Model Checking Lossy Channels Systems
Is Probably Decidable

Nathalie Bertrand and Philippe Schnoebelen

Lab. Spécification & Vérification
ENS de Cachan & CNRS UMR 8643
61, av. Pdt. Wilson, 94235 Cachan Cedex France
{bertrand|phs}@lsv.ens-cachan.fr

Abstract. Lossy channel systems (LCS’s) are systems of finite state
automata that communicate via unreliable unbounded fifo channels. We
propose a new probabilistic model for these systems, where losses of
messages are seen as faults occurring with some given probability, and
where the internal behavior of the system remains nondeterministic, giv-
ing rise to a reactive Markov chains semantics. We then investigate the
verification of linear-time properties on this new model.

1 Introduction

Verification of channel systems. Channel systems [BZ83| are systems of finite
state automata that communicate via asynchronous unbounded fifo channels.
They are a natural model for asynchronous communication protocols, used as
the semantical basis of protocol specification languages such as SDL and Estelle.
Lossy channel systems [Fin94, [AJ96D] are a special class of channel systems
where messages can be lost while they are in transit, without any notification.
These lossy systems are the natural model for fault-tolerant protocols where the
communication channels are not supposed to be reliable.

Surprisingly, while channel systems are Turing-powerful [BZ83|, several veri-
fication problems become decidable when one assumes channels are lossy: reach-
ability, safety properties over traces, inevitability properties over states, and
fair termination are decidable for lossy channel systems [Fin94, [CEP96] [AJ96D]
MS02).

This does not mean that lossy channel systems are an artificial model where,
since no communication can be fully enforced, everything becomes trivial. To
begin with, many important problems are undecidable: recurrent reachability
properties are undecidable [AJ96a], so that model checking of liveness properties
is undecidable too. Furthermore, boundedness is undecidable [May00], as well as
all behavioral equivalences [SchlT]. Finally, none of the decidable problems listed
in the previous paragraph can be solved in primitive recursive time [Sch(2]!

Probabilistic losses. When modeling real-life protocols, it is natural to see mes-
sage losses as some kind of faults having a probabilistic behavior. This idea led
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to the introduction of a Markov chain model for lossy channel systems [PNO7].
Essentially the same model allowed Baier and Engelen to show that qualitative
model checking is decidable, i.e. it can be decided whether a linear-time property
holds almost surely, that is, with probability 1 [BE99]. This is a smart way of
using randomization to circumvent the undecidability of temporal model check-
ing in the non-probabilistic case. However, this result has several limitations:
(11) it requires that the channel system itself is seen as choosing probabilistically
between its transitions, (12) it assumes that there is a fixed probability p that
“the current step is a loss”, and (13) it only gives decidability for p > 0.5, an
unrealistically large value (using a slightly different model, [ABP.J00] shows that
decidability is lost if p is not large enough).

Our contribution. We propose an improved approach that addresses the above-
mentioned limitations. Our first idea is to use a more realistic probabilistic model
for losses, where any message has a fixed probability 7 > 0 of being lost during
the current step, independently of other messages possibly in transit at the same
time. We call it the local-fault model (and refer to the proposal by [PN97] as
the global-fault model). In our local-fault model, qualitative model checking is
decidable whatever the value of 7 (thus our solution to limitation (12) solves (13)
as well).

Our second idea attacks limitation (11): we move from Markov chains to
reactive Markov chains (or, equivalently, Markovian decision processes) as the
probabilistic model for lossy channel systems: this allows combining a probabilis-
tic behavior for losses with a nondeterministic behavior for the channel system.
The verification problems we investigate are whether a linear-time property holds
almost surely under any scheduling policy (the adversarial viewpoint). We show
that, while the problem is undecidable in general, there exist some decidable
subcases (natural subsets of temporal properties). Furthermore, the problem be-
comes decidable when we restrict ourselves to finite-memory scheduling policies
only. Finally, it turns out that these verification problems are insensitive to the
precise value of the fault rate 7.

Since our decision procedures reduce probabilistic model checking to the
kind of reachability questions that have been successfully verified in practice
(e.g. [AAB99]), we believe our ideas will provide a nice way of verifying live-
ness properties on channel systems with probabilistic losses: the approximations
“almost surely” and “under any finite-memory scheduling policy” are very rea-
sonable and only retract minimally from the rigid “surely” and “for all scheduling
policies” that are the standard goals in algorithmic verification.

Related work. Verifying probabilistic lossy channel systems combines issues from
the verification of infinite-state systems and from the verification of probabilistic
systems [ These two fields are technically quite involved and it seems that, to
date, the only joint instance that has been investigated are the probabilistic lossy

! Here we do not mean systems where the timings are probabilistic like, for example,
continuous time Markov chains [BKH99].
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systems. We already explained how our work is a continuation of [PN97, [BE99,
ABPJ00] and depart from these earlier papers. The local-fault model has been
independently proposed by Abdulla and Rabinovich [AR03] who proved a result
essentially equivalent to our Theorem [5.4] (but did not investigate adversarial
verification).

Outline of the paper. Section[2 sets the necessary background on the verification
of infinite Markov chains. Channel systems are presented in Section [3] before
we discuss probabilistic losses in Section [d] and study probabilistic lossy systems
(PLCS’s) in Section [}l Nondeterministic PLCS’s are defined in Section [§ and
their verification is studied in Section [{l For lack of space, many proofs have
been omitted in this extended abstract: they can be found in the full version.

2 (Reactive) Markov Chains and Their Verification

We assume some familiarity with Markov chains and only introduce the notations
we need in the rest of the paper (we mostly follow [Var99]).

Definition 2.1. A Markov chain is a tuple M = (W, P, Py) of a countable set
of configurations W = {o,...}, a transition probability function P : W? s
[0,1] such that Y ey P(o,0") = 1 for all 0 € W, and an initial probability
distribution Py : W+ [0, 1].

M is bounded when there exists e > 0 s.t. P(o,0’) > 0 entails P(o,0’) > e
(i.e. probabilities are not arbitrarily low). M is finite when W is. Finite Markov
chains are bounded.

A run of M is an infinite sequence m € W« of configurations. The set of runs
W is turned into a probability space in the standard way: the measure p of
events is first defined on basic cylinders with:

p({m | m starts with oo, 01,...,0,}) def Py(09)P(0g,01) -+ P(op—1,0m) (1)
and is then extended to the Borel field they generate (see [Var99, Pan01]).
Underlying any Markov chain M is the transition system (the directed graph)
G where there is a transition ¢ — o’ iff P(o,0’) > 0. This explains why we
often rely on standard graph-theoretic terminology and write statements like “o
is reachable from oy”, etc., for notions that do not depend on the precise values
of the transition probability function. E.g. the measure () is non-zero iff oq is
a possible initial configuration and o9 — 01 — ... — 0y, is a path in Gy.

2.1 Reactive Markov Chains

Reactive Markov chains [Var99], called “concurrent Markov chains” in [Varg&5]
HSP83|, were introduced for modeling systems whose behavior has both proba-
bilistic and nondeterministic aspects. They are a special (and equivalent) form
of Markovian decision processes [Der70], where the system nondeterministically
picks what will be its next step, and the outcome of that step follows some
probability law.
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Definition 2.2. A reactive Markov chain (a RMC) is a tuple M = (W, N, P, P)
s.t. (W, P, Py) is a Markov chain, and N C W is the subset of nondeterministic
configurations.

The configurations in W \ N are called probabilistic. For a nondeterministic o,
the exact value of P(o,0’) > 0 has no importance (apart from being positive):
it just means that, when in o, ¢’ is a possible next configuration.

The behavior of a RMC M = (W, N, P, P) is driven by the nondetermin-
istic choices and the probabilistic behavior. This is formalized by introducing
the notion of a scheduler (also called adversary, or (scheduling) policy) that is
responsible for the nondeterministic choices. Formally, a scheduler for M is a
mapping v : W*N — W such that u(og...0,) = o’ implies P(o,,0’) > 0.
The intuition is that, when the system is in a nondeterministic configuration
on, u selects a next configuration ¢’ among the allowed ones, based on the his-
tory og...o, of the computation (we do not consider more general notions of
adversaries).

Combining a RMC M with a scheduler u gives a bona fide Markov chain
MY = (W, P“ PY%) describing the stochastic behavior of M against u. Intu-
itively, M* is obtained by unfolding M into a tree, with W the set of non-empty
histories H, and pruning branches that do not obey u. Formally, for any z € W+

P(o,0’) ifo &N,
PU(zo,z00’) {1 if o € N and u(zo) = o,
0 otherwise,

and P“(zo,yo’) = 0 when y # zo. Finally, P} is like Py on histories having
length 1, and zero on longer histories. It is readily verified that M™ is indeed a
Markov chain.

2.2 Verification for Markov Chains

We address verification of linear-time properties that can be expressed in tem-
poral logic (TL), or second-order monadic logic on runs (MLO), and that do not
refer to quantitative information.

Classically such properties can be given under the form of a Biichi automaton
that recognizes exactly the correct runs, so that TL model checking reduces to
repeated reachability of control states in a product system. This approach does
apply to Markov chains if the property is represented by a deterministic w-
automaton: then the product system is again a Markov chain.

Since deterministic Biichi automata are not expressive enough for TL or
MLO, we shall assume the properties are given by deterministic Street au-
tomata. Then, in order to check TL or MLO properties on Markov chains,
it is enough to be able to check simpler behavioral properties of the form

2 When describing the behavior of some MY, it is customary to leave the histories
implicit and only consider their last configuration: this informal way of speaking
makes M*" look more like M.



124 Nathalie Bertrand and Philippe Schnoebelen

a = A, (O0A4; = O0A]) where, for i = 1,...,n, 4;,A, C W (ie. ais a
Street acceptance condition). A run m = 09, 01,... satisfies such a condition,
written 7 |= «, if for all ¢ = 1,...,n, either o; € A; for finitely many j, or
o; € A} for infinitely many j. The following is standard:

Theorem 2.3. Let M be a countable Markov chain and a be a Street acceptance
condition. Then {m | m = a} is measurable.

We let pps(a) denote this measure and say that M satisfies a with probability
p when ppr(a) = p. We often consider the probability, written P(M, o = «)
or u,(«), that a given configuration o satisfies a property «: this is defined
as pup(a) for a Markov chain M’ obtained from M by changing the initial
distribution.

We say that M satisfies « almost surely (resp. almost never, possibly) when M
satisfies a with probability 1 (resp. with probability 0, with probability p > 0).

Remark 2.4. These notions are inter-reducible: M satisfies o almost surely iff it
satisfies —« almost never iff it is not the case that it satisfies —~« possibly. a

2.3 Verification for Markov Chains with a Finite Attractor

Verifying that a finite Markov chain almost surely satisfies a Street property is
decidable [CY95], [Var99]. However, the techniques involved do not always extend
to infinite chains, in particular to chains that are not bounded.

It turns out it is possible to extend these techniques to countable Markov
chains where a finite attractor exists. We now develop these ideas, basically by
simply streamlining the techniques of [BE99]. Below we assume a given Markov
chain M = (W, P, Py).

Definition 2.5 (Attractors). A non-empty set W, C W of configurations is
an attractor when

P(M,o =00W,) =1 forallc e W (2)
The attractor is finite when W, is.

Assume W, C W is a finite attractor. We define G (W,,) as the finite directed
graph (W,,~») where the vertices are the configurations from W, and where
there is an edge o ~» ¢’ iff, in M, ¢’ is reachable from o by a non-empty path.
Observe that the edges in Gy (W,) are transitive.

In Gy (W,), we have the usual graph-theoretic notion of (maximal) strongly
connected components (SCC’s), denoted B, B’,.... A trivial SCC is a singleton
without the self-loop. These SCC’s are ordered by reachability and a minimal
SCC (i.e. an SCC B that cannot reach any other SCC) is a bottom SCC (a
BSCC). Observe that, in G (W,,), a BSCC B cannot be trivial: since W, is an
attractor, one of its configurations must be reachable from B.

For a run 7 in M, we write limyy, (7) for the sets of configurations from W,
that appear infinitely often in 7. Necessarily, if limy, () = A then the config-
urations in A are inter-reachable and A is included in some SCC of G (W,).
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Lemma 2.6. If p, ({7 | limw, (7) = A}) > 0 then A is a BSCC of G (W,).
Assume the BSSC’s of G (W,) are By, ..., Bx. Lemma[2.6 and Eq. () entail

o ({m | i, () = B1}) + -+ po({m | limw, (1) = Be}) = 1. (3)

Therefore, for a BSCC B, o € B entails pu,({7 | limy, (7) = B}) = 1. Hence
too ({7 | limyy, (7) = B}) > 0 iff B is reachable from oy.

It is now possible to reduce the probabilistic verification of Street properties
to a finite number of reachability questions:

Proposition 2.7. Assume W, is a finite attractor of M. Then for any o € W,
P(M,o E A\ (O0A; = O0A})) > 0 iff there exists a BSCC B of G (W,)
such that o = B and, for alli=1,...,n B> A; implies B > Al

2.4 Verification for Reactive Markov Chains

Verifying reactive Markov chains usually assumes an adversarial viewpoint on
schedulers. Typical questions are whether, for all schedulers u, M™ satisfies «
almost surely (resp. almost never, resp. possibly)? Cooperative viewpoints (ask-
ing whether for some u, M" satisfies o almost surely ...) are possible but less
natural in practical verification situations. We consider them since they appear
through dualities anyway (Remark 24]) and since presenting proofs is often easier
under the cooperative viewpoint.

Technically, since we still use properties referring to states of W, one defines
whether a path in M* satisfies a property by projecting it from (W¥)* to W*
in the standard way [Var99].

One sometimes wants to quantify over a restricted set of schedulers, e.g. for
checking that M almost surely satisfies a for all fair schedulers (assuming some
notion of fairness) [HSP83| [Var85]. Such a problem can usually be translated into
an instance of the general adversarial problem by stating the fairness assumption
in the «a part.

However, not all restrictions can be transfered in the property to be checked.
In particular we shall consider the restriction to finite-memory schedulers: this is
a convenient way of ruling out infeasible or exaggeratedly malicious schedulers.
Several definitions are possible: here we say that u is finite-memory if there is
a morphism A : W* — H that abstract histories from W™ into a finite monoid
H and such that u(og...o0,) = u'(h(co,...,0n),0,) for some v’ : H x X — W.
Thus H is the finite memory on which w’, the true scheduler, is based. When H
is a singleton, u is memoryless.

3 Channel Systems

Perfect channel systems. In this paper we adopt the extended model of channel
systems where emptiness of channels can be tested for

3 Our undecidability proofs do not rely on the extension.
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Definition 3.1 (Channel system). A channel system (with m channels) is a
tuple S = (Q,C, X, A, 0¢) where

-Q ={r,s,...} is a finite set of control locations (or control states),

- C ={c1,...,cm} is a finite set of m channels,

- XY ={a,b,...} is a finite alphabet of messages,

- ACQx Acte x Q is a finite set of rules, where Acte 1 (Cx {71} x2)U
(C x {=¢€7?}) is a set of actions parameterized by C' and X,

~ 09 € Q x X*Y is the initial configuration (see below).

A rule § € A of the form (s,c,?,a,r) (resp. (s,¢,!,a,r)) is written “s e
(resp. “s e r”) and means that S can move from control location s to r by
reading a from (resp. writing a to) channel c. Reading a is only possible if ¢ is
not empty and its first available message is a. A rule of the form (s,c,= e7,71)

. . c=e? . .
is written “s — r” and means that .S can move from s to r if channel ¢ is empty.

Formally, the behavior of S is given via a transition system: a configuration
of S is a pair ¢ = (r,U) where r € Q is a control location and U € £*“ is a
channel contents, i.e. a C-indexed vector of X-words: for any ¢ € C, U(c) = u
means that ¢ contains u. For s € Q we write s for the set {s} x X*¢ of all
configurations based on s.

The possible moves between configurations are given by the rules of S. For

. 5 .
o,0' € W, we write 0 —perf 0’ (“pert” is for perfect steps) when:

Reads: 6 € A is some s 2% r, o is some (s,U), U(c) is some aj ... ap, with a; =
a, and o' = (r,U{c — az2...a,}) (using the standard notation U{c — u'}
for variants).

Writes: 6 € A is some s 2% r, o is some (s,U), U(c) is some v € X*, and
o' = (r,U{c u.a}).
Tests: 6 € A is some s == r, o is some (s,U), U(c) = ¢, and o’ = (r,U).

Idling: Finally, we have idling steps o gperf o in any configuration.

We write En(o) for the set of rules enabled in configuration o. We consider idling
as a rule and have 0 € En(o) for all o. For § € En(o), we further write Succs(o)
to denote the (unique) successor configuration ¢’ obtained by applying ¢ on o.
We often omit the superscript d in steps and only write 0 —pert 0.

Remark 3.2. Allowing the idling rule is a definitional detail that smoothes out
Definitions Bl and [61] (deadlocks are ruled out). It also greatly simplifies the
technical developments of section [7 (the possibility of idling gives more freedom
to scheduling policies). O

Lossy channel systems. In the standard lossiness model, a lossy step is a perfect
step possibly preceded and followed by arbitrary message losses. Here we
allow losses only after the perfect step. This simplifies the construction of the
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probabilistic model and does not modify the semantics in any essential way &
unlike, e.g., the notion of front-lossiness used in [Fin94, [CEP96|[ABPJ00 [SchOT].

Formally, we write u C v when u is a subword of v, i.e. u can be obtained
by erasing any number of letters (possibly zero) from v. When u C v, it will
be useful to identify the set p C {1,...,|v|} of positions in v where letters
have been erased, and we use the notation “u &, »” for that purpose. E.g.
aba Cy; 2 5) baabba. Observe that, in general, u C v can be explained by several
distinct erasures p, o/, ...

The subword ordering extends to channel contents and to channel systems
configurations in the standard way:

vcv & U(c) C V(e) for all c € C,

(r,U) C (s, V) Wy —sandUCV.

Erasures extend too: we still write U £, V but now p C C x N.

It is now possible to define the lossy steps of channel systems: we write

o iloss o' when ¢’ C ¢” for some ¢” s.t. o gperf o". Perfect steps are a special
case of lossy steps (they have o/ = ¢”). Below we omit writing explicitly the
“loss” subscript for lossy steps, and are simply careful of writing —per¢ for all
perfect steps.

As usual, ¢ = o’ denotes that o’ is reachable from o. We write o o' when
o' is reachable via a non-empty sequence of steps. The reachability problem for
lossy channel systems is, given S, o and ¢’ to say if ¢’ is reachable from o in S.
It is know that this problem is decidable (even if testing channels for emptiness
is allowed) [A.J96D, [CEP96, May00).

A set A C W of configurations is reachable from o if some ¢’ € A is. This is
denoted ¢ = A. One can decide whether o = A just by looking at the minimal
elements of A. Since C is a wqo, any A C W only has a finite number of minimal
elements. Therefore it is decidable whether o = A.

4 The Local-Fault Model for Probabilistic Losses

Earlier proposals for probabilistic lossy channels assume there is a fixed proba-
bility that the next step is the loss of a message [PN97, BE99]. We argued in the
introduction that this model is not very realistic. We prefer a viewpoint where
the fixed fault rate is associated with every single message. Then, the probability
that a given message is lost at the next step is not influenced by the presence or
identity of other messages

4 The modification only has to do with where we separate a step from its predecessor
and successor steps, i.e. with the granularity of the operational semantics.

5 This agrees with the actual behavior of many lossy fifo links where each message is
handled individually by various components (switches, routers, buffers, ...). Admit-
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Formally, we assume given a fixed fault rate 7 € [0,1] that describes the
probability that any given message will be lost during the next step. From 7,
one derives p.(U,U’), the probability that channels with contents U will have
contents U’ after one round of probabilistic losses:

p(UU) = Y Al (4)

ps.t.UC,U

Then p-(U,U") > 0iff U' C U (assuming 0 < 7 < 1), and >, p-(U,U’) =1 for
any U. It will be convenient to extend this probability distribution from channel
contents to configurations with

def {pT(U, V)if s =r, (5)

p((s,U), (r,V)) = 0 otherwise.

Example 4.1. Assume we have a single channel ¢ that contains u = aab. Assume
7 =20.1. Then

pr(aab, ) = 73 = 0.001 pr(aab,aa) = 7(1 —7)% =0.081
p-(aab,b) = 72(1 —7) = 0.009 p-(aab,ab) = 27(1 — 7)2 = 0.162

pr(aab,a) =27%(1 —7) = 0.018  p(aab,aab)= (1—7)> =0.729

Observe that »_ ,pr(u,u’) = 1. The difference between, e.g., p-(u,a) and
pr(u,b), comes from the fact that, starting from u, there are two distinct ways
of getting a by losses, while there is only one way of getting b. ad

5 Probabilistic Lossy Channel Systems

A probabilistic lossy channel system (PLCS) is a tuple S = (Q,C, X, A, 0¢, D)
s.t. (Q,C, X, A, 0¢) is a channel system, and D : (AU {0}) — (0,00) is a weight
function of its rules.

Definition 5.1 (Markov chain semantics of PLCS’s). The Markov chain
MY associated with a PLCS S as above, and a fault rate T € (0,1) is MZ =

(W, P, Py) where W is the set of configurations of S, Py(op) o 1, and where
P(o,0’), the probability that S moves from o to o’ in one step, is given by

> D(5) x pr(Suces(0),0”)

def S€EEn(o)
> D)

d€EEN(o)

P(o,0") (6)

tedly, there are situations calling for yet other models: e.g. [ABPJ00] assumes losses
only occur when a message enters the queue.
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It is readily seen that MZ is indeed a Markov chain. It is usually infinite and
not bounded.

An important consequence of the local-fault model is that the more messages
are in the queue, the more likely some losses will make the number of messages

decrease. We formalize this by introducing a partition W = Wy + Wy + -+ +

W, + - - - of the set of configurations of Mg given by W, def {oc e W | |o| =n},

with |(r, U)| Lf >-.lU(c)|. Then for any S and 7 we have
Lemma 5.2. For all e > 0 there is a rank I € N s.t. for alli > I and o € W;

> {P(o,0’) | o e WoUWL U---UW; 1} >1—e. (7)
Corollary 5.3. In MZ, Wy is a finite attractor.

Theorem 5.4. (Decidability of model checking for PLCS’s) The prob-
lem of checking whether MZ almost-surely (resp. almost-never, resp. possibly)
satisfies a Street property « is decidable.

Proof. Since reachability is decidable for lossy channel systems, the graph
Guz(Wo) can be built effectively. Since Wy is a finite attractor, the graph can
be used to check whether P(M,0¢ = a) > 0 by using the criterion provided by
Proposition 7] (again, using decidability of reachability). Thus it is decidable
whether M7 possibly satisfies a. Now, by Remark[Z4] this entails the decidabil-
ity of checking whether « is satisfied almost surely (resp. almost never). O

Remark 5.5. From this algorithm, we deduce that, for a PLCS S, whether
P(MZ,0f | «) = 1 does not depend on the exact value of the fault rate 7
or the weight function D of S. ad

6 Lossy Channel Systems as Reactive Markov Chains

Seeing LLCS’s as Markov chains requires that we see the nondeterministic choice
between enabled transitions as being made probabilistically (witness the D
weight function in PLCS’s).

However, it is more natural to see these choices as being made nondeter-
ministically: this nondeterminism models the lack of any assumption regarding
scheduling policies or relative speeds (in concurrent systems), or the lack of any
information regarding values that have been abstracted away (in abstract mod-
els), or the latitude left for later implementation decisions (in early designs).
In all these situations, it is not natural to assume the choices are probabilistic.
Even if, for qualitative properties, the exact values in the weight function are not
relevant (Remark [5.H), the probabilistic viewpoint enforces a very strong fair-
ness hypothesis on the nondeterministic choices, something which is not suitable
except perhaps for concurrent systems.
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For these reasons, it is worthwhile to go beyond the Markov chain model and
use reactive Markov chains. Below, a nondeterministic probabilistic lossy channel
system (a NPLCS) is simply a LCS where losses are probabilistic so that the
semantics is given under the form of a RMC instead of a transition system.

Definition 6.1. (Reactive Markov chain semantics of NPLCS’s) The
RMC associated with a NPLCS S and a fault rate 7 is MZ = (Wi U
W_, Wy, P, Py) where Wy and W_ are two copies of the set Q x *¢. Py selects
00,+, the initial configuration, and P is given by

P((q.U)+, (¢, U")-) > 0 iff (0.U) =pert (a',U"), (8)

Thus positive configurations are nondeterministic and implement perfect steps
of S, reaching negative configurations where message losses are probabilistic.
Note that the precise value of P(o4,0” ) in (B) is not relevant.

Since the probabilistic configurations are only used as some intermediate
steps between nondeterministic configurations, it is tempting to omit mention-
ing them altogether when discussing the behavior of NPLCS’s. Indeed, in the
next sections, we rarely write configurations with the “—” or “4+” subscript they
require: unless explicitly stated, we always refer to the nondeterministic config-
urations.

7 Model Checking NPLCS’s

Model checking for NPLCS’s is trickier than model checking PLCS’s, and the ex-
istence of the finite attractor does not always allow reducing to a decidable finite
problem. The decidability results we provide below rely on the finite attractor
and downward-closure of reachability sets.

We considered the general case (checking for a Street property) as well as
restricted cases where only properties of the form ¢A (reachability), A (in-
variant), A, O0A; (conjunction of Biichi properties), and \/, O0TA;. Below we
adopt the simplifying assumption that all sets A used in properties either are
singletons or have the form 1{s1,..., s} for a set of control states sq,. .., sg.

We exhibit some decidable cases and some undecidable ones. Most problems
are studied under a cooperative “Ju?...” form because this is easier to reason
about, but all results are summarized in the adversarial form in Fig. Bl below.

7.1 Some Decidable Problems

We start by consider properties of the simple form o = 0 A. We say a set X C @
is safe for a if (r,e) x A for all z € X. Here the notation “oc —x o”
denotes reachability under the constraint that only control states from X are
used (the constraint applies to the endpoints o and ¢’ as well). This coincides
with reachability in the LCS S| x obtained from S by deleting control states from
Q\ X, and is thus decidable.
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Lemma 7.1. There exists a scheduler u such that P(MZ", (s,e) = OA) =1 iff
s belongs to a safe X.

Corollary 7.2. It is decidable whether there exists a scheduler wu s.t.
P(MZ", (s,e) = 0A) = 1.

We now consider properties of the special form a = A, 00A;. We say

x € Q is allowed if for all i = 1,...,n, (x,e) = A;. Otherwise z is forbidden. Tt
is decidable whether x is allowed or forbidden.

Lemma 7.3. Assume all states in S are allowed. Then there exists a scheduler
u s.t. P(MZ"(s,e) = a) =1.

Lemma 7.4. Assume x is forbidden and define S —x as the LCS where control
state x has been removed. Then the following are equivalent:
1. There exists a scheduler u s.t. P(Mg"(s,e) = a) = 1.

2. x # s and there exists a scheduler u' s.t. ]P(M;f‘;(s,@ Ea)=1.

Corollary 7.5. It is decidable whether there exists a scheduler wu s.t.
P(MS", (s,e) = Aiey O0A;) = 1.
7.2 An Undecidable Problem

Theorem 7.6. The problem of checking whether, given a NPLCS S and a Street
property a, P(MZ" |= o) =1 for all schedulers u, is undecidable.

The proof is by reduction from the boundedness problem for LCS’s, shown un-
decidable in [May00].

S’
(ut_clear) (u_clean)~ 7

cleaning gadget

Fig. 1. The NPLCS S’ associated with LCS S

Let S =(Q,{c}, X, A, 0¢) be a single-channel LCS that does not use empti-
ness tests, and where oy = (rg, ). We modify S to obtain S’; a new LCS. Fig. I
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where S is in the dashed box, illustrates the construction: S’ is obtained by
adding three control states retry, success and fail, rules allowing to jump from
any S-state r € Q to retry or successE and some additional rules between the
new states, as depicted in Fig.[1l. The “?X” label is a shorthand for all 7a where
a € X. We further insert a cleaning gadget (not described) that allows to move
from retry to ro (in a non-blocking way) but empties the channel in the process:
this ensures we only jump back to S via its initial configuration (ro, ).
If we now see S’ as a NPLCS with some fault rate 7, we have

Proposition 7.7. S is unbounded iff P(ME", oo = OO Tsuccess AOOTretry) > 0
for some scheduler u.

Since boundedness of LCS’s is undecidable, we obtain Theorem [Z.6] even for
NPLCS’s without emptiness tests [l

7.3 More Decidability with Finite-Memory Schedulers!

The scheduler we build in the proof of Proposition [[7] is not finite-memory.
By contrast, all the schedulers exhibited in the proofs in Section [[T] are finite-
memory, so that these decidable problems do not depend on whether we restrict
schedulers to the finite-memory ones only.

This observation suggests investigating whether some of our undecidable
problems remain undecidable when we restrict to finite-memory schedulers. It
turns out this is indeed the case.

We consider a NPLCS S and a Biichi property o = A, JOA;. For finite-
memory schedulers, cooperative possibly and cooperative almost-sure are related
by the following fundamental lemma:

Lemma 7.8. There exists a finite-memory scheduler u s.t. P(M{™", (s,€)

a) > 0 iff there is some s' € Q and a finite-memory scheduler u' s.t (s,e) =
(s',e) and P(MZ" ,(s',e) Ea)=1.

Combining with Corollary [[5] and the decidability of reachability, we obtain:

Corollary 7.9. It is decidable whether there exists a finite-memory scheduler u
s.t. (MY, (s,e) = Aiey O0A;) > 0.

Hence the impossibility stated in Theorem [l can be circumvented with:

Theorem 7.10. The problem of checking whether, given a NPLCS S and a
Street property a, P(MZ" = ) =1 for all finite-memory schedulers u, is decid-
able.

5 Via some internal rule where no reading or writing or test takes place. Since such
rules are easily simulated by writing to a dummy channel, we simplified Def. Bl and
omitted them.

7 Observe that, because of the idling rule, formulae of the form [0)A where A is
some 1{s1,...,sn}, lead to decidable adversarial problems! This is an artifact and
undecidability reappears as soon as we consider slightly more general sets A, e.g.

A Tsuccess \ (success,e).
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8 Conclusions and Perspectives

When verifying lossy channel systems, adopting a probabilistic view of losses it
is a way of enforcing progress and ruling out some unrealistic behaviors (under
probabilistic reasoning, it is extremely unlikely that all messages will be lost).
Progress could be enforced with fairness assumptions, but assuming fair losses
makes verification undecidable [A.J96a, IMS02]. It seems this undecidability is an
artifact of the standard rigid view asking whether no incorrect behavior exists,
when we could be content with the weaker statement that incorrect behaviors
are extremely unlikely.

We proposed a model for channel systems where at each step losses of mes-
sages occur with some fixed probability 7 € (0, 1), and where the nondeterminis-
tic nature of the channel systems model is preserved. This model is more realistic
than earlier proposals since it uses the local-fault model for probabilistic losses,
and since it does not require to view the rules of the system as probabilistic.
(Picking a meaningful value for 7 is not required since the qualitative properties
we are interested in do not depend on that value.)

We advocate a specific approach to the verification of these systems: check
that properties hold almost surely under any finite-memory scheduling policy. It
seems this approach is feasible: these adversarial model checking questions can
be reduced to the decidable reachability questions that are usually verified on
channel systems.

Several questions remain unanswered, and they are good candidates for fur-
ther work:
1. Fig. [2, summarizing our results on the decidability of adversarial verification
when there is no restriction to finite-memory schedulers, should be completed. In
the table, “D” and “U” stand for decidable and undecidable. Some decidability
results are trivial and labeled with “d”.
2. Allowing idling makes our decidability proofs much easier (Remark [3:2). We
believe this is just a technical simplification that has no impact on decidability,
but this should be formally demonstrated.
3. On theoretical grounds, it would be interesting to try to extend our work and
consider RMC models of LCS’s where the probabilistic states are not limited to
message losses but could accommodate probabilistic choices between some rules.
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