Automatic Test Generation with AGATHA

Céline Bigot, Alain Faivre, Jean-Pierre Gallois, Arnault Lapitre,
David Lugato, Jean-Yves Pierron, and Nicolas Rapin

CEA/LIST/DTSI/SLA, CEA Saclay — Bat. 451
91191 Gif sur Yvette Cedex, France
{celine.bigot,alain.faivre, jean-pierre.gallois,
arnault.lapitre,david.lugato, jean-yves.pierron,
nicolas.rapin}@cea.fr

Abstract. This tool demonstration paper describes the AGATHA toolset, de-
veloped at CEA/LIST. It is an automated test generator for specifications of
communicating concurrent units described using an EIOLTS (Extended Input
Output Labeled Transition System) formalism which can be extracted, for ex-
ample, from UML specification.

1 Introduction

Formal methods allow system analysis and test generation from specifications. This
provides an early feedback on a system’s behaviour. The economic goal of this speci-
fication analysis step is considerable, as it simultaneously reduces cost and time of
validation, while increasing system reliability. But these formal techniques are gener-
ally quite complex in their use: that is why such techniques have not, at this time,
penetrated the industrial domain. One way to decrease this complexity is to provide
tools in which the use of those techniques are automated.

This tool demonstration paper describes the AGATHA toolset, developed at
CEA/LIST. This toolset is an automated test generator from specifications of commu-
nicating concurrent units described using an EIOLTS formalism (Extended Input
Output Labeled Transition System). At the present time, AGATHA deals with speci-
fications written in the following languages : UML (the Unified Modeling Language)
[1], SDL (Specification and Description Language) [2,3], STATEMATE language
[4], ESTELLE [5]. For each of these languages there is a corresponding translator, in
the toolset, that transforms the original specification into the EIOLTS language used
by AGATHA. Figure 1 shows the main windows of the AGATHA toolset.

The presentation tool will focus on UML specification respecting modelling rules
and some UML specializations. These specialization are attached or dedicated to the
European project AIT-WOODES [6].

H. Garavel and J. Hatcliff (Eds.): TACAS 2003, LNCS 2619, pp. 591-596, 2003.
© Springer-Verlag Berlin Heidelberg 2003

592 C.Bigotetal.

2 The AGATHA Kernel

There exist several ways to validate systems specifications. A first one consists in
theorem proving and model checking. These kinds of techniques have proved suc-
cessful for the validation of critical parts of systems. But two major drawbacks to
these techniques remain:
1. the combinatorial explosion due to variable domains for the model checking,
2. aneed for high-level skills from the developer —-who must be aware of for-
mal methods fundamentals— for theorem proving.
Automatic test generation is another way to tackle the problem of systems validation.

File Options Help

= SEoie o
GO Lust Fo

= Saclay

i Specification

CE] sacl [} messages
aclay Detats
(-] (] [} Teansitions
= 1603 PC ¢ 10T (ext SIG_appel s 2_H1.x1_SI1G_appels
1803) <= ent_SIG_appel s 1_MO_x1_5IC_zopels)
q 181 T (ext_SIG_appels_1_M0_x1_SIG_appels
: U 4= ext_SIG_depart_1_Mi_stage_depart_SIG_depart)
agi2] A0 (ext STG_stage_Franchi_t_Mi_x3_ST0_stage_franchi
643 = ekt SIG_appels_1_M)_x1_SIC apaels)
= ima] D (ext_SIC evage_franchi_2 Mi_x2 ST _etage_franchi
= Granhe wig| = ext_STG_appels_2_Wi_x1_SIG_appels)
® & specification e
[Avec Label 1517,
[S iasE 1B TAGNOSTIC
@ Execution Symbs FIOPOTNT —> COUPLRE DE CHEMIN
[} Resultat Gene
[} resuirat pedy

[resultat soL
16{ EIDLTS | STATEMATE
'S specitication directory
18] T
igjrhomesalonntia/drrac/asatin-1.0/ien I cErewse.
1f - :
<] specification files

[Path Condition <13
path Condition <23; PE ;
‘Condltion €3 pCy W
|Path Condition <43 PC: |
[Path Condition <5: pC;
|Path Condltlon <85: PC: Nf|
Path Conditlon <7>: pC ¢
|Path Conditlon <85 PC

[ad-]

| ok || cancel

Fig. 1. Main windows of the AGATHA toolset.

The solution adopted in AGATHA is to provide an exhaustive symbolic path cov-
erage. In the future, this criterion will help to use AGATHA for verification. If we
want to demonstrate the truthfulness of a property on a specification, because of the
exhaustivity obtained with AGATHA, we just have to demonstrate it on the obtained
paths.

The following subsections are an overview of the different formal techniques used
in AGATHA in order to reach this exhaustive symbolic path coverage.

Main principle: symbolic execution. The major drawback of numeric techniques is
the combinatorial explosion due to variable domains. These domains can be huge,

Automatic Test Generation with AGATHA 593

sometimes even infinite. AGATHA uses “symbolic execution” as defined by [7], [8],
[9]. Symbolic calculus allows the handling of such domains because computing all the
behaviours is not equivalent to trying all the possible values for inputs. Instead of
giving values for inputs, they keep their status of symbol all along the execution.

So each behaviour no longer depends on the result of a calculus being completely
performed, but on an expression representing constraints on the variables being de-
noted by the symbols of entries. Each transition fired from a point of the execution
adds a new constraint on the variables. At any point of the execution, the entire con-
straint is called "path condition".

A symbolic state may represent an infinite set of numeric states. The execution tree
resulting of the AGATHA computation is a finite tree of symbolic states. The con-
struction of the execution tree is subordinated to reduction procedures in order to
eliminate as many redundant paths as possible with different tactics.

A n-tuple of a symbolic node denotes a list of actual control nodes for each of the n
concurrent modules. Different heuristics to compute comparison procedures for each
symbolic node are also used (inclusion and equality procedures).

Moreover, we currently work on automating several abstraction techniques to re-
duce complexity and to terminate calculus in any case in order to obtain an exhaustive
execution graph.

Simplification procedures. The deeper a point of execution, the bigger the expres-
sion representing its path condition. Symbolic expressions of variables may also rap-
idly grow. That is why a simplification procedure must be applied "on the fly" in or-
der to shorten expressions and detect useless paths.

As of today we use a simplifier based on rewriting techniques. The rewriting en-
gine is Brute [10] that is a part of the CafeOBJ toolset. The rewriting rules file of
AGATHA is actually composed of more than three hundred rules. These rules allow
both to maintain symbolic expressions within a reasonable size range, and to obtain
normal forms for the expressions, easing the comparison between expressions needed
in algorithms such as comparison procedures.

We also use a polyhedric tool, Omega [11], in order to compute the inclusion and
equality procedures. Using this tool we are able to compare variables domains of two
symbolic nodes.

Composition. The symbolic execution process is performed on one module, but the
global application is generally composed of many, so they have to be merged.

There are two possible ways to merge modules. The first solution is to use the
composition introduced by Milner [12]. The global module is made out of the transi-
tions of its components, except those that are synchronized by a rendezvous. This is
due to the fact that we only have communication with rendezvous in the EIOLTS in-
put language of AGATHA. Each rendezvous is replaced by an equivalent transition
obtained by eliminating the exchanged parameter. The other solution is to compute
the symbolic execution on each module first and then merge the results to obtain the
global application behaviour. The major benefit of this latter approach is the paralleli-
zation of the calculus: execution trees for each module can be computed separately.

At the moment, only the first solution is implemented in AGATHA. The second
option will be integrated soon.

594 C.Bigotetal.

Constraints solvers. Once the execution tree is computed, the whole behaviour of
the system is exhibited. Livelocks and deadlocks are visible. We use the DaVinci [13]
graphical interface to represent the execution tree. A constraints solver, the Presburger
tool Omega, may then be used to get the appropriate values for symbolic variables
satisfying path conditions. Then it generates numerical test input sequences. We elect
to generate one numeric test for each symbolic test which represents an equivalence
class of numeric tests. So the constraints solver computes only one solution for each
path condition.

Figure 2 shows the overall architecture of the AGATHA toolset

- . Syntactical
@ Pre proces sing

k 4

! Simgo fcoaiem | Transitions
e g I — A
| Procedures | Execution
________]
I i
" Reducrions | Fusion — Composition |
! 3
| Procedures

) 4
Global BExecution |

[
| Interfecwings :
| Elimmation

| Caleulus rEﬁ}q;m'im |

Symbelic Test Sets
System Execntion Tree

y

Y
| Constraints Resolution | Numerical Test Sots

Fig. 2. Architecture of the AGATHA toolset.

3 Transcription of UML Models into EIOLTS

We connect the AGATHA toolset to the environment of the AIT-WOODDES project
that offers a method for designing UML specification, an automatic code generator
and validation tools. We implement the translation algorithms in the Objecteering 5
UML modeling tool [14]. In this context we generate tests for UML models designed
with the ACCORD methodology [15]. The accepted UML models are designed with
class diagrams. Each class should have one or more statechart diagram that represents
its dynamic behaviour. Collaboration diagrams are used to model interactions be-
tween instances of classes. The results provided by AGATHA will be turned into
UML sequence diagrams.

The translation from UML to EIOLTS is a two-step process illustrated in Figure 3.
First, the UML specification is checked against consistency rules to verify that the

Automatic Test Generation with AGATHA 595

translation modules will be able to translate the specification to EIOLTS; this module
also transforms the UML model into an equivalent UML model, only using a re-
stricted set of UML’s elements. Secondly, another module translates this restricted
UML into an EIOLTS file. The subset of UML that is used is designed to achieve the
same level of simplicity in the description of the state machines than the EIOLTS in-
put language of AGATHA.

The generated EIOLTS file is processed by the kernel of AGATHA. Finally, a
module analyses the resulting file, translates these results in sequence diagrams and
bring these charts back into the Objecteering CASE tool.

Developed tools Developed
tools
A T ' A
UML wo-step EIOLTS
Model specification » Specification

generator

Interacts

UML Editor AGATHA
(Objecteering)

A A

UML Results parser Results /
feedback and analyser < (Exhaustive
Paths)

A

User

Fig. 3. Translation from UML to EIOLTS.

4 Conclusion

In this tool demonstration paper we have described the AGATHA toolset allowing
software developers to validate UML specifications. This toolset may be completely
transparent for the user and definitely user-oriented.

Some improvements are foreseen: enriching AGATHA with theorem proving in
order to prove properties about the system or connecting an existing model checker to
AGATHA. For very large or complex systems AGATHA will also embed new auto-
matic simplification procedures, not working on generated expressions, but on the
model itself, and based on abstraction principles. Finally a selection of relevant tests
will be performed, along with an estimate of their covering, with respect to criteria or
test purposes defined by the user.

References

1. Rumbaugh, I. Jacobson, G. Booch, The Unified Modelling Language Reference Manual,
Reading, MA: Addison-Wesley, 1998.

2. Union Internationale des TELECOMMUNICATION, Langage de programmation — Lan-
gage de description et de spécification du CCITT — Norme SDL, Recommandation UIT T
7.100, 03/93.

596

10.

11.

12.

13.

14.
15.

C. Bigot et al.

D. Lugato, Nicolas Rapin, J.-P. Gallois, Verification and tests generation for SDL indus-
trial specifications with the AGATHA toolset, Proceeding of Workshop on Real-Time
Tools, CONCUR’01.

D. Harel, Statecharts: a Visual Formalism for Complex Systems, Science of Computer
Programming, vol. 8, pp. 231-274, 1987.

ISO, Information processing system, system interconnection, a formal description based
on an extended state transition model, Geneva, 1997.

AIT-WOODDES Project N IST-1999-10069, http://wooddes.intranet.gr/

L. A. Clarke. A system to generate test data and symbolically execute programs, IEEE
Transactions on software Engineering, vol. SE-2, n°3, September 1976, pp 215-222.

J.C. Huang. An approach to program testing, ACM computing surveys.7(3): 113-128,
September 1975.

J. C. King. Symbolic execution and program testing, Communication of the ACM,19(7).
July 1976.

M. Ishisone, T. Sawada, Brute: brute force rewriting engine, GAIST, January 2001,
http://www.theta.theta.ro/cafeobj|

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, D. Wonnacott, The Omega Li-
brary version 1.1.0, University of Maryland, November 1996,
http://www.cs.umd.edu/projects/omegal

R. Milner. Communication and concurrency, Prentice Hall International, 1989.

M. Worner, M. Frohlich, DaVinci Tool version 2.1, Bremen University, July 98,
http://www.informatik.uni-bremen.de/davinci|

Objecteering Tool version 5, Softeam Paris, 2001, jhttp://www.softeam. it}

S. Gérard, N. S. Voros, C. Koulamas, Efficient system modeling of complex real-time in-
dustry; networks using the ACCORD/UML methodology, DIPES 2000.

http://wooddes.intranet.gr/
http://www.theta.theta.ro/cafeobj
http://www.cs.umd.edu/projects/omega
http://www.informatik.uni-bremen.de/davinci
http://www.softeam.fr/

	1 Introduction
	2 The AGATHA Kernel
	3 Transcription of UML Models into EIOLTS
	4 Conclusion
	References

