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Abstract. In classic scheduling theory, real-time tasks are usually as-
sumed to be periodic, i.e. tasks arrive and compute with fixed rates
periodically. To relax the stringent constraints on task arrival times, we
propose to use timed automata to describe task arrival patterns. In a
previous work, it is shown that the general schedulability checking prob-
lem for such models is a reachability problem for a decidable class of
timed automata extended with subtraction. Unfortunately, the number
of clocks needed in the analysis is proportional to the maximal number
of schedulable task instances associated with a model, which in many
cases is huge.
In this paper, we show that for fixed priority scheduling strategy, the
schedulability checking problem can be solved by reachability analysis
on standard timed automata using only two extra clocks in addition
to the clocks used in the original model to describe task arrival times.
The analysis can be done in a similar manner to response time analysis
in classic Rate-Monotonic Scheduling. We believe that this is the opti-
mal solution to the problem, a problem that was suspected undecidable
previously. We also extend the result to systems in which the timed au-
tomata and the tasks may read and update shared data variables. Then
the release time-point of a task may depend on the values of the shared
variables, and hence on the time-point at which other tasks finish their
exection. We show that this schedulability problem can be encoded as
timed automata using n+1 extra clocks, where n is the number of tasks.

1 Introduction

In the area of real time scheduling methods such as rate monotonic scheduling
are widely applied in the analysis of periodic tasks with deterministic behaviours.
For non-periodic tasks with non-deterministic behaviours, there are no satisfac-
tory procedures. In reality control tasks are often triggered by sporadic events
coming from the environment. The common approach to analyze schedulability
of such systems with non-periodic tasks is to consider the minimal inter-arrival
time of a task as its period and then follow the ordinary technique used for pe-
riodic tasks. Obviously such an approximate method is quite pessimistic since
the task control structures are not considered. A major advantage can be gained
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using timed automata to specify relaxed timing constraints on events and model
other behavioural aspects such as concurrency and synchronization. In order
to perform schedulability analysis with timed automata the model of Extended
Timed Automata (ETA) has been suggested in [FPY02]. It unifies timed au-
tomata [AD94] with the classic task models from scheduling theory allowing
to execute tasks asynchronously and specify hard time constraints on compu-
tations. Furthermore, the problem of schedulability analysis for this model has
been proven to be decidable for any scheduling policy and the algorithm for
schedulability analysis was presented. It is based on translation of the schedu-
lability problem into reachability for the decrementation automata [MV94]. A
remaining challenge is to make the result applicable for schedulability analysis of
systems with non-uniformly recurring tasks that scale up to industrial systems.
In this paper we present an efficient algorithm for schedulability analysis of sys-
tems with relaxed timing constraints, which uses only two additional clocks. The
algorithm also allows to compute the worst-case response time for non-periodic
tasks.

The rest of this paper is organized as follows: Section 2 describes the syntax
and semantics of ETA and defines scheduling problems related to the model. In
Section 3, we present the main result of this paper – an algorithm to perform
schedulability analysis of systems with relaxed timing constraints. Section 4
is devoted to schedulability analysis of systems with fixed priorities and data-
dependent control. In Section 5, we describe implementation issues and how to
perform worst-case response time analysis. Section 6 concludes the paper with
summary and related work.

2 Preliminaries

2.1 Timed Automata with Tasks

A timed automaton [AD94] is a standard finite-state automaton extended with
a finite collection of real-valued clocks. One can interpret timed automata as
an abstract model of a running system that describes the possible events occur-
ring during its execution. Those events must satisfy given timing constraints.
To clarify how events, accepted by a timed automaton, should be handled or
computed we extend timed automata with asynchronous processes [FPY02], i.e.
tasks triggered by events asynchronously. The idea is to associate each location
of a timed automaton with an executable program called a task. We assume that
the execution times and hard deadlines of the tasks are known1.

Syntax. Let P ranged over by P,Q,R, denote a finite set of task types. A task
type may have different instances that are copies of the same program with dif-
ferent inputs. Each task P is characterized as a pair of natural numbers denoted
1 Task may have other parameters such as fixed priority for scheduling and other

resource requirements, e.g. memory requirement.
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P (C,D) with C ≤ D, where C is the execution time (or computation time) of P
and D is the deadline for P . The deadline D is relative, meaning that when task
P is released, it should finish within D time units. We shall use C(P ) and D(P )
to denote the worst case execution time and relative deadline of P respectively.

As in timed automata, assume a finite set of alphabets Act for actions and a
finite set of real-valued variables C for clocks. We use a, b etc. to range over Act
and x1, x2 etc. to range over C. We use B(C) ranged over by g to denote the set
of conjunctive formulas of atomic constraints in the form: xi∼C or xi − xj∼D
where xi, xj ∈ C are clocks, ∼ ∈ {≤, <,≥, >}, and C,D are natural numbers.
The elements of B(C) are called clock constraints.

Definition 1. A timed automaton extended with tasks, over actions Act, clocks
C and tasks P is a tuple 〈N, l0, E, I,M〉 where

– 〈N, l0, E, I〉 is a timed automaton where
• N is a finite set of locations ranged over by l,m, n,
• l0 ∈ N is the initial location, and
• E ⊆ N × B(C)×Act× 2C ×N is the set of edges.
• I : N �→ B(C) is a function assigning each location with a clock constraint

(a location invariant).
– M : N ↪→ P is a partial function assigning locations with tasks2.

Intuitively, a discrete transition in an automaton denotes an event triggering
a task and the guard (clock constraints) on the transition specifies all the possible
arrival times of the event (or the associated task). Whenever a task is triggered,
it will be put in a scheduling (or task) queue for execution (corresponding to the
ready queue in operating systems).

Operational Semantics. Extended timed automata may perform two types of
transitions just as standard timed automata. The difference is that delay tran-
sitions correspond to the execution of running tasks with highest priority and
idling for the other tasks waiting to run. Discrete transitions corresponds to the
arrival of new task instances.

We represent the values of clocks as functions (called clock assignments) from
C to the non–negative reals. A state of an automaton is a triple (l, u, q) where l
is the current control location, u the clock assignment, and q is the current task
queue. We assume that the task queue takes the form: [P1(c1, d1), . . . , Pn(cn, dn)]
where Pi(ci, di) denotes a released instance of task type Pi with remaining com-
puting time ci and relative deadline di

A scheduling strategy Sch e.g. FPS (fixed priority scheduling) or EDF (ear-
liest deadline first) is a sorting function which changes the ordering of the task
queue elements according to the task parameters. For example, EDF([P (3.1, 10),
2 Note that M is a partial function meaning that some of the locations may have no

task. Note also that we may associate a location with a set of tasks instead of a
single one. It will not cause technical difficulties.
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Q(4, 5.3)]) = [Q(4, 5.3), P (3.1, 10)]). We call such sorting functions scheduling
strategies that may be preemptive or non-preemptive 3.

Run is a function which given a real number t and a task queue q returns
the resulted task queue after t time units of execution according to available
computing resources. For simplicity, we assume that only one processor is avail-
able. Then the meaning of Run(q, t) should be obvious and it can be defined
inductively. For example, let q = [Q(4, 5), P (3, 10)]. Then Run(q, 6) = [P (1, 4)]
in which the first task is finished and the second has been executed for 2 time
units.

Further, for non-negative a real number t, we use u + t to denote the clock
assignment which maps each clock x to the value u(x) + t, u |= g to denote
that the clock assignment u satisfies the constraint g and u[r �→ 0] for r ⊆ C, to
denote the clock assignment which maps each clock in r to 0 and agrees with u
for the other clocks (i.e. C\r).
Definition 2. Given a scheduling strategy Sch4, the semantics of an extended
timed automaton 〈N, l0, E, I,M〉 with initial state (l0, u0, q0) is a transition sys-
tem defined by the following rules:

– (l, u, q) a−→Sch(m,u[r �→ 0],Sch(M(m) :: q)) if l
g,a,r−→ m and u |= g

– (l, u, q) t−→Sch(l, u+ t,Run(q, t)) if (u+ t) |= I(l)

where M(m) :: q denotes the queue with M(m) inserted in q.

2.2 Schedulability and Decidability

In this section we briefly review the verification problems of ETA. For more
details, we refer the reader to [FPY02]. We first mention that we have the same
notion of reachability as for ordinary timed automata.

Definition 3. We shall write (l, u, q)−→(l′, u′, q′) if (l, u, q) a−→(l′, u′, q′) for an
action a or (l, u, q) t−→(l′, u′, q′) for a delay t. For an automaton with initial state
(l0, u0, q0), (l, u, q) is reachable iff (l0, u0, q0)(−→)∗(l, u, q).

Note that the reachable state-space of an ETA is infinite not only because of
the real-valued clocks, but also unbounded size of the task queue.

Definition 4. (Schedulability) A state (l, u, q) where q = [P1(c1, d1), . . . ,
Pn(cn, dn)] is a failure denoted (l, u,Error) if there exists i such that ci ≥ 0
and di < 0, that is, a task failed in meeting its deadline. Naturally an
automaton A with initial state (l0, u0, q0) is non-schedulable with Sch iff
(l0, u0, q0)(−→Sch)∗(l, u,Error) for some l and u. Otherwise, we say that A is
schedulable with Sch. More generally, we say that A is schedulable iff there ex-
ists a scheduling strategy Sch with which A is schedulable.
3 A non-preemptive strategy will never change the position of the first element of a

queue. A preemptive strategy may change the ordering of task types only, but never
change the ordering of task instances of the same type.

4 Note that we fix Run to be the function that represents a one-processor system.
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The schedulability of a state may be checked by the standard schedu-
lability test. We say that (l, u, q) is schedulable with Sch if Sch(q) =
[P1(c1, d1) . . . Pn(cn, dn)] and (

∑
i≤k ci) ≤ dk for all k ≤ n. Alternatively, an

automaton is schedulable with Sch if all its reachable states are schedulable
with Sch.

Theorem 1. The problem of checking schedulability for extended timed au-
tomata is decidable.

Proof. The proof is given in [FPY02]. 
�

3 Main Result: Two Clocks Encoding

In this section we present the main result of this paper. It shows that for timed
automata extended with tasks executed according to fixed priorities, the schedul-
ing problem can be encoded into a reachability problem of ordinary timed au-
tomata using only two additional clocks.

Our analysis technique is inspired by Joseph and Pandya’s rate-monotonic
analysis of periodic tasks [JP86], where the worst-case response time of each
task is calculated as the sum of the task’s execution time, and the blockings
imposed by other tasks. Similar to Joseph and Pandya, we check for each task
type independently that it meets its deadline. However, the model of ETA gives
rise to a more general scheduling problem than systems with periodic tasks only.
As a result, we can not base our analysis on the existence of an a priori known
worst-case scenario for a given task. Instead, it will be part of the analysis to
find all situations in which a task may execute.

Assume an ETA A and a fixed priority scheduling strategy Sch. To solve the
scheduling problem, for each Pi∈P we construct automata Ei(Sch) and E(A),
and check for reachability of a predefined error state in the product automaton of
the two. If the error state is reachable, task Pi of automaton A is not schedulable
with Sch. The check is performed in priority order for each task in P, starting
with the task of highest priority.

To construct the E(A), the automaton A is annotated with distinct synchro-
nization actions releasei on all edges leading to locations labeled with the task
name Pi. The actions will allow the scheduler to observe when tasks are released
for execution in A. The rest of this section is devoted to show that Ei(Sch) can
be constructed as a timed automaton using only two clocks.

Theorem 2. Given a fixed priority scheduling strategy Sch, Ei(Sch) can be en-
coded as a timed automaton containing two clocks.

Proof. Follows from Lemma 1 and 2 shown later in this section. 
�
In the encoding of Ei(Sch), we shall use C(i), D(i) and Prio(i) to denote

the worst-case execution time, the deadline, and the priority of task type Pi,
respectively. Ei(Sch) uses the following variables:
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Fig. 1. Task execution schemes for tasks Pi and Pj with Prio(j) > Prio(i). The symbols
↑ and ↓ indicate release and completion of tasks, respectively.

– d - a clock measuring the time since the analysed task instance of Pi was
released for execution,

– c - a clock accumulating the time since the task queue last empty (or con-
taining only tasks Pk with Prio(k) < Prio(i)).

– r - a data variable used to sum up the time needed to complete all tasks
released since the processor was last idle (i.e. not executing instances of Pi
and all higher priority tasks).

The clock d is reset when the analysis of a task instance begins, and will
be used to check that it completes before its deadline. The clock c is used to
compute the time point when the analysed task instance of Pi completes. The
variable r will be assigned so that Pi completes when c = r. Fig.1 shows in two
Gantt charts how the variables are used in Ei(Sch). In Fig.1(a) task Pi executes
immediately but is preempted by Pj . In Fig.1(b) task Pi is released when task
Pj is already executing. Note how the clocks c and d are reset, and variable r is
updated in the two scenarios so that task Pi is completed when the condition
c = r is satisfied. Note also that the deadline of Pi is reached when d = D(i) (as
d is reset when Pi is released for execution).

The encoding of Ei(Sch) is shown in Fig.2. Intuitively, the locations have the
following interpretations:

– Idlei - denotes a situation where no task Pj with Prio(j) ≥ Prio(i) is being
executed (or ready to be executed).

– Checki - an instance of task type Pi is currently ready for execution (possibly
executing) and is being analysed for schedulability.

– Busyi - a task of type Pj with priority Prio(j) ≥ Prio(i) is currently executing.
– Errori - the analysed task queue is not schedulable with Sch.

The analysis of an instance of Pi starts when a transition from Idlei or Busyi
to Checki is taken. The transitions in Ei(Sch) have the following intuitive inter-
pretations:
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Idlei
Checki

c<=r, c<=Cmax Errori

releasei
c:=0, d:=0
r:=C(i)

c<r
d==D(i)
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c==r
releasei
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c==Cmax
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r:=C(j)
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releasej|prio(Pj)>=prio(Pi)
r<=Ri

max

r:=r+C(j)

releaseic==r
d<=D(i)

r>Ri
max

r>Ri
max

Fig. 2. Encoding of schedulability problem.

– Idlei - is (re-)entered when the task instance being checked in Checki, or a
sequence of tasks arrived in Busyi, has finished execution. In both cases the
enabling condition c=r ensures that the location is reached when all tasks
Pj with Prio(j) ≥ Prio(i) have finished their executions.

– Busyi - the ingoing transitions to Busyi are taken when a task Pj such that
Prio(j) ≥ Prio(i) is released. The additional self-loop, is taken to decrement
both c and r with the constant value Cmax. This does not change the truth-
value of any of the guards in which c and r appear, as the values are always
compared to each other.

– Checki - transitions entering Checki from Idlei or Busyi are taken when a
task instance of Pi is (non-deterministically) chosen for checking. Self-loops
in Checki are taken to update r at the release of higher-priority tasks. New
instances of Pi in Checki are ignored as they are considered by the non-
deterministic choice in location Busyi.

– Errori - is reached when the analysed task instance reaches its deadline (en-
coded d = D(i)) before completion (encoded c < r). In addition, Errori is
entered if the set of released tasks is guaranteed to be non-schedulable (en-
coded r > Rmaxi , the value of Rmaxi is discussed below).

In addition to these transitions, in Fig 2 we have omitted self-loops in all
locations, which synchronize with E(A) whenever a task of priority lower than
Prio(i) is released. They can be ignored as these tasks do not affect the response
time of Pi.

The constant Cmax can be any value greater than 0. We use Cmax =
maxi(C(i)). To find a value for Rmaxi , we need the result of the previous analysis
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steps. Recall that the analysis of all Pi ∈ P is performed in priority order, start-
ing with the highest priority. Thus, when Pi is analysed we can find the maximum
value assigned to r in the previous analysis steps. Let rmax denote this value.
Recall that r − c is always the time remaining until the released tasks complete
their executions (except in location Idlei and Errori where r is not updated). For
the set of released tasks to be schedulable we have that r − c < rmax + D(i).
It follows that r < rmax + D(i) + Cmax since c ≤ Cmax. We set the constant
Rmaxi = rmax + D(i) + Cmax and use r > Rmaxi to detect non-schedulable task
sets in Ei(Sch).

The last step of the encoding is to construct the product automata
E(A)||Ei(Sch) for each Pi ∈ P, and check by reachability analysis that lo-
cation Errori is not reachable in the product automaton. We now show that
E(A)||Ei(Sch) is bounded.

Lemma 1. The clocks c and d, and the data variable r of Ei(Sch) in
E(A)||Ei(Sch) are bounded.

Proof. The clocks d and c are bounded by the constants D(i) and Cmax respec-
tively. The data variable r is bounded by Rmaxi + max{j : Prio(j)>Prio(i)} C(j). 
�

Lemma 2. Let A be an extended timed automaton and Sch a fixed-priority
scheduling strategy. Assume that (l0, u0, q0) and (〈l0, Idlei〉, v0) are the initial
states of A and the product automaton E(A)||Ei(Sch) respectively where l0 is
the initial location of A, u0 and v0 are clock assignments assigning all clocks
with 0 and q0 is the empty task queue. Then the following holds:

(l0, u0, q0)(−→)∗(l, u,Error) iff (〈l0, Idlei〉, v0)(−→)∗(〈l′,Errori〉, v)

for some l, u, l′, v, i.

Proof. It is by induction on the length of transition sequence (i.e. reachability
steps). 
�

Thus, we have shown that the scheduling problem can be solved by a reacha-
bility problem for timed automata, and from Lemma 1 we know that the reach-
ability problem is bounded. This completes the proof of Theorem 2.

4 Analysing Data-Dependent Control

In this section we extend the result of the previous section to handle extended
time automata in which the tasks may use (read and update) data variables,
shared between the tasks and the automata. This results in a model with data-
dependent control in the sense that the behaviour of the control automaton, and
the release time-point of tasks may depend on the values of the shared variables,
and hence on the time-points at which other tasks complete their executions.
We first present the model of ETA extended with data variables [AFP+03].
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4.1 Extended Timed Automata with Data Variables

Syntax. Assume a set of variables D ranged over by u, which takes their values
from finite data domains, and are updated by assignments in the form u := E ,
where E is a mathematical expression. We use R to denote the set of all possible
assignments. A task P is now characterized by a triple P (C,D,R), where C
and D are the execution time and the deadline as usual, and R ⊆ R is a set of
assignments. We use R(P ) to denote the set of assignments of P , and we assume
that a task assigns the variables according to R(P ) by the end of its execution.

The data variables assigned by tasks may also be updated and tested (or
read) by the extended timed automata. Let A = R∪{x := 0 | x ∈ C} be the set
of updates. We use r to stand for a subset of A. To read and test the values of
the data variables, let B(D) be a set of predicates over D. Let B = B(D) ∪ B(C)
be ranged over by g called guards.

Operational Semantics. To define the semantics, we use valuations to denote
the values of variables. A valuation is a function mapping clock variables to the
non-negative reals, and data variables to the data domain. We denote by V the
set of valuations ranged over by σ. For a non-negative real number t, we use σ+t
to denote the valuation which updates each clock x with σ(x) + t, and σ[r] to
denote the valuation which maps each variable α to the value of E if α := E ∈ r
(note that E is zero if α is a clock) and agrees with σ for the other variables. We
are now ready to present the semantics of extended timed automata with data
variables by the following rules:

– (l, σ, q) a−→Sch(m,σ[r],Sch(M(m) :: q)) if l
g,a,r−→ m and σ |= g

– (l, σ, q) t−→Sch(l, σ + t,Run(q, t)) if (σ + t) |= I(l) and C(Hd(q, t)) > t

– (l, σ, q) t−→Sch(l, (σ[A(Hd(q))]) + t,Run(q, t)) if (σ + t) |= I(l) and
C(Hd(q)) = t

where M(m) :: q denotes the queue with M(m) inserted in q and Hd(q)
denotes the first element of q.

4.2 Schedulability Analysis

As in the previous section, we shall encode the ETA A and the fixed-priority
scheduling strategy Sch into timed automata and check for reachability of pre-
defined error states. The encoding E(A) is the same as in the previous section.
However, the encoding of Sch will be different with data-depended control, as
the result of the schedulability analysis depends on the data-variables that may
be updated whenever a task completes its execution. In the rest of this section
we describe how to construct E(Sch):

Theorem 3. For an extended timed automaton A with data variables, and a
fixed priority scheduling strategy Sch, E(Sch) can be constructed as timed au-
tomaton containing n+ 1 clocks, where n is a number of task types used in A.
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releasex

finishedi
instance--

finishedx!=i

finishedx

releasex

releasex

Fig. 3. Encoding of schedulability problem.

Proof. Follows from Lemma 3 and 4 shown later in this section. 
�

The construction of E(Sch) is illustrated in Fig.3. It is consists of two parallel
automata: ESP(Sch) - encoding the scheduling policy (containing n clocks), and
EDC - encoding a generic deadline checker (containing one clock). As in the
previous section, the two scheduling automata (in this case both ESP(Sch) and
EDC) synchronize with E(A) on the action releasei when an instance of task Pi
is released. In addition, ESP(Sch) and EDC synchronize on finishedi whenever an
instance of Pi finishes its execution.

Encoding of Scheduling Policy ESP(Sch). We first introduce some notation. Let
Pij denote instance j of task Pi. For each Pij , ESP(Sch) has a state variable
status(i, j) that is initially set to free. Let status(i, j) = running denote that Pij
is executing on the processor, preempted that Pij is started but not running,
and released that Pij is released but not yet started. We use status(i, j) = free
to denote that Pij is not released yet. Note that for all (i, j) there can be only
one j such that status(i, j) = preempted (i.e. only one instance of the same task
type is started), and for all (i, j) there can only be one pair (k, l) such that
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Fig. 4. Task execution scheme where Prio(1) > Prio(2) > Prio(3).

status(k, l) = running (i.e. only one task is running in a one-processor system).
For each task type Pi we use three variables:

– ci - clock measuring the time passed since Pi started its execution. We reset
ci whenever an instance of Pi is started.

– ri - data variable accumulating the response time of Pi from the moment
it starts to execute. ri is set to C(i) when an instance of Pi is started, and
updated to ri + C(j) when a higher-priority task Pj is released.

– ni - data variable keeping track of the number of Pi currently released.

In Fig. 4, we show how the above variables are used in ESP(Sch). At time
point x state variable status has the values status(1, 1) = running, status(2, 1) =
preempted, status(2, 2) = released, and status(3, 1) = released.

To represent each task instance in ESP(Sch) we use a triple 〈ci, ri, status(i, j)〉,
and the task queue q will contain such triples. Note that the maximal number
of instances of Pi appearing in a schedulable queue is 
D(i)/C(i)�. Thus, the
size of the queue is bounded to

∑
Pi∈P 
D(i)/C(i)�. We shall say that queue is

empty, denoted empty(q), if status(i, j) = free for all (i, j).

For a given scheduling strategy Sch, we use the predicate Run(m,n) to denote
that task instance Pmn is scheduled to run according to Sch. For a given fixed
priority scheduling policy Sch, it can be coded as a constraint over the state
variables. For example, for deadline-monotonic scheduling5, Run(m,n) is the
conjunction of the following constraints:

– rk ≤ D(k) for all k, l such that status(k, l) �= free: all response time integers
are less than deadlines

– status(m,n) �= free: Pmn is released or preempted
– D(m) ≤ D(i) for all i: Pm has the highest priority

5 In deadline-monotonic scheduling, task priorities are assigned according to deadlines,
such that Prio(i) > Prio(j) iff D(i) < D(j).
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We use Run(m) to denote that a task instance of Pm is scheduled to run according
to Sch. The predicate finished(m,n) denotes that Pmn has finished its execution.
We define finished(m,n) to (cm = rm) ∧ (status(m,n) �= free). Finally, we use
nonschedulable(q) to denote that the queue q is non-schedulable in a sense that
there exists a pair (i, j) for which ri > D(i) and status(i, j) �= free.

The automaton ESP(Sch) contains three type of locations: Idle, Runningi and
Error. Note that Runningi is parameterized with i representing the running task
type. Location Idle denotes that the task queue is empty. Runningi denotes that
task instance of type Pi is running, that is, for some j status(i, j) = running.
For each Runningi we have the location invariant ci ≤ ri. Error denotes that the
task queue is non-schedulable with Sch. There are five types of edges labeled as
follows:

1. Idle to Runningi: edges labeled with action releasei, and reset {ri :=
C(i), ci := 0, ni := 1, status(i, j) := running}.

2. Runningi to Idle: edges labeled with guard empty(q) and reset {ni :=
0, R(Pi)}.

3. Runningi to Runningm: two types of edges:
a) the running task Pij is finished and Pmn is scheduled to run by

Run(m,n). There are two cases:
i. Pmn was preempted earlier: encoded by guard finished(i, j) ∧

status(m, n) = preempted ∧ Run(m,n), action finishedi, and reset
{status(i, j) := free, ni := ni − 1, status(m,n) := running, R(Pi)}

ii. Pmn was released, but never preempted (not started yet): encoded
by guard finished(i, j) ∧ status(m,n) = released ∧ Run(m,n) ac-
tion finishedi, and reset {status(i, j) := free, ni := ni − 1, rm :=
C(m), cm = 0, status(m,n) := running, R(Pi)}

b) a new task Pmn is released, which preempts the running task Pij : en-
coded by guard status(m,n) = free∧Run(m,n), action releasem, and reset
{status(m,n) := running, nm := nm + 1, rm := C(m), cm := 0, status(i, j)
:= preempted} ∪ {rk := rk +C(m) | status(k, l) = preempted} (we incre-
ment the response times of all preempted tasks by the execution time of
the released higher-priority task).

4. Runningi to Runningi: edges representing the case when a task release does
not preempt the running task Pij : encoded by guard status(k, l) = free ∧
Run(i, j), action releasedk, and reset {status(k, l) := released, nk := nk + 1} ∪
{rk := rk + C(m) | status(k, l) = preempted}

5. Runningi to Error: an edge labeled by the guard nonschedulable(q).

Encoding of Deadline Checker EDC. It is similar to the encoding of Ei(Sch)
described in the previous section, in the sense that it checks for deadline viola-
tions of each task instance independently. The clock d is used in EDC to measure
the time since the analysed instance of Pi was released for execution. EDC also
uses a data variable, named instance. From location Idle the automaton non-
deterministically starts to analyse a task on the edge to Checki, at which clock d
is reset and instance is set to ni, i.e. the current number of released instances of
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task Pi. In Checki, instance is decremented whenever an instance of Pi finishes
its execution. The analysed task finishes when instance = 1 and the location
Idle is reentered. However, if d is greater than D(i), the task failed to meet its
deadline and the location Error is reached.

The next step of the encoding is to construct the product automaton E(A)||
ESP(Sch)||EDC in which the automata can only synchronize on identical action
symbols. We now show that the product automaton is bounded.

Lemma 3. The clocks ci and d, and the data variables ri and ni of
ESP(Sch)||EDC in E(A)||ESP(Sch)||EDC are bounded.

Proof. First note that the integers rk are bounded by D(k) + maxi(C(i)) due
to the fact that all edges incrementing rk (by some C(i)) are guarded by the
constraint Run(m,n) requiring rk ≤ D(k). The bound for nk is 
D(k)/C(k)�.
The clocks d and ck are bounded by maxi(D(i)) and rk, respectively. 
�

Lemma 4. Let A be an extended timed automaton and Sch a fixed-priority
scheduling strategy. Assume that (l0, u0, q0) and (〈l0, Idle, Idle〉, v0) are the initial
states of A and the product automaton E(A)||ESP(Sch)||EDC respectively where
l0 is the initial location of A, u0 and v0 are clock assignments assigning all clocks
with 0 and q0 is the empty task queue. Then the following holds:

(l0, u0, q0)(−→)∗(l, u,Error) iff (〈l0, Idle〉, v0)(−→)∗(〈l′,Error,m〉, v) or
(〈l0, Idle〉, v0)(−→)∗(〈l′′,m′,Error〉, v′)

for some l, u, l′, l′′,m,m′, v, v′.

Proof. It is by induction on the length of transition sequence (i.e. reachability
steps). 
�

5 Implementation

The algorithm described in Section 3 has been implemented in Times, a tool for
modeling and schedulability analysis of embedded real-time systems [AFM+02].
The modeling language of Times is ETA as described in Section 4.1 of this
paper. The tool currently supports simulation, schedulability analysis, checking
of safety and liveness properties, and synthesis of executable C-code [AFP+03].

A screenshot of the Times tool analysing a simple control system with data-
dependent control consisting of tasks with fixed priorities is shown in Fig.5. The
schedulability analysis is performed as described in Section 3.

The system analysed in Fig.5 is a simple controller of a motor, periodically
polling a sensor and at requests providing a user with sensor statistics. In the
initial location, an instance of task ReadSensor is released. The controller waits
10 time units for a user to push the button. If the button is not pushed, the
controller releases the two tasks AnalyzeData and ActuateMotor. If the button is
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Fig. 5. The Times tool performing schedulability analysis.

pushed when the controller operates in its initial location, an instance of task
ComputeStatistics is released for execution, and the controller waits 16 time units
before releasing task ReadSensor again.

The system has been analysed with two algorithms implemented in the Times
tool. An implementation based on the original decidability result described in
[FPY02] consumes 2.7 seconds, whereas an implementation of the algorithm pre-
sented in Section 3 of this paper terminates in 0.1 seconds on the same machine6.
Thus, the time consumption is reduced significantly for this system.

In addition to schedulability analysis, it is possible to adjust the algorithms
presented in this paper, and implemented in Times, to compute the worst-case
response time of tasks in a schedulable system. In general, the response time of
a task is a non-integer value. We take the worst-case response time to be the
lowest integer value greater or equal to the longest response time of a task. The
worst-case response time of task Pi can be obtained from the maximum value
appearing in the upper bound on the clock d7 in the symbolic states generated
during the schedulability analysis of task Pi (i.e. in the reachability analysis).
In Fig.5 the numbers in the task table column D are the worst-case response
times of the tasks in the system. Thus, if any of them is decreased, the system
becomes non-schedulable.
6 The measurements were made on a Sun Ultra-80 running SunOS 5.7. The UNIX

program time was used to measure the time consumption.
7 Here we refer to clock d described in Section 3.
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6 Conclusions and Related Work

In this paper we have shown that for fixed priority scheduling strategy, the
schedulability checking problem of timed automata extended with tasks can be
solved by reachability analysis on standard timed automata using only two ad-
ditional clocks. We have also shown how to extend the result to systems with
data-dependent control, i.e. systems in which the release time-points of a task
may depend on the values of shared variables, and hence on the time-point at
which other tasks finish their execution. In this case the encoding into reacha-
bility problem for standard timed automata uses n + 1 clocks, where n is the
number of tasks types. Both these encodings use much fewer clocks than the anal-
ysis suggested in the original decidability result, and we believe that we have
found the optimal solutions to the problems. The presented encodings seem to
suggest that the general schedulability problem of ETA can be transformed into
a reachability problem of standard timed automata, instead of timed automata
with subtraction operation on clocks. This is indeed the case, but the number of
clocks used in the standard timed automaton will be the same as in the encoding
using timed automata with subtraction.

The schedulability checking algorithms described in this paper have been
implemented in the Times tool. An experiment shows that the new techniques
substantially reduce the computation time needed to analyse an example systems
with fixed priority scheduling strategy.

Related work. Well established scheduling theory and scheduling algorithms
are described in various publications. In the area of real time scheduling meth-
ods such as rate monotonic scheduling [But97] are widely applied in the analysis
of systems with deterministic behaviours restricted to periodic tasks. However,
for systems with non-periodic tasks and non-deterministic behaviours, there are
still no satisfactory procedures to perform schedulability analysis. One of the
approaches to achieve schedulability is based on controller synthesis paradigm
[AGS02,AGP+99]. The methodology described in [AGS02] relies on the idea
that one can build schedulable system successively restricting guards of the con-
trollable actions in its model in an appropriate way. However, concepts related
to implementation description are not addressed in this work. In the area of
non-preemptive scheduling timed automata has been used mainly for job-shop
scheduling [Feh99,AM01,HLP01]. The idea is to get schedules out of traces pro-
duced during reachability analysis for pre-defined locations specifying scheduling
goal. Stop-watch automata have been used to solve preemptive scheduling prob-
lem [MV94,Cor94,CL00]. But since reachability analysis problem for this class
of automata is undecidable in general there is no guarantee of termination for
the analysis without the assumption that task preemptions occur only at in-
teger points. Tools have been developed to support the design and analysis of
embedded systems with tasks. Examples hereof include TAXYS [CPP+01] and
Times [AFM+02].
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