Saturation Unbound*

Gianfranco Ciardo, Robert Marmorstein, and Radu Siminiceanu

College of William and Mary, Williamsburg, Virginia 23187
{ciardo ,rmmarm, radu}@cs .wm.edu

Abstract. In previous work, we proposed a “saturation” algorithm for
symbolic state-space generation characterized by the use of multi-valued
decision diagrams, boolean Kronecker operators, event locality, and a
special iteration strategy. This approach outperforms traditional BDD-
based techniques by several orders of magnitude in both space and time
but, like them, assumes a priori knowledge of each submodel’s state
space. We introduce a new algorithm that merges explicit local state-
space discovery with symbolic global state-space generation. This relieves
the modeler from worrying about the behavior of submodels in isolation.

1 Introduction

Since their introduction, implicit methods for symbolic model checking, such as
decision diagrams, in particular BDDs [5lJ6l8], have been enormously successful.
However, the systems targeted have been mainly synchronous VLSI designs and
protocols, where the possible values of each state variable can be easily deter-
mined a priori. For arbitrary systems modeled in a high-level formalism such as
Petri nets or pseudocode, determining the range of the state variables is more
difficult. Traditionally, the burden of this task has been placed on the user. In
NuSMV [14], for example, the domain of multi-valued variables must be explic-
itly specified as a set or integer range. In our own previous work [T1/T2J23], the
input (a Petri net) must be partitioned so that the state space of each “local
subnet” can be generated in isolation. This practice requires careful addition
of inhibitor arcs or other constructs to ensure correct local behavior without
affecting the global behavior, a difficult and error-prone endeavor.

In this paper, we address this problem with an algorithm that produces a
multi-valued decision diagram (MDD) [21] representation of the final state-space
and a separately stored representation of the “minimal” local state spaces. The
algorithm interleaves explicit local exploration of each submodel with symbolic
exploration of the global state space. The new algorithm is based on our satura-
tion algorithm [12], which uses an MDD to store the global states and boolean
Kronecker matrices to encode the transition relation. By using a disjunctively-
partitioned transition relation [20], exploiting event locality [23], performing in-
place updates [11] of MDD nodes, and using an innovative iteration strategy,

* Work supported in part by the National Aeronautics and Space Administration
under grants NAG-1-2168 and NAG-1-02095 and by the National Science Foundation
under grants CCR-0219745 and ACI-0203971.

H. Garavel and J. Hatcliff (Eds.): TACAS 2003, LNCS 2619, pp. 379-893, 2003.
© Springer-Verlag Berlin Heidelberg 2003

380 G. Ciardo, R. Marmorstein, and R. Siminiceanu

saturation showed massive time and space improvements over traditional sym-
bolic state-space generation approaches. Our new algorithm exploits these same
ideas, but can be applied to a more general class of models. The inherent asyn-
chronicity of software models makes them ideal candidates for our new approach.

Section [2 gives the necessary background on symbolic state-space generation
and the rationale behind our contribution. Section[3] presents our new algorithm.
We discuss theoretical and practical issues of design and implementation in Sec-
tion] and provide experimental results in Section Bl Section [6 discusses related
work and Section [1 concludes by suggesting further research directions.

2 State Space Generation

A discrete-state model is a triple (5‘, s,), where S is the set of potential states
of the model, s is the initial state (a set of initial states could be easily handled),

and N : S — 25 is the next-state function specifying which states can be reached
from a given state in a single step. Since we target asynchronous systems, we par-
tition NV into a union of next-state functions [20]: N'(s) = J,cg Ne(s), where £
is a finite set of events, N, is the next-state function associated with event e, i.e.,
N.(s) is the set of states the system can enter when e occurs, or fires, in state s.
An event e is said to be disabled in s if N (s) = 0); otherwise, it is enabled.

The reachable state space S C S is the smallest set containing s and closed
with respect to N: 8§ = {s} UN(s) UN(N(s))U--- = N*(s), where “*” denotes
the reflexive and transitive closure, and we let N'(X) = (J,cx N (s). Thus, S
is the smallest fixed point of the equation & = N(S) in which S contains {s}.
Since N is composed of several functions N, we can build S by applying each
function in any order, as long as we consider each event often enough [17].

The systems we target can be partitioned into interacting submodels. For a
model composed of K submodels, a global system state is a K-tuple (i, ... ,i1),
where iy, is the local state of submodel k, for K> k> 1. Thus, the potential state
space S is given by the cross-product Si x - -+ x 81 of K local state spaces. For
example, the places of a Petri net can be partitioned into K subsets, with the
marking written as a vector of the K corresponding submarkings. Partitioning
enables us to use techniques targeted at exploiting system structure, including
symbolic state space storage techniques based on decision diagrams.

Multi-valued decision diagrams for the state space. If each local state
space Sy is known, we can use mappings ¥ : S — {0,1,... ,n; —1}, where
ng =|Sk|, and encode S C S via a (quasi-reduced ordered) MDD, i.e., a directed
acyclic edge-labeled multi-graph where:

— Nodes are organized into K + 1 levels. We write (k:p) to denote a generic
node, where k is the level and p is a unique index for that level.

— Level K contains only a single non-terminal node (K:r), the root, whereas
levels K —1 through 1 contain one or more non-terminal nodes.

— Level 0 consists of two terminal nodes, (0:0) and (0:1).

Saturation Unbound 381

Si=10,1,2,3} S = {1000, 1010, 1100,
Sy = {0,1,2} 1110, 1210, 2000,

2010, 2100, 2110,
Sy ={0,1} 2210, 3010, 3110,
S =1{0,1,2} 3200, 3201, 3202,

3210, 3211, 3212}

Fig. 1. An example MDD and the state space S encoded by it.

— A non-terminal node (k:p) has ny, arcs pointing to nodes at level k—1. If the
ith arc, for i € Sk, is to node (k—1:q), we write (k:p)[i] = q. Duplicate nodes
are not allowed but, unlike reduced ordered MDDs, redundant nodes where
all arcs point to the same node are allowed (both versions are canonical).

Let B((k:p)) be the set of (sub-)states encoded by the MDD rooted at (k:p).
As in [12], we reserve the node index 0 at each level k, so that B((k:0))=0. In
previous work, we also reserved the index 1, so that B({k:1)) =S x ---S1, but
as discussed in Section] this optimization can no longer be used. Fig. [Tl shows
a four-level MDD and the set S it encodes. The lightly bordered nodes represent
the empty set and are not explicitly stored in the MDD.

Kronecker encoding for the next-state function. Effective symbolic state
space generation requires an efficient encoding of the next-state function. Unlike
BDD approaches, where N, or each N, is encoded in a 2K-level BDD, we adopt
a Kronecker representation inspired by work on Markov chains [2J725]. As in
[[TT223], we use a consistent model partition, where each A, is decomposed
into K local next-state functions J\/'e, g, for K >k>1, which satisfy
V(ig,...,i1) €S, Nelig, ... i1) = Ne g (i) x -+ x Ne (i)

By defining matrices W, € {0, 1} *™ where W y[ix, k] =1 < jr € Ne i (ix),
the next-state function is encoded as the incidence matrix given by the (boolean)
sum of Kronecker products) .c @ p>i>1 Wer. The W, matrices are ex-
tremely sparse (for standard Petri nets, each row contains at most one nonzero
entry), and are indexed using the same mapping ¢, used to index Sy.

In addition to efficiently representing N, the Kronecker encoding allows us
to exploit event locality [11123] and employ saturation [12]. Locality means that
most events depend on few submodels, hence few levels of the MDD (event
e is independent of level k if W, = I, the identity). If we let Top(e) and
Bot(e) denote the highest and lowest levels on which e depends, respectively,
the saturation strategy iterates until node (k:p) has reached a fixed point with
respect to all N, such that Top(e) < k, collectively written as N<j, without
examining the nodes above (k:p) in the MDD.

Local state spaces. Traditional symbolic state-space generation assumes a
priori knowledge of the local state spaces. For BDDs, each Sy, is simply {0, 1}; in
our previous MDD work [IT12]23], each Sy, is finite and built prior to state-space
generation. Since Sj is known, we can store its elements in a search structure,

382 G. Ciardo, R. Marmorstein, and R. Siminiceanu

]
]

Fig. 2. Local state spaces built in isolation can be strict supersets of the actual ones.

which encodes the mapping 1. Local states in the MDD may then be referenced
exclusively through their integer indices in .

For a given high-level formalism, each Sy can be pregenerated with an explicit
traversal of the local state-to-state transition graph of the submodel obtained
by considering all the variables associated with the submodel and all the events
affecting those variables. Unfortunately, this pregeneration may create spurious
local states. For example, if the two places of the Petri net in Fig.[2(a) are parti-
tioned into two subsets, the corresponding subnets, (b) and (c), have unbounded
local state spaces when considered in isolation. In subnet (b), transition u can
keep adding tokens to place p; since, without the input arc from po, u is always
locally enabled. Hence, in isolation, p; may contain arbitrarily many tokens. The
same can be said for subnet (c). However, S = {(1,0), (0, 1)}, so we would ideally
like to define So = §; = {0,1}. This can be enforced by adding either inhibitor
arcs, (d), or complementary places, (e). Consider now the Petri net of Fig. 2(f),
partitioned into two subnets, one containing p1, p2, and ps, the other containing
ps and ps. The inhibitor arcs shown avoid unbounded local state spaces in iso-
lation, but they don’t ensure that the local state spaces are as small as possible.
For example, the local state space built in isolation for the subnet containing p,
and ps is {(0,0), (1,0), (0,1),(1,1)}, while only the first three states are actually
reachable in the overall net, since ps and ps can never contain a token at the
same time. This is corrected in (g) by adding two more inhibitor arcs, from ps
to v and from py to w. An analogous problem exists for the other subnet as well,
and correcting it with inhibitor arcs is even more cumbersome.

Thus, there are two problems with pregeneration: a local state space in iso-
lation might be unbounded (causing pregeneration to fail) or contain spurious
states (causing inefficiencies in the symbolic state-space generation). Asking the
modeler to cope with this by adding constraints to the original model (e.g., the
inhibitor arcs in Fig.[2) is at best burdensome, since it requires a priori knowledge
of S, the output of state-space generation, and at worst dangerous, since doing
so might “mask” undesirable behaviors that are present in the overall model.

Saturation Unbound 383

Wa2 01 2 W20 12
W,,=1 0] |1 0 11|

Woi 01 234 Waro1 234 Waioi1 23 4
0 ol 1 0
1 1 1 1 1
K 2 1 201

Fig. 3. An example snapshot of transition matrices We .

3 Local State Spaces with Unknown Bounds

We now describe an on-the-fly algorithm that merges explicit local state with
symbolic global state explorations and builds the smallest local state spaces
Sk needed to encode the correct global state space S € S = Sg X -+ X 5.
Ideally, the additional time spent exploring local state spaces on-the-fly should be
comparable to that spent in the pregeneration phase of our old algorithm. This is,
in fact, the case for our new algorithm, which incrementally discovers a set S of
locally-reachable local states, of which only a subset S, is also globally reachable.
When our algorithm determines that a local state is globally reachable, it labels
it as confirmed. Since unconfirmed local states in Sy, \ Sk are limited to a “rim”
around the confirmed ones, and since unconfirmed states do not increase the size
of MDD nodes, memory overhead is small in practice.

Expanding local state spaces. Initially, for K > k> 1, S, = S = {sk},
the k*" component of the initial state s. The iteration strategy of [T2] saturates
nodes bottom-up through an exhaustive symbolic reachability analysis: it fires
globally enabled events on a node as long as new global states are found. In
our new version, the MDD encodes only confirmed states, but our Kronecker
encoding describes all possible transitions from confirmed local states to both
confirmed and unconfirmed local states. Thus, we only explore global symbolic
firings originating in confirmed states. The next-state function for event e in
local state ¢ of node {k:p) (Fig.[d lines[@ of Saturate and @ of RecFire) may lead
to a state j € Sp or j € §k \ Sk. In the former case, j is already confirmed and
row j of W j has been built (thus the local states reachable from j are in éA’k)
In the latter case, j is unconfirmed: it is locally, but not necessarily globally,
reachable, thus it appears as a column index but has no corresponding row in
W, . Local state j will be confirmed if the global symbolic firing that used
the entry W [, j] is actually possible, i.e., if e can fire in an MDD path from
Top(e) to Bot(e) through node (k:p). Only when j is confirmed, its rows in W
(for all events e that depend on k) are built, using one forward step of explicit
local reachability analysis. This step must consult the description of the model
itself, and thus works on actual submodel variables, not state indices. This is
the only operation that may discover new unconfirmed local states.

384 G. Ciardo, R. Marmorstein, and R. Siminiceanu

Transition matrices. The on-the-fly algorithm uses “rectangular” Kronecker
matrices over {0,1}%+*Sk where only confirmed local states “know” their suc-
cessors, confirmed or not.

Fig. Bl shows an example. The net is partitioned into subnet 2, containing
place p, and subnet 1, with places ¢ and r. The potential local state spaces
discovered with the saturation algorithm are S, = {0 = (p'),1 = (p°),2 = (p?)},
and 8 = {0 = (¢°r°),1 = (¢"°),2 = (¢°"),3 = (¢*°),4 = (¢"") }. The model
events are grouped and ordered as dictated by the saturation strategy: transitions
that are local to subnet 1, &’ and b”, are merged into macroevent b, the remaining
two being the “synchronizing” events a and c. There are two Kronecker matrices
for each event, W, e € {a,b,c}, k € {1,2}, hence six in total, among which
‘W, 5 is the identity, since macroevent b does not affect subnet 2.

Three regions of the matrices are highlighted: the white portion corresponds
to moves between confirmed states and those are kept in the final matrices; the
shaded area corresponds to moves from confirmed to unconfirmed states; the
black region means that the corresponding column indices were out of range at
the time the row was built. The actual evolution of the matrices is:

1. The initial state is inserted, with index 0, in each local state space. The row
for local state 0 of &7 in each of the corresponding three matrices is built
explicitly: only event a leads to a new local state (q'r°), which is indexed
1. Similarly at level 2, a new local state (p°) is discovered by locally firing a
and another, (p?), by locally firing ¢, these are indexed 1 and 2, respectively.

2. MDD saturation starts; in the initial MDD node at level 1, no events are
enabled, but at level 2, event a is successfully (globally) fired, leading to
global state (1,1) = (p°, ¢*r?). As a result, local states 1 at both levels are
confirmed. Their corresponding rows are built with an explicit exploration
in each subnet. At level 1, local state 1 can move to 2 = (¢°r!) by firing the
b' component of b, or to 3 = (¢?r") by locally firing a. At level 2, only event
¢ can fire in local state 1, leading to local state 0 = (p*).

3. Event b is globally fired resulting in the confirmation of local state 2 of S, as
globally reachable. Its row is built in Wy 1, W, 1, W, ;. During this phase,
one more local state is discovered, 4 = (¢'r!), corresponding to a potential
firing of event a in state 2, as well as the already confirmed states 1, by firing
the b” component of b, and 0 by firing c.

4. Event c is globally fired from global state (1,2) = (p°,¢’r!), leading to
global state (0,0) = (p', ¢°r?), whose local states are both confirmed, hence
no explicit exploration is needed for either of them.

5. Saturation ends, with the final local state spaces Sy = {0,1}, §; = {0,1,2}
and global state-space S = {(0,0), (1,1),(1,2)}. The matrices are trimmed
to their final “square” shape: 2x2 at level 2, and 3x 3 at level 1, by discarding
the unconfirmed local states along with their corresponding columns.

The algorithm. The pseudocode of our new algorithm, in Fig.[d], uses the data
types ev (model event), local (local state), level, and idz (node index within

Saturation Unbound

385

GenerateSS|():idz

RecFire(in e:ev, l:level, q:idz):idz

Build the MDD encoding N (s).

Build the MDD for NZ;(N.(B({l:q))))-

declare p,r:idx, k:level, s:state,i:local;

10.
11.

LCONIGO AW

p o= 1

. fork=1to K do

s « InitialState(k);
i «— InsertState(k,s);
Confirm(k,1);

r « NewNode(k);
(kr)li] < p;
Saturate(k,r);
CheckIn(k,r);

p =

return r; e (K:r) is the MDD root

Saturate(in k:level, p:idz)

Update (k:p), to encode NZ, (B({k:p))).

declare L:set of local, 4,7,j':local;
declare e:ev, f,u:idz; pChng:bool,

1.

10.
11.
12.
13.
14.
15.
16.

OCONGOEWN

repeat
pChng «— false;
foreach e € £ s.t. Top(e) = k do
L «— Locals(e, k,p);
while £ # 0 do
pick and remove i from L;
f «— RecFire(e,k—1, (k:p)[i]);
if f# 0 then
foreach j s.t. We x[i,j]=1 do
if us (k:p)[j] then
if 7 & Sk then Confirm(k, j);
(k:p)[j] < u; pChng — true;
if 35, We i[4,5'] = 1 then
L — LU{j}
until pChng = false;

declare L:set of local, i,j:local;
declare f,u,s:idz, sChng:bool;
. if | < Bot(e) then return g;

. if Find(FCle,l],q,s) then return s;
. s « NewNode(l); sChng «— false;

1

2

3

4. L «— Locals(e,l,q);

5. while £ # 0 do

6. pick and remove i from L;

7. f < RecFire(e,l—1,(l:q)[i]);

8. if f#0 then

9. foreach j s.t. W [i,j] =1 do
u — Union(l-1, f, (l:s)[5]);
if u#(l:s)[j] then

if j & St then Confirm(l, j);

. if sChng then Saturate(l, s);
. CheckIn(l, s);

. Insert(FCle,l],q, s);

. return s;

(I:s)[j] < u; sChng «— true;

Confirm(in k:level, i:local)

Add i to Sk and build its rows in all W

where e depends on submodel k.

declare e:ev, j:local, n:int, s,u:state;
s «— GetState(k,1);

foreach u € NeztState(e, k, s)
j « InsertState(k,u);

o Wegli,jl — L

.Sy — SkU{i};

R N

. foreach e dependent on submodel k

Union(in k:level, p:idz, q:idz):idz

Locals(in e:ev, k:level, p:idz):set of local

Local indices of (k:p) locally enabling e:
{1 €8p:(k:p)[i] A0 A 3j, We i[i, 5] = 1}.

Bu

ild the MDD for B({k:p)) U B({k:q)).

[y

QLN AEWN =

if p=0 or p = q then return g;

if ¢ = 0 then return p;

if Pind(UCTk], {p, ¢}, s) then return s;

s « NewNode(k);

fori=0to |Sk| —1

u — Union(k—1, (k:p)l], (ki) [i]);
(k:s)[i] «— w;

CheckIn(k, s);

Insert(UCTK], {p, q}.);

return s;

CheckIn(in k:level, inout p:idz)

If Vi € Sk, (k:p)[t] =0, delete (k:p) and
set p to 0. If (k:p) duplicates (k:q), delete
(k:p) and set p to q. Else, insert {k:p) in

the unique table UT'[k].

NewNode(in k:level):idz

Create a new MDD node at level k, with

its arcs set to 0.

Fig. 4. Pseudocode for the on-the-fly version of our saturation algorithm [12].

386 G. Ciardo, R. Marmorstein, and R. Siminiceanu

a level); in practice, these are simply integers in appropriate ranges. In addi-
tion, the model-specific type state represents the explicit description of a local
state. We assume the existence of the following dynamically-sized global hash
tables: UT[k], for K >k >1, the unique table for nodes at level k, to retrieve p
given (k:p)[0], ..., (k:p)[nk—1]; UC[K], for K >k>1, the union cache for nodes
at level k, to retrieve s given p and ¢, where B((k:s)) = B({k:p)) U B({(k:q));
and FCle, k], for Top(e) > k > Bot(e), the firing cache for event e and nodes
at level k, to retrieve s given node p, where B((k:s)) = NZ (Ne(B((k:p)))),
where N.(ik,...,i1) is to be interpreted as N (ix) X --+ X Ng1(i1). Hash-
table access is provided by Insert(key,val), which associates wval to key, and
Find(key,res), which returns true if key is in the cache and sets res to the
associated value. Furthermore, we use K dynamically-sized arrays to store
nodes, so that (k:p) can be efficiently retrieved as the p'™* entry of the k'R
array. The two-dimensional array of sparse matrices W, is a global vari-
able. We also assume a global variable of type model with the following func-
tional interface: InsertState(level, state) : local, GetState(level,local) : state,
NextState(ev, level, state) : state, and InitialState(level) : state.

4 Comments

We now discuss some details of the on-the-fly algorithm, especially the challenges
raised by its design and implementation.
MDD nodes of variable size. With pregeneration, the size of MDD nodes
at level k is fixed, easing their creation, deletion, and reuse. With our on-the-fly
expansion of Sy, we might instead allocate nodes of increasing size. Fortunately,
a saturated node (k:p) remains saturated when a new state i is added to S,
as long as the semantic of the missing arc (k:p)[i] is taken to be an arc to
(k—1:0). However, the growth of Sy implies that we cannot reserve a special
meaning for node (k:1), as done with pregeneration [12], where B({k:1)) = Sy x
- x 81. In [12], this optimization could speed-up the computation whenever
node (k:1) is involved in a union, since we could immediately conclude that
B({k:1))UB({k:p)) = B({k:1}). Indeed, such nodes were not even stored explicitly
in [12]. To reserve index 1 for the same purpose with the on-the-fly approach is
problematic, since, whenever we increase S, for [<k, the meaning of B((k:1))
implicitly changes. We can still reserve index 0 for the empty set, and exploit
the relation B({(k:0))UB((k:p)) = B({(k:p)), since the representation of the empty
set is the same as that in [12].

This observation led us to use quasi-reduced (instead of reduced) MDDs. The
latter eliminates redundant nodes and is potentially more efficient, but its arcs
can span multiple levels. As discussed in [I1], such arcs are more difficult to
manage and can yield a slower state-space generation when exploiting locality.
With the on-the-fly algorithm, they create an even worse problem: they become
“incorrect” when a local state space grows. For example, both the reduced and
the quasi-reduced 3-level MDDs in Fig. Bla) and (c) encode the state space S =
{(0,0,2),(0,1,2),(1,0,2),(1,1,2),(3,0,2)}, when S3 = {0,1,2,3}, So = {0,1},
and 81 = {0,1,2}. If we want to add global state (3,2,2) to S, we need to add

Saturation Unbound 387

0l 1 3 [<3:1> ol 1 3 [<3:1> 0l1 3 [<3:1> of1 3 [<3:1>

<2:2> | 0| 11 2i<22> | 0| 1 |<2:1>| ol 1 |<2:2> | ol 1 |<2:1>| 0|

1§ 2i<2:2>

2 [<1:1> 2 [<1:1> 2 |<L:1> 2. <l:1>

Fig. 5. Before and after, with reduced (a-b) vs. quasi-reduced (c-d) MDDs.

local state 2 to Sz and set arc (2:2)[2] to (1:1). However, while the resulting
quasi-reduced MDD in (d) is correct, the reduced one in (b) is not, since now
it also encodes global states (0,2,2) and (1,2,2). To fix the problem, we could
reintroduce the formerly-redundant node (2:1) so that the new reduced and
quasi-reduced MDDs coincide. While it would be possible to modify the MDD
to obtain a correct reduced ordered MDD in this manner whenever a local state
space grows, the cost of doing so is unjustifiably high.

Compacting the arc arrays. To facilitate dynamically-sized nodes, we use
indirection. Node (k:p) is associated with entry p of array nodesy, as we need
direct access to it, given p. However, the arcs of all nodes at level k are stored
together in a second array arcsg. Entry nodesy[p] has fixed size and stores,
among other information, fields bg, the beginning location where the “chunk”
of arcs for (k:p) begins in arcsy, and sz, the chunk’s size, since ny changes over
time. Saturation “updates-in-place” a node (k:p) when exploring the firing of an
event e such that Top(e) = k. Fortunately, this implies that only the currently
unsaturated node at level k (there is at most one such node at any point in time)
might cause Sg to grow: if we store the arcs of this node as the last chunk in
arcsy, we never need to grow any “internal” chunk.

However, saturated nodes may still become obsolete and need to be recycled.
Deleting (k:p) leaves a “hole” of size nodesg[p].sz in arcsy. Since these holes may
be smaller than the chunks needed for new nodes, we cannot easily reuse them as-
is. Instead, we mark them as invalid and periodically clean them by “compacting
to the left” the entire arcsy array. The space opened at the right end of arcsy can
then be reused for new nodes. Shifting chunks of arcs requires that the values
nodesy[p].bg pointing to these chunks be updated as well. There are several ways
to do this. Our implementation stores, together with the chunk for (k:p) in arcsy,
a back pointer to the node itself, i.e., the value p. This allows us to compact
arcs[k] via a linear scan: valid values are shifted to the left over invalid values
until all holes have been removed. Simultaneously, using the back pointer p, we
access and update the value nodesy[p].bg after shifting the corresponding chunk.
With respect to our pregeneration implementation where arc chunks are stored
directly in nodesy, as arrays of fixed size ny, this requires 12 additional bytes per
node, for bg and sz in nodes; and for the back pointer in arcsy. However, it can
also save memory, since chunks can be smaller than for pregeneration and could
be stored with sparse techniques.

388 G. Ciardo, R. Marmorstein, and R. Siminiceanu

Fig. 6. Potential but not actual overflow of a local state space.

We keep track of the number of invalid entries, and trigger compaction when-
ever a portion of the entries in arcsy, become invalid (50% in our experiments).

Overflowing of potential local state spaces. Our new algorithm eliminates
the need to specify additional constraints for any formalism where each state
can reach a finite number of states in a single step. A subtle problem remains,
however, if an infinite number of states can be reached in one step. For exam-
ple, in Generalized Stochastic Petri Nets [1], immediate transitions, such as v
in Fig. Bl are processed not by themselves, but as events that can take place
instantaneously after the firing of timed transitions, such as t and u (somewhat
analogous to internal events in process algebra). In Fig. [, we partition the net
into subnet 2, containing place p, and subnet 1, containing places ¢ and r. The
initial local states are (p°) and (q'r?) respectively. When the latter state is con-
firmed into &1, an explicit local exploration begins. Transition ¢ can fire in subnet
1 in isolation, leading to marking (¢r°). This enables immediate transition v
which, processed right away as part of the firing of ¢, leads to markings (¢*r'),
(¢*r?), (¢*r3), ... and so on. Thus, the explicit local exploration fails with an
overflow in place r, while a traditional explicit global exploration would not,
since it would never reach a global marking with two tokens in q. This situation
is quite artificial, however. It can occur only if the formalism allows a state to
reach an infinite number of states in one “timed step”.

BDDs vs. MDDs. Our choice of MDDs over BDDs for modeling asynchronous
systems is prompted by the success of the saturation strategy, which exploits
event locality and gives flexibility in the choice of partitioning. MDDs are an
excellent match for our Kronecker encoding of the next-state function; indeed,
the two, in conjunction with a “good” partition, allow us to increase the amount
of locality. However, the issues addressed in our work are not exclusive to MDDs.
It is true that determining the potential state space for BDDs “simply” means
deciding the number K of boolean variables. However, when the actual model has
integer variables, the modeler needs to know how many bits are needed for their
encoding, and this is just as difficult as determining the size of our local state
spaces a priori. Just as with our MDDs, then, choosing too many bits can lead
to inefficiencies, choosing too few can mask errors. An on-the-fly algorithm for
BDDs would have to expand the decision diagrams “vertically”, creating more
levels of binary variables to cope with a growing range for an integer variable,
while MDDs can simply extend local state spaces “horizontally”. Furthermore,
in our approach, unconfirmed local states appear only in the columns of the
Kronecker matrices encoding the next-state function, not in the MDD.

Saturation Unbound 389

Table 1. Generation of the state space: On-The-Fly vs. PREgeneration vs. NuSMV

N | Reachable | Final memory (KB)| Peak memory (KB) Time (sec)
states | OTF| PRE[NuSMV| OTF| PRE|NuSMV|OTF|PRE|NuSMV
Dining Philosophers: K =N, |S;|=34 for all k

20[3.46x 102 4 3] 4,178 5 4] 4,192 0.01] 0.01 0.4
50(2.23x 103! 11 10| 8,847 14| 12| 8,863| 0.03] 0.02] 13.1
100[4.97x 1062 24| 20| 8,801 28| 25| 15,256| 0.06| 0.05] 990.8
200|2.47x1012° 48 40| 21,618 57| 50| 59,423| 0.15| 0.11|18,129.3
5,000/6.53x103134|1,210| 1,015 — | 1,445| 1,269 — 165.55(51.29 —
Slotted Ring Network: K = N, |Si|=15 for all k
5[5.39x10% 1 1 502 5 5 507] 0.01] 0.01 0.1
10|8.29x10° 5 5| 4,332 28| 27| 8,863| 0.06| 0.04 6.1
15|1.46x 100 10 9 771 30 77| 11,054| 0.18] 0.13] 2,853.1
100(2.60x100% | 434| 398 — |15,753|14,486 — |41.72]25.78 —
Round Robin Mutual Exclusion: K =N+1, |S,|=10 for all k except |S1|=N+1
10]2.30x10% 5 5 917 6 7 932] 0.01] 0.01 0.2
20[4.72x107 18] 17| 5,980 20 21| 5,985| 0.04| 0.03 1.4
30(7.25%10'° 37 36| 2,222 41| 41| 8,716| 0.09| 0.07 5.6
100(2.85x10%2 | 357| 355 13,789| 372| 372| 21,814| 2.11| 1.55| 2,836.5
150(4.82x10%7 | 784| 781 — 807| 807 — | 7.04| 5.07] —
FMS: K=19, |Sk|=N+1 for all k except |S17|=4, |S12|=3,|S7|=2
5]1.92x10% 5 6] 2,113 6 9] 2,126 0.01] 0.01 1.0
10/2.50x 10° 16| 19 1,152 26| 31| 8,928| 0.02| 0.02| 416
25(8.54x 1013 86| 135 17,045 163| 239|152,253| 0.16] 0.11]17,321.9
150|4.84x10%% 16,291|15,459| — |16,140/29,998] — [18.50/10.92 —
5 Results

We compare the space and runtime required by our new algorithm with those of
its pregeneration predecessor [12] and of NuSMV [14], a symbolic verifier built
on top of the CUDD library [27]. We use a 2.4 Ghz Pentium IV with 1GB of
memory. Our examples include four models from [12], parametrized by an integer
N: dining philosophers, slotted ring, round robin mutual exclusion, and flexible
manufacturing system (FMS). The first three models are safe Petri nets: N
affects the height of the MDD but not the size of the local state spaces (except
for S; in the round robin model, which grows linearly in N). The FMS has
instead an MDD with fixed height but size of the nodes increasing linearly in V.
In the pregeneration and NuSMV models, additional constraints are manually
imposed to ensure that the correct local state spaces are built in isolation.
Table[l lists the peak and final memory and the runtime for these algorithms.
For comparison’s sake, we assume that a BDD node in NuSMV uses 16 bytes.
To be fair, we point out that our memory consumption refers to the MDD
only, while we believe that the number of nodes reported by NuSMV includes
also those for the next-state function; however, our Kronecker encoding for A
is extremely efficient, requiring at most 300KB in any model, except for the
model with 5,000 dining philosophers, where it requires 5.2MB. The memory

390 G. Ciardo, R. Marmorstein, and R. Siminiceanu

for the operation caches is not included in either our or NuSMV results (for our
algorithms, caches never exceeded 20MB on these examples). Both the on-the-fly
and the pregeneration MDD algorithms are able to handle significantly larger
models than NuSMV. We show the largest value of NV for each of the four models
where generation was possible, in the penultimate row for NuSMV and the last
row for SMART. When comparisons with NuSMV can be made, our algorithms
show speed-up ratios over 100,000 and memory reduction ratios over 1,000.

The results demonstrate that the overhead of the on-the-fly algorithm versus
pregeneration is acceptable. Moreover, the additional 12-byte per node memory
overhead required to manage dynamically-sized nodes at a given level k can be
offset by the ability to store nodes with m < nj arcs (because they were created
when Sy, contained only m states, or because the last ny —m arcs point to (k—1:0)
and are truncated). In fact, for the FMS model, this results in smaller memory
requirements than with pregeneration, suggesting that the use of sparse nodes
is advantageous in models with large local state spaces. Even if our on-the-fly
implementation is not yet as optimized as that of pregeneration, the runtime of
the on-the-fly algorithm is still excellent, at most 70% over that of pregeneration.
This is a good tradeoff, given the increase in modeling ease and safety afforded
by not having to worry about local state space generation in isolation.

6 Related Work

Symbolic analysis of unbounded discrete-event systems has been considered be-
fore in a more general setting than ours: in most cases, the goal is the study of
systems with infinite but regular state spaces. For example, the Queue BDDs of
[18] allow one to model systems with a finite number of boolean variables plus
one or more unbounded queues, as long as the contents of the queue can be repre-
sented by a DFA. The MONA system [19], implementing monadic second-order
logic, can be used to verify parametric systems without relying on a proof by in-
duction. These types of approach can be generally classified under the umbrella
of regular model checking [4].

Our goal in this paper is more modest, since we only target models with
a finite state space, but it is also very different. The saturation approach we
introduced in [T2] has been shown to be vastly superior to traditional breadth-
first approaches for globally-asynchronous locally-synchronous systems (see also
[13] for its application to edge-valued decision diagrams). However, it was limited
to models for which bounds on the state variables are known a priori. Here, we
extended it to bounded models with unknown bounds, such as those arising when
modeling distributed software, one of the most challenging problems in symbolic
methods. Our description formalism of choice, Petri nets with inhibitor arcs, self-
modifying behavior, and non-deterministic decision, is Turing-equivalent, thus
we can only hope that the state space of a given model is finite. Even when it is
finite, though, it can still have a highly “irregular” pattern. It is in these patterns
that the efficiency of our approach is particularly desirable. To our knowledge,
the algorithm we presented is the first to combine symbolic generation of the

Saturation Unbound 391

global state space with exact explicit generation of the local state spaces, but
the issue is related, at least for Petri nets, to the existence of invariants [24].
Indeed, we could use place invariants to bound our local state spaces and proceed
using pregeneration, but our on-the-fly approach is superior because it has a
small overhead, while invariant analysis is very expensive in pathological cases
[22]. More importantly, the invariant approach is limited: a net might not be
fully covered by invariants yet be bounded because of inhibitor arcs or other
constructs; invariant analysis alone might suggest that a place is unbounded
because it concludes that a transition ¢ can keep “pumping” tokens into it, while
in reality ¢t might never be enabled given the particular initial marking. Indeed,
invariant analysis does not take into account the presence of inhibitor arcs, and it
can deal only with a limited class of marking-dependent arc cardinalities used in
self-modifying nets [9], yet both constructs are very useful in practice to define
compact and realistic models. Our solution is fast, general, user-friendly, and
terminates in at least all cases where previous algorithms terminate.

The idea of a disjunctively-partitioned transition relation is natural for asyn-
chronous systems [I5)20], and in particular for Petri nets. However, our inspira-
tion for its (boolean) Kronecker encoding comes from the field of Markov chains,
where (real) Kronecker operators are increasingly used to encode the infinitesimal
generators of large Markov models described compositionally [217125]. Thanks to
this encoding, we can exploit the presence of locality in the transition relation
of each individual event, achieving much greater efficiency.

With regard to the saturation approach itself, several works proposed aban-
doning the breadth-first approach of traditional symbolic state-space generation,
with the goal of reducing the peak number of nodes, but they often still have
some vestiges of breadth-first search. For example, [3I26] improve efficiency by
exploring only a portion of the newly-found states, those encoded by the “dens-
est” nodes in the decision diagram. The closest to our saturation approach is
the “modified breadth-first search” mentioned in [20]. We believe that our satu-
ration approach is the first one to fully avoid any flavor of a global breadth-first
iteration and, for globally-asynchronous locally-synchronous models, its locality-
based ordering of the events appears to be much more effective, at times even
optimal: cases where the peak number of nodes is only O(1) larger than the final
number of nodes were reported in [12].

7 Conclusion and Future Work

Traditional symbolic state-space generation approaches require a priori knowl-
edge of the range of the state variables. In practice this puts a considerable bur-
den on the modeler who must add artificial constraints and may risk masking
actual errors in the original model. In this paper, we presented a new approach
that avoids this requirement by integrating explicit local state-space generation
with symbolic global state-space generation, and building a Kronecker represen-
tation of the next-state function “on-the-fly”. Our algorithm provides this new
capability at a small overhead cost with respect to our previous “pregeneration”

392 G. Ciardo, R. Marmorstein, and R. Siminiceanu

algorithm, but it remains enormously more efficient than other approaches in
which the next-state function is encoded as a BDD.

We stress that the data structure we employ, MDDs whose nodes can be ex-
panded at runtime, may have useful applications beyond state-space generation.
On the other hand, while our saturation algorithm is very efficient, it should be
clear that its use is not a prerequisite to the on-the-fly exploration of the local
state spaces we presented; however, we showed how the two can be seamlessly
integrated, and this enhances the usefulness and applicability of saturation.

In the future, we plan to investigate reordering, splitting, and merging of
MDD levels. These are more general than the reordering of BDD variables, but
we hope to extend some heuristics already known for that problem [16]. Also,
our algorithms are currently implemented in SMART [10], a simulation and
modeling tool for logic and stochastic analysis. Eventually, we intend to make
them available as C++ libraries.

References

1. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. John Wiley & Sons, New York, 1995.

2. V. Amoia, G. De Micheli, and M. Santomauro. Computer-oriented formulation
of transition-rate matrices via Kronecker algebra. IEEE Trans. Rel., 30:123-132,
June 1981.

3. R. Bloem, K. Ravi, and F. Somenzi. Symbolic guided search for CTL model
checking. In Proc. 87th Conf. on Design Automation, p. 29-34. ACM Press, 2000.

4. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
Computer Aided Verification, pages 403-418, 2000.

5. R. E. Bryant. Graph-based algorithms for boolean function manipulation. [EEFE
Trans. Comp., 35(8):677-691, Aug. 1986.

6. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comp. Surv., 24(3):393-318, 1992.

7. P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of memory-
efficient Kronecker operations with applications to the solution of Markov models.
INFORMS J. Comp., 12(3):203-222, 2000.

8. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 10%° states and beyond. In Proc. 5th Annual IEEE Symp. on
Logic in Computer Science, pages 428-439, Philadelphia, PA, 4-7 June 1990. IEEE
Comp. Soc. Press.

9. G. Ciardo. Petri nets with marking-dependent arc multiplicity: properties and
analysis. In R. Valette, editor, Proc. 15th Int. Conf. on Applications and Theory
of Petri Nets, LNCS 815, pages 179-198, Zaragoza, Spain, June 1994. Springer-
Verlag.

10. G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. SMART: Stochas-
tic Model Analyzer for Reliability and Timing. In P. Kemper, editor, Tools of
Int. Multiconference on Measurement, Modelling and FEvaluation of Computer-
Communication Systems, pages 29-34, Aachen, Germany, Sept. 2001.

11. G. Ciardo, G. Luettgen, and R. Siminiceanu. Efficient symbolic state-space con-
struction for asynchronous systems. In M. Nielsen and D. Simpson, editors, Proc.
21th Int. Conf. on Applications and Theory of Petri Nets, LNCS 1825, pages 103—
122, Aarhus, Denmark, June 2000. Springer-Verlag.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Saturation Unbound 393

G. Ciardo, G. Luettgen, and R. Siminiceanu. Saturation: An efficient iteration
strategy for symbolic state space generation. In T. Margaria and W. Yi, edi-
tors, Proc. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), LNCS 2031, pages 328-342, Genova, Italy, Apr. 2001. Springer-Verlag.
G. Ciardo and R. Siminiceanu. Using edge-valued decision diagrams for symbolic
generation of shortest paths. In M. D. Aagaard and J. W. O’Leary, editors, Proc.
Fourth International Conference on Formal Methods in Computer-Aided Design
(FMCAD), LNCS 2517, pages 256-273, Portland, OR, USA, Nov. 2002. Springer-
Verlag.

A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic
model verifier. In CAV ’99, LNCS 1633, pages 495-499. Springer-Verlag, 1999.
O. Coudert and J. C. Madre. Symbolic computation of the valid states of a se-
quential machine: algorithms and discussion. In 1991 Int. Workshop on Formal
Methods in VLSI Design, pages 1-19, Miami, FL, USA, 1991.

M. Fujita, H. Fujisawa, and Y. Matsunaga. Variable ordering algorithms for ordered
binary decision diagrams and their evaluation. IEEE Trans. on Computer—Aided
Design of Integrated Circuits and Systems, 12(1):6-12, 1993.

A. Geser, J. Knoop, G. Liittgen, B. Steffen, and O. Riithing. Chaotic fixed point
iterations. Technical Report MIP-9403, Univ. of Passau, 1994.

P. Godefroid and D. E. Long. Symbolic protocol verification with queue BDDs.
Formal Methods in System Design, 14(3):257-271, May 1999.

J. G. Henriksen, J. L. Jensen, M. E. Jgrgensen, N. Klarlund, R. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In E. Brinksma,
R. Cleaveland, K. G. Larsen, T. Margaria, and B. Steffen, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 1019, pages 89-110.
Springer, 1995.

J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with partitioned
transition relations. In A. Halaas and P.B. Denyer, editors, Int. Conference on
Very Large Scale Integration, pages 49-58, Edinburgh, Scotland, Aug. 1991. IFIP
Transactions, North-Holland.

T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Multi-valued deci-
sion diagrams: theory and applications. Multiple- Valued Logic, 4(1-2):9-62, 1998.
J. Martinez and M. Silva. A simple and fast algorithm to obtain all invariants of a
generalised Petri net. In Proc. 2nd European Workshop on Application and Theory
of Petri Nets, pages 411-422, Bad Honnef, Germany, 1981.

A. S. Miner and G. Ciardo. Efficient reachability set generation and storage using
decision diagrams. In H. Kleijn and S. Donatelli, editors, Proc. 20th Int. Conf.
on Applications and Theory of Petri Nets, LNCS 1639, pages 6-25, Williamsburg,
VA, USA, June 1999. Springer-Verlag.

T. Murata and R. Church. Analysis of marked graphs and Petri nets by matrix
equations. Research report MDC 1.1.8, Department of information engineering,
Univeristy of Illinois, Chicago, IL, Nov. 1975.

B. Plateau. On the stochastic structure of parallelism and synchronisation models
for distributed algorithms. In Proc. ACM SIGMETRICS, pages 147-153, Austin,
TX, USA, May 1985.

K. Ravi and F. Somenzi. Efficient fixpoint computation for invariant checking. In
Proc. Int. Conference on Computer Design (ICCD), pages 467-474, Austin, TX,
Oct. 1999. IEEE Comp. Soc. Press.

F. Somenzi. CUDD: CU Decision Diagram Package, Release 2.3.1.
http://vlsi.colorado.edu/~fabio/CUDD /cuddIntro.html.

	Introduction
	State Space Generation
	Local State Spaces with Unknown Bounds
	Comments
	Results
	Related Work
	Conclusion and Future Work

