServer project. We wish to thank Tan-
moy, Pawan and Ramakant for their help in the implementation of the concepts dis-
cussed in this paper.

References

1. A. Goel, S.C. Gupta, K. D. Sharma: Object Oriented Testing: An Overview. In: Proceed-
ings of International Conference on Software Engineering And Its Application, 91-99,
Hyderabad, India, Jan (1997)

2. A. Goel, S.C. Gupta, S. K. Wasan: Object Oriented Software Testing: A Survey Report.
In: Proceedings of 2nd Annual International Software Testing Conference, QAI, Banga-
lore, India, Jan (2001)

3. A. L. Souter, T. Wong, S. Shindo, and Lori L. Pollock: TATOO: Testing and Analysis
Tool Object-Oriented Software. In: Proceedings of 7th International Conference, Tools

324 A. Goel, S.C. Gupta, and S.K. Wasan

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

and Algorithms for the Construction and Analysis of Systems, held as part of ETAPS,
April (2001)

A. Orso, M. Pezze: Integration Testing of Procedural Object-Oriented Programs with
Polymorphism. In: Proceedings of 16™ International Conference on Testing Computer
Software, Washington D.C., June (1999)

C. D. Turner, D. J. Robson: A State-Based Approach To The Testing Of Class-Based Pro-
grams. Software Concepts and Tools, Vol. 16, No. 3, 106-112, (1995)

G. A. Cohen, J. S. Chase, D. L. Kaminsky: Automatic Program Transformation with
JOIE. In: USENIX Annual Technical Symposium, 167-178, (1998)

Glen Mc Clunskey & Associates LLC: Java source code instrumentation.
http://www.glenmccl.com/instr

Graves, Harrold, Kim, Porter, Rothermel: An Empirical Study of Regression Test Selec-
tion Techniques. In: ACM Transactions on Software Engineering and Methodology, Vol
10, No. 2, 184-208, April (2001)

H. B. Lee, B. G. Zorn: BIT: A Tool For Instrumenting Java Bytecodes. In: Proceedings of
USENIX Symposium on Internet Technologies and Systems, 73-82, Monterey, California,
Dec (1997)

H. Y. Chen, T. H. Tse, T. Y. Chen: TACCLE: A Methodology for Object-Oriented Soft-
ware Testing at the Class and Cluster Levels. ACM Transactions Of Software Engineering
And Methodology, Vol. 10, No. 4, 56-109, Jan (2001)

Java Instrumentation Engine: http://dl.tromer.org/jie

J. E. Payne, R. T. Alexander, C. H. Hutchinson: Design-for-Testability for Object Ori-
ented Software. Object Magazine, SIGS Publications Inc., Vol. 7, No.5, 34-43, (1997)
Luiz DeRose, Ted Hoover Jr., J. K. Hollingsworth: The Dynamic Probe Class Library —
An Infrastructure for Developing Instrumentation for Performance Tools. In: Proceedings
of International Parallel and Distributed Processing Symposium (IPDPS), April (2001)
McGregor, Timothy D. Korson: Integrated Object oriented Testing and Development Pro-
cesses. Communication of ACM, 59-77, Sept (1994)

Misha Dorman: C++ “It’s Testing Jim, But Not As we Know It. In: Proceedings of Eu-
roSTAR, Edinburg, Scotland, Nov (1997)

Murphy, Paul Townsend, Pok Sze Wong: Experiences with Cluster and Class Testing.
Communication of ACM, 39-47, Sept (1994)

Robert V. Binder: Design for Testability in Object Oriented Systems. Communication of
ACM, 87-101, Sept (1994)

Robert Hundt: HP Caliper- An Architecture for Performance Analysis Tools. In: Pro-
ceedings of WIESS , San Diego, California, USA, Oct (2000)

R. T. Alexander, A. J. Offutt: Analysis Techniques for Testing Polymorphic Relation-
ships. In: Proceedings of TOOLS, Santa Barbara, California, USA, August (1999)

S. C. Gupta, M. K. Sinha: Improving Software Testability by Observability and Control-
lability Measures. 13th World Computer Congress, IFIP, 94, Vol 1, 147-154, (1994)
Yuejian Li, N J Wahl: An Overview of Regression Testing. Software Engineering Notes,
ACM SIGSOFT, 69-73, Jan (1999)

Z. Jin and A. J. Offutt: Coupling-based Criteria for Integration Testing. Journal of Soft-
ware Testing, Verification and Reliability, Vol. 8, No. 3, 133-154, Sept. (1998)

	Probe Mechanism for Object-Oriented Software Testing
	1 Introduction
	2 Probe - An Observability Measure
	3 Probe-Based Testing Technique
	3.1 Probe Structure
	3.2 Probe Insertion
	3.3 Probe Subsystem

	4 Using Probe Subsystem
	4.1 Probe Settings
	4.2 OnLine Testing
	4.3 Regression Test Cases

	5 A Case Study - UIServer
	6 Related Work
	6.1 Observability Measures
	6.2 Testing Object-Oriented Software

	7 Conclusion

