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Abstract. We introduce a second-order polymorphic π-calculus based
on duality principles. The calculus and its behavioural theories cleanly
capture some of the core elements of significant technical development
on polymorphic calculi in the past. This allows precise embedding of
generic sequential functions as well as seamless integration with impera-
tive constructs such as state and concurrency. Two behavioural theories
are presented and studied, one based on a second-order logical relation
and the other based on a polymorphic labelled transition system. The
former gives a sound and complete characterisation of the contextual con-
gruence, while the latter offers a tractable reasoning tool for a wide range
of generic behaviours. The applicability of these theories is demonstrated
through non-trivial reasoning examples and a fully abstract embedding
of System F, the second-order polymorphic λ-calculus.

1 Introduction

Genericity is a useful concept in software engineering which allows encapsulation
of design decisions such that data-structures and algorithms can be changed more
independently. It arises in two distinct but closely related forms: one, which we
may refer to as universal, aids generic manipulation of data, as in lists, queues,
trees or stacks. The other existential form facilitates hiding of structure from
the outside, asking for it to be treated generically. In both cases, genericity
partitions programs into parts that depend on the precise nature of the data
under manipulation and parts that do not, supporting principled code reuse and
precise type-checking. For example, C++ evolved from C by adding genericity
in the form of templates (universal) and objects (existential).

It is known that key aspects of genericity for sequential functional com-
putation are captured by second-order polymorphism where type variables, in
addition to program variables, can be abstracted and instantiated. In particu-
lar, the two forms of genericity mentioned above are accounted for by the two
forms of quantification coming from logic, ∀ and ∃. Basic formalisms incorpo-
rating genericity include System F (the second-order λ-calculus) [8, 28] and ML
[18]. Centring on these and related formalisms, a rich body of studies on type
disciplines, semantics and proof principles for genericity has been accumulated.

The present work aims to offer a π-calculus based starting point for repo-
sitioning and generalising the preceding functional account of genericity in the
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broader realm of interaction. We are partly motivated by the lack of a general
mathematical basis of genericity that also covers state, concurrency and nonde-
terminism. For example, the status of two fundamental concepts for reasoning
about generic computation, relational parametricity [28] and its dual simulation
principle [1, 19, 27], is only well-understood for pure functions. But a math-
ematical basis of diverse forms of generic computation is important when we
wish to reason about software made up from many components with distinct
behavioural properties, from purely functional behaviour to programs with side
effects to distributed computing, all of which may exhibit certain forms of gener-
icity.

The π-calculus is a small syntax for communicating processes in which we
can precisely represent many classes of computational behaviours, from purely
sequential functions to those of distributed systems [5, 7, 17, 32, 33]. Can we find
a uniform account of genericity for diverse classes of computational behaviour
using the π-calculus? This work presents our initial results in this direction,
concentrating on a polymorphic variant of the linear/affine π-calculus with state
[7, 12, 32, 33]. It turns out that the duality principle in the linear/affine type
structure naturally extends to second-order quantification, leading to a powerful
theory of polymorphism that allows precise embedding of existing polymorphic
functional calculi and unifies some of the significant technical elements of the
known theories of genericity.

Summary of Contributions. The following summarises the main technical
contributions of the present paper.

1. Introduction of the polymorphic linear/affine π-calculus based on duality
principles, as well as its consistent extension to state and concurrency. One
of the central syntactic results is strong normalisability for linear polymor-
phic processes.

2. Theory of behavioural equivalences based on a generic labelled transition
system applicable to both sequential and concurrent polymorphic processes.
We apply the theory to non-trivial reasoning examples as well as to a fully
abstract embedding of System F in the linear polymorphic π-calculus.

3. A sound and complete characterisation of the contextual congruence by a
second-order logical relation for linear/affine polymorphic processes, leading
to relational parametricity and a simulation principle for extensional equal-
ity. The theory offers a tractable reasoning tool for generic processes as we
demonstrate through examples.

Related Work. Originally the second-order polymorphism for the λ-calculus
was discovered by Girard [8] and Reynolds [28] with a main focus on universal
abstraction. Later Mitchell and Plotkin [19, 27] relates its dual form, existential
abstraction, to data hiding. Exploiting a duality principle, the present theory
unifies these two uses of polymorphism, data-hiding and parametricity, into a
single framework, both in operation and in typing. The unification accompanies
new reasoning techniques such as generic labelled transition.
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Turner [30] is the first to study (impredicative) polymorphism in the π-
calculus, giving a type-preserving encoding of System F. His type discipline
is incorporated into Pict [23]. Vasconcelos [31] studies a predicative polymor-
phic typing discipline and shows that it can type-check interesting polymorphic
processes while allowing tractable type inference. Our use of a duality principle
(whose origin can be traced back to Linear Logic [9]) is the main difference from
those previous approaches.

Pierce and Sangiorgi [22] study a behavioural equivalence for Turner’s calcu-
lus and observe that existential types can reduce the number of transitions by
prohibiting interactions at hidden channels. Lazic, Nowak and Roscoe [15] show
that when programs manipulate data abstractly (called data independence), a
transition system with a parametricity property can be used for reasoning, lead-
ing to efficient model checking techniques. The generic labelled transition unifies,
and in some cases strengthens, these ideas as dual aspects of a single framework.
The use of duality also leads to lean and simple constructions.

Pitts studies contextual congruences in PCF-like polymorphic functional cal-
culi and characterises them via syntactic logical relations [25, 26], cf. [24]. His
work has inspired constructions and proof techniques for our corresponding char-
acterisations. The present relational theory for the π-calculus treats several ele-
ments of Pitts’ theories (for example call-by-name and call-by-value) in a uniform
framework. Duality also substantially simplifies the constructions.

Recently, several studies of the semantics of polymorphism based on games
and other intensional models have appeared. Hughes [13] presents game seman-
tics for polymorphism in which strategies pass arenas to represent type pass-
ing and proves full abstraction for System F. His model is somewhat complex
due to its direct representation of type instantiation. Murawski and Ong [21]
substantially simplify Hughes approach, but do not obtain full abstraction for
impredicative polymorphism. Abramsky and Lenisa [3, 4] give a fully abstract
model for predicative polymorphism using interaction combinators. Treatment
of impredicative polymorphism is left as an open issue. In view of the relation-
ship between π-calculi and game semantics [7, 11, 14], it would be interesting to
use typed processes from the present work to construct game-based categories.

Structure of the paper. Section 2 informally illustrates key ideas with exam-
ples. Section 3 introduces the syntax and typing rules. Section 4 gives a sound and
complete characterisation of a contextual congruence by a second-order logical
relation. Section 5 studies a generic labelled transition and the induced equiv-
alence. Section 6 discusses non-trivial applications of two behavioural theories,
including a fully abstract embedding of System F. The full technical develop-
ment of the presented material is found in [6].
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2 Generic Processes, Informally

This section introduces key ideas with simple examples. We start with the fol-
lowing small polymorphic process (which is essentially a process encoding of
the polymorphic identity), using the standard syntax of the (asynchronous) π-
calculus.

�!x(yz).z〈y〉 � x :∀x.(x(x)↑)!

In this process z〈y〉 is an output of y along the channel z and !x(yz).z〈y〉 is
a replicated input, repeatedly receiving two names y and z at x. After having
received y and z, it sends y along z.

The typing x : ∀x.(x(x)↑)! assigns ∀x.(x(x)↑)! to x. x is a type variable: x

indicates the dual of x. (x)↑ sends a name of type x exactly once, while (x(x)↑)!

indicates the behaviour of receiving two names at a replicated input channel,
one used as x and the other as (x)↑. Finally, ∀x universally abstracts x, saying
x can be any type. Here ∀x binds x and its dual simultaneously. The operational
content of typing a channel with a type variable is to enforce that y cannot be
used as an interaction point (which would require a concrete type). Hence y with
a variable x only appears as a value in a message.

Next we consider the process which is dual to the above agent. Let t〈y〉 def=
!y(a1a2z).z〈a1〉, not〈cw〉 def=!c(a1a2z).w〈a2a1z〉 and B

def= ∀x.(xx(x)↑)! (which
are, respectively, truth, negation and the polymorphic boolean type).

� x(yz)(t〈y〉|z(w).e(c)not〈cw〉) � x :∃x.(x(x)↓)? , e : (B)↑ (1)

This process sends y and z (respectively representing the truth and the continu-
ation) via x, where x(yz)P stands for (ν yz)(x〈yz〉|P ). Then it receives a single
name at z and sends its negation via e. To understand the typing, let’s look at
the situation before existential abstraction:

� x(yz)(t〈y〉|z(w).e(c)not〈cw〉) � x : (B(B)↓)? , e : (B)↑ (2)

We now abstract B and its dual at x simultaneously, obtaining ∃x.(x(x)↓)? (∃x
binds both x and x). Thus existential abstraction hides the concrete type B.

The types ∀x.(x(x)↑)! and ∃x.(x(x)↓)? are dual to each other and indicate
that composition of two processes is possible. When composed, the process in-
teracts as follows. Below and henceforth we write id〈x〉 for !x(yz).z〈y〉.
id〈x〉 |x(yz)(t〈y〉|z(w).e(c)not〈cw〉) −→ id〈x〉 | (ν yz)(z〈y〉|t〈y〉|z(w).e(c)not〈cw〉)

−→ id〈x〉 | (ν y)(t〈y〉|e(c)not〈cy〉)
≈ id〈x〉 | e(c)f〈c〉

Here f〈c〉 def=!c(xyz).z〈y〉 (representing falsity) and ≈ is the standard weak bisim-
ilarity. As this interaction indicates, a universally abstracted name, after its re-
ceipt from the environment, can only be used to be sent back to the environment
as a free name. The dual existential side can then count on such behaviour of
the interacting party: in the above case, the process on the right-hand side can
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expect that, via z, it would receive the name y as a free name which it has
exported in the initial reduction, as it indeed does in the second transition.

This duality plays the key role in defining generic labelled transitions, which
induce behavioural equivalences more abstract (larger) than non-generic ones
and which are applicable to the reasoning over a wide range of generic behaviours.
We use an example of a generic transition sequence of the process in (1).

x(yz)(t〈y〉|z(w).e(c)not〈cw〉) x(yz)−→ z〈y〉−→ t〈y〉|e(c)not〈cy〉
A crucial point in this transition is that it does not allow a bound input in the
second action, because the protocol at existentially abstracted names is opaque.
The induced name substitution then opens a channel for internal communication.
In contrast, the process in (2), different from (1) only in type, has the following
transition sequence.

x(yz)(t〈y〉|z(w).e(c)not〈cw〉) x(yz)−→ z(w)−→ t〈y〉|e(c)not〈cw〉.

Note that we have a bound input in the second action; the transition sequence
is now completely controlled by type information, without sending/receiving
concrete values. Here the duality principle dictates existential/universal type
variables correspond to free name passing, while concrete types (which rigorously
specify protocols of interaction by their type structure) correspond to bound
name passing.

This way, the duality in the type structure is precisely reflected in the duality
in behaviour. This duality principle is also essential in the construction of the
second-order logical relations, for proving the strong normalisability of linear
polymorphic processes and for various embedding results.

3 A Polymorphic π-Calculus

3.1 Processes

In this section we formally introduce a polymorphic version of the affine π-
calculus [7] and its extensions to linearity [32, 33] and state [12].

Let x, y, . . . range over a countable set N of names. �y is a vector of names.
Then processes, ranged over by P, Q, R, . . ., are given by the following grammar.

P ::= x(�y).P | !x(�y).P | x〈�y〉 | P |Q | (ν x)P | 0

Names in round parenthesis act as binders, based on which we define the alpha
equality ≡α in the standard way. We briefly illustrate each construct. x(�y).P
inputs via x with a continuation P . Its replicated counterpart is !x(�y).P . x〈�y〉
outputs �y along x. In each of these agents, the initial free occurrence is subject,
while each carried name in an input/output is object. The parallel composition
of P and Q is P |Q and (ν x)P makes x private to P . 0 is the inaction, indicating
the lack of behaviour. The structural equality ≡ is standard [17] (without the



108 Martin Berger, Kohei Honda, and Nobuko Yoshida

replication rule !P ≡ P |!P ), which we omit. The reduction relation −→ are
generated from:

x(�y).P |x〈�z〉 −→ P{�z/�y} !x(�y).P |x〈�z〉 −→ !x(�y).P |P{�z/�y}
closing under parallel composition and hiding, taking processes modulo ≡.

3.2 Types

Below we introduce polymorphic extensions of different classes of first-order type
disciplines, starting from the affine sequential polymorphic typing [7]. Following
[7, 32, 33] we use the set of action modes, which are:

↓ Affine input (at most once), ↑ Affine output (at most once),
! Server at replicated input, ? Client requests to !,

as well as �, which indicates non-composability at affine channels. ↓, ! are in-
put modes, while ↑, ? are output modes. Input/output modes are together called
directed modes. p, p′, . . . (resp. p

I
, resp. p

O
) denote directed (resp. input, resp. out-

put) modes. We define p, the dual of p, by: ↓ =↑, ! = ? and p = p.
Let x,x’, ... range over a countable set of type variables. We fix a bijection x

which is self-inverse (i.e. x = x) and irreflexive (i.e. x �= x). Each x is assigned
a directed action mode p, written x

p, so that the mode of x is always dual to
that of x. Channel types are given as follows:

τ ::=τI | τO | 〈τI, τ ′
O〉 τI ::=x

pI | (�τO)pI | ∀x.τI | ∃x.τI τO ::=x
pO | (�τI)pO | ∀x.τO | ∃x.τO

τI and τO are called input type and output type, respectively, which are together
called directed types. Note quantification is given only on directed types. For
each directed τ , the dual of τ , τ , is the result of dualising all action modes, type
variables and quantifiers in τ . In 〈τ, τ ′〉, we always assume τ ′ = τ . Following
[7, 12, 32, 33], we assume the sequentiality constraint on channel types, i.e. ↓-type
carries only ?-types while a !-type carries ?-types and a unique ↑-type, dually
for ↑ /?. We set md(xp) = p, md((�τ )p) = p and md(∀x.τ) = md(∃x.τ) = md(τ),
as well as md(〈τ, τ ′〉) = ! if md(τ) = ! and md(〈τ, τ ′〉) =� if md(τ) =↓. We often
write τp if md(τ) = p.

Quantifications bind type variables in pairs, so that both x and x in τ are
bound in ∀x.τ and ∃x.τ . This extends to type substitution (which should always
respect action modes), e.g. (x(x)↑)! [τ/x] is (τ (τ)↑)! . ftv(τ) is the set of free type
variables in τ , automatically including their duals. τ is closed if ftv(τ) = ∅.

3.3 Typing

We present a polymorphic type discipline based on implicit typing. The full ver-
sion [6] explores different presentations and variants, including explicitly typed
ones. The sequents have the form �φ P � A, where A is an action type, a finite
map from names to channel types, and φ is an IO-mode, which is either I or O.
In �φ P � A, A assign types to free names in P , while φ indicates either P has
an active thread (O) or not (I). We use the following operations and relations:
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(Zero)

−
�I 0 � ∅

(Par)

�φi Pi � Ai (i =1, 2)

A1 � A2 φ1 � φ2

�φ1�φ2 P1 | P2 � A1 � A2

(Res)

�φ P � A,x :τ

md(τ ) ∈ {!, �}
�φ (� x)P � A

(Weak)

md(τ ) ∈ {?, �}
�φ P � A-x

�φ P � A, x :τ

(In↓) (xi /∈ ftv(A))

�O P � �y :�τ, ↑?A-x

�I x(�y).P � x :∀�x.(�τ)↓, A

(In!) (xi /∈ ftv(A))

�O P � �y :�τ, ?A-x

�I!x(�y).P � x :∀�x.(�τ )!, A

(Out) (xi /∈ ftv(�τ ′))

τ ′
i = τi[ρi/xi]

�Ox〈�y〉 � x :∃�x.(�τ)pO, �y :�τ ′

Fig. 1. Polymorphic Sequential Typing

– � on IO-modes is a partial operation given by: I� I = I and I� O = O� I = O

(note O � O is not defined). When φ1 � φ2 is defined we write φ1 � φ2.
– � on channel types is the least commutative partial operation such that: (1)

τI� τI = 〈τI, τI〉 and (2) τ � τ = τ and 〈τ , τ〉� τ = 〈τ , τ〉 (md(τ) = ?). Then
A � B iff τ ′�τ ′′ is defined whenever x :τ ′ ∈ A and x :τ ′′ ∈ B. If A � B, then
we set A � B = (A\B) ∪ (B\A) ∪ {x :τ | x :τ ′ ∈ A, x :τ ′′ ∈ B, τ = τ ′ � τ ′′}.

φ1 � φ2 ensures that a well-typed process has at most one thread, while A � B
guarantees determinism. A, B is the union of A and B, assuming their domains
are disjoint; A-x means A such that x �∈ fn(A); and �pA indicates md(A) ⊂ {�p}.

The typing rules are given in Figure 1, which follow structure of processes
except (Weak). In (Out), we assume yi = yj implies τi = τj , ρi = ρj and xi = xj .
�τ is the pointwise dualisation of �τ . In comparison with the first-order affine typing
[7], the only difference is introduction of quantifiers in (In↓,!) and (Out), each
with a natural variable condition. This prefix-wise quantification, close to the
one adopted in [30], quantifies only input types (resp. output types) universally
(resp. existentially). More general forms of polymorphic typing exist, which are
studied in [6]: this form however has the merit in that it is syntactically tractable
while harnessing enough expressive power for many practical purposes. Below
we list simple examples of polymorphic processes (expressions are from Section
2), followed by a basic syntactic result. Henceforth →→ stands for ≡ ∪ −→∗.

Example 1. 1. Let I
def= x :∀x.(x?(x!)↑)! . Then �I id〈x〉 � x :I.

2. �I t〈x〉 � x : B, �I f〈x〉 � x : B and �I not〈xy〉 � x : B, y : B. Further let
if x then P1 else P2

def= x(b1b2z)(!b1(�va).P1|!b2(�va).P2|z(b).b〈�va〉) assuming
�O P1,2 � �v : �τ? , a : τ↑. Then �O if x then P1 else P2 � x : B, �v : �τ? , a : τ↑. We
can check if x then P1 else P2 | t〈x〉 →→ P1|t〈x〉|(ν b2)!b2(�va).P2 ≈ P1|t〈x〉
where ≈ is the standard (untyped) weak bisimilarity.

Proposition 1. (subject reduction) �φ P � A and P →→ P ′ imply �φ P ′ � A.
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3.4 Extension (1): Linearity

The first-order linear typing [32] refines the affine type discipline [7] by adding
causality edges between typed names in an action type. Edges prevent circular
causality. For example, a.b | b.a is typable in the affine system, but not in the
linear one. Its second-order extension simply adds prefix-wise quantification to
[32]. Thus, in Figure 1, the input prefix rules become, with x : τ →A denoting
the result of adding a new edge from x :τ to each maximal node in A:

(In↓) (xi /∈ ftv(A, B))
�O P � �y :�τ , ↑A-x, ?B-x

�Ix(�y).P � (x :∀�x.(�τ )↓→A), B

(In!) (xi /∈ ftv(A))
�O P � �y :�τ , ?A-x

�I!x(�y).P � x :∀�x.(�τ )! →A

Further � and � in (Par) are refined to prohibit circularity of causal chains
following [32]. The resulting system preserves all key properties of the first-order
linear typing, but with greater typability. We state one of the central results.

Theorem 1. (strong normalisability) Let �φ P �A in linear polymorphic typing.
Then P is strongly normalising with respect to −→.

3.5 Extension (2): State and Concurrency

The integration of imperative features and polymorphism is an old and challeng-
ing technical problem [10, 16, 29]. Here we present a basic extension of affine
polymorphic processes to stateful computation. Following [12], we add a con-
stant process Ref〈xy〉, called reference agent. For interacting with reference, we
need selection xini〈�z〉 which selects, in the case of reference, either read (i = 1)
or write (i = 2). For reduction we have:

Ref〈xy〉|xin1〈c〉 −→ Ref〈xy〉|c〈y〉 Ref〈xy〉|xin2〈zc〉 −→ Ref〈xz〉|c
The first rule describes reading of the content y, the second one writing of a new
content z. A significant property of reference agents is that, in combination with
replication, they can represent a large class of stateful computation [2, 12].

For types, we add the mutable replication mode !
M

and its dual ?
M
, as well

as adding [&i�τOi]pI for input types and [⊕i�τIi]pO for output types. For example,
the type of a reference with values of type τ is [(τ)↑&τ()↑]!M , which we write
ref(τ). There are several ways to incorporate polymorphism into mutable types.
Here we present a most basic form. Let us say ∀x.τ (resp. ∃x.τ) is simple when
md(τ) �= !

M
(resp. md(τ) �= ?

M
). We then restrict the set of polymorphic types

which we consider to the simple ones, and introduce the following typing rules.

(Ref)

md(τ ) ∈ {!, !M}
�IRef〈xy〉 � x : ref(τ ), y :τ

(Sel)

−
�O xini〈�y〉 � x : [⊕i�τi]

pO, �y :�τi

(In!M)

�O P � �y :�τ, ?M?A
-x

�I!x(�y).P � x : (�τ)!M, A

Note (In!M) allows a replicated prefix to suppress ?
M
-actions, unlike (In!). Also

note the subject of a reference/!
M
-typed replication is never universally ab-

stracted, in accordance with restriction to simple types. In spite of this limitation,
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a wide variety of imperative polymorphic programs are typable via encoding: for
example, all benchmark programs in Leroy’s thesis [16] as well as Grossman’s
integrations of struct with existentials [10] are typable. This is due to the
distinction between two replicated types, ! and !

M
. For further discussions, see

[6]. For incorporating concurrency, we simply ignore all IO-modes in each rule.
Section 6 presents equational reasoning for stateful polymorphic processes.

4 Contextual Congruence and Parametericity

This section presents a sound and complete characterisation of the contex-
tual congruence by a second-order logical relation for the affine polymorphic
π-calculus. As a consequence we obtain relational parametricity [28] and simula-
tion principle [19, 27], the two fundamental principles for polymorphic λ-calculi.

The contextual congruence for affine polymorphic processes is defined fol-
lowing its first-order counterpart [7]. Write O for ()↑ and write P ⇓x when
P −→∗ (ν �z)(x〈�y〉|P ′) with x �∈ {�z}. Then ∼=∀∃ is the maximum typed congru-
ence over polymorphic processes satisfying

�O P1
∼=∀∃ P2 � x :O ⇔ (P1 ⇓x⇔ P2 ⇓x).

for all �O P1,2 � x :O. We write P ∼=A,φ
∀∃ Q if P and Q are related by ∼=∀∃ under

A, φ (and often omit φ or A, φ). We can easily check that ≡ ∪ −→�∼=∀∃.
We first consider logical relations in a simple shape. Given closed types τ1,2

with md(τ1) = md(τ2) ∈ {↑, !}, a typed relation R : τ1 ↔ τ2 is a family of binary
relations {Rx}x∈N over typed processes such that: (1) if P1RxP2 then �φ Pi�x :τi

with φ = I (resp. φ = O) if md(τi) = ! (resp. md(τi) = ↑) and (2) the family is
closed under injective renaming, i.e. PRxQ iff P

(
xy
yx

)
Ry Q

(
xy
yx

)
.

Given a typed relation R : τ1 ↔ τ2, the dual of R at xu, written R⊥
xu, is a

relation from processes of type x :τ1, u :O to those of type x :τ2, u :O, satisfying:
P1R

⊥
xuP2 iff (ν x)(P1|R1)⇓u ⇔ (ν x)(P2|R2)⇓u for each R1RxR2. The resulting

relations, called typed co-relations, are also taken modulo injective renaming, so
that we simply write R⊥ for the dual of R. Symmetrically we define the dual
of a co-relation, returning to a typed relation. A ⊥⊥-closed relation is a typed
relation closed under double negation, i.e. R such that R⊥⊥ = R.

We can now define logical relations as interpretation of open types under a
relational environment, i.e. a function which maps type variables to ⊥⊥-closed
relations respecting action modes. The interpretation is written ((τ))ξ where ξ is
a relational environment.

(((τ?
1 ..τ?

n ρ↑)!))ξ
def= (((τ1))ξ..((τn))ξ((ρ))ξ)! (((τ1..τn)↑))ξ

def= (((τ1))ξ..((τn))ξ)↑

((x))ξ
def= ξ(x) ((∀x.τ))ξ

def= ∀x.λR.((τ))ξ·x �→R⊥⊥ ((∃x.τ))ξ
def= ∃x.λR.((τ))ξ·x �→R⊥⊥

Above, the right-hand side of each definition uses a type-respecting function
on typed relations, given in the following (definitions are presented for simpler
shapes for legibility, with obvious generalisations).
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(R?
1R↑

2)
!
x

def= {〈P, P ′〉 | Q R1y Q′ ⊃ P ◦ x〈yz〉 ◦ Q R2z P ′ ◦ x〈yz〉 ◦ Q′}
(R!)↑x

def= {〈x〈y〉 ◦ Q, x〈y〉 ◦ Q′〉 |QRyQ
′}⊥⊥

∀x.R[x]x
def= {〈P, P ′〉 | ∀R′.P R[R′]x P ′}

∃x.R[x]x
def= {〈P, P ′〉 | ∃R′. P R[R′]x P ′ }⊥⊥,

where all mentioned processes, substitutions etc. should be appropriately typed.
P ◦Q denotes (ν fn(P )∩ fn(Q))(P |Q). R[x] indicates a type-respecting map over
typed relations.3 These rules can be read quite like logical relations for functions:
for example, the first rule says that, if a pair of “resources” are related, then the
corresponding pair of “results” should also be related. In fact, the construction
yields, via encoding, logical relations in the usual sense for both call-by-name and
call-by-value polymorphic PCF-like calculi, cf. [25, 26]. Since each rule returns
a ⊥⊥-closed relation whenever its arguments are, ((τ))ξ is always ⊥⊥-closed.

The above logical relation only relates processes with a single free name. For
equating processes with multiple free names, we extend logical relations to action
types which are connected in the following sense.

Definition 1. (A, φ) is connected if one the following holds.

– φ = I and A contains, in its range, either a unique !-type and zero or more
?-types, or a unique ↓-type, a unique ↑-type and zero or more ?-types.

– φ = O and A contains a unique ↑-type and zero or more ?-types.

If (A, φ) is connected, the name with the unique ↑/! type is its principal port.

Connectedness has both practical and theoretical significance. First, in many
practical examples including the embedding of programming languages, it is
often enough to consider processes of connected types. Second, any process of
an arbitrary action type can always be decomposed canonically into connected
processes, so that results about connected processes often easily extend to non-
connected processes. We now generalise the logical relation to connected types.

Definition 2. Let (A, φ) be connected with principal port x : τ and let fn(A)\
{x} = {yj}j∈J . Then ∼=A,φ

L is a relation on processes of type (A, φ) which relates
P and P ′ iff, for each ξ (

∏
j∈J Pj denotes a parallel composition of {Pj}j∈J),

(∀j ∈ J. Qj ((A(yj)))ξ,yj Q
′
j) ⊃ (ν �y)(P |Πj∈JQj) ((τ))ξ,x (ν �y)(P ′ |Πj∈JQ′

j).

Note that ∼=x:τ,φ
L (with φ given corresponding to τ) coincides with ((τ))x. The

following result is proved closely following the development by Pitts [25, 26].

Theorem 2. (characterisation of ∼=∀∃) ∼=A,φ
L =∼=A,φ

∀∃ for each connected (A, φ).

Corollary 1. 1. (parametricity) P ∼=x:∀x.τ
∀∃ Q if and only if P ((τ))x �→RQ for

each ⊥⊥-closed R.
2. (simulation) P ∼=x:∃x.τ

∀∃ Q if and only if P ((τ))x �→RQ for some ⊥⊥-closed R.

3 In detail: �[x] should map, for fixed τ and τ ′ such that ftv(τ ) ∪ ftv(τ ′) ⊂ {x}, each
�

′ : ρ ↔ ρ′ of mode md(x) to a typed relation �[�′] : τ [ρ/x] ↔ τ ′[ρ′/x].
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The construction and results extend to the whole set of affine polymorphic pro-
cesses, see [6]. The same characterisation result also holds for linear polymorphic
processes, where we use a ⊥⊥-closure based on convergence to a specific boolean
value (this convergence is also used for defining the contextual congruence, which
is necessary since linear processes are always converging). In Section 6 we give
reasoning examples which use these results. The corresponding characterisation
results for non-functional polymorphic behaviour (including state [24] and con-
trol) are left as an open issue.

5 Generic Transitions and Innocence

This section discusses another basic element of the present theory, a generic
labelled transition system and the induced process equivalence. While our pre-
sentation focusses on the affine polymorphic π-calculus, the construction equally
applies to linear, stateful and concurrent polymorphic processes, with the same
soundness result. The duality principle strongly guides the construction. The set
of action labels (l, l′, . . .) are given by:

l ::= x〈(�y)�w〉 | x〈(�y)�w〉 | τ

In the first two labels, names in �y are pairwise distinct and �y is a (not necessarily
consecutive) subsequence of �w (called objects) and distinct from x (called sub-
ject). Names in �y occur bound, while all other names occur free. x(�y) and x〈�y〉
stand for x〈(�y)�y〉 and x〈(ε)�y〉, respectively and similarly for output actions.

Transitions use an extended typing where type variables in action types are
annotated by quantification symbols (as x

∀ and x
∃, called universal type variable

and existential type variable, respectively). The original free type variables and
∀-quantified variables are naturally ∀-annotated, while ∃-quantified variables are
∃-annotated. Free ∃-type variables are introduced by the following added rule:

(∃-Var)
�φ P � A[τ/x∃]

�φ P � A

which we assume to be applicable only as the last rule(s) in a derivation. As an
example of typing, we have �O t〈y〉|z(w).e(c)not〈cw〉 � y : x∃, z : (x∃)↓, e : (B)↑,
abstracting away the type which is both for the resource at y and for the value of
the input via z. Using annotated type variables, the following predicates decide if
the shape of action labels conforms to a given action type. In brief, they say that
free output (resp. input) corresponds to universal type variables (resp. existential
type variables), cf. Section 2. θ below denotes a sequence of quantifiers.

Definition 3. 1. A � τ always.
2. A � x〈(�z)�w〉 : θ(�τ )pI when {�z} ∩ fn(A) = ∅ and A(x) = θ(�τ )pI s.t. wi �∈ {�z}

iff A(wi) = τi where τi is an existential type variable.
3. A � x〈(�z)�w〉 : θ(�τ )pO when {�z} ∩ fn(A) = ∅ and A(x) = θ(�τ )pO s.t. wi �∈ {�z}

iff A(wi) = τi where τi is a universal type variable.
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We can now introduce the transition rules (for expository purposes we focus on
key instances). We start from the standard bound input.

(BIn↓) �I x(�y).P � A
x(�y)−→ �O P � A/x, �y :�τ (A � x(�y) : θ(�τ )↓)

This may introduce (output-moded) ∀-type variables, which are used as follows.

(FOut↑) �O x〈�y〉 � A
x〈�y〉−→ �I 0 � A/x (A � x〈�y〉 : θ(�x∀)↑)

We can now infer �I id〈x〉 � x :I
x(yz)−→ z〈y〉−→�I id〈x〉 � x :I (using a replicated version

for input). Next we consider the dual situation, starting from bound output.

(BOut↑) �O x〈�y〉 � A
x(�z)−→ �I Πi[zi → yi]τi � A/x, �z : �τ (A � x(�z) : θ(�τ )↑)

Here [zi → yi]τi is the standard copy-cat agent [7, 12, 14, 32, 33]. For example,
[a → b](()

↑)! def=!a(y).b(y′)y′.y. This rule is best seen in view of the semantic
equality x〈�y〉 ∼= x(�z)Πi[zi → yi]τi . Again this rule may introduce (input-moded)
∃-type variables, used by:

(FIn↓) �I x(�y).P � A
x〈�z〉−→ �O P{�z/�y} � A/x � �z :�x (A � �z :�x

∃ � x〈�z〉 : θ(�x∃)↓)

In the side condition, we compose types for opaque resources to appear in a later
derivation. The rule says an input may receive channels for opaque resources
which have been exported and which are, therefore, free. We can now infer

�O x(yz)(t〈y〉|z(w).R) � x :I, e : (B)↑
x(yz)−→ z〈y〉−→�O t〈y〉|R{y/w} � y :〈x∃,x∃〉, e : (B)↑.

Since a type may carry both type variable(s) and concrete type(s), the general
rule for linear input (resp. output) combines (BIn↓) and (FIn↓) (resp. (BOut↑)
and (FOut↑)). Similarly we have rules for replicated input/output, as well as
standard composition rules. For the generated transition relation we can check,
under the extended typing:

Proposition 2. If �φ P � A and �φ P � A
l−→�φ′ Q � B then �φ′ Q � B.

Define the weak bisimilarity ≈∀∃ induced by generic transitions in the standard
way. The proof of the following is then straightforward.

Proposition 3. (soundness) �φ P ≈∀∃ Q � A implies �φ P ∼=∀∃ Q � A.

The result extends to the linear/stateful extensions in §3.4/5. Further the ana-
logue of Corollary 1(1) (parametricity) easily holds for ≈∀∃. We can also show
polymorphic transition sequences of a typed process can be characterised by an
innocent function as in the first-order affine processes [7]. Again as in [7], finite
generic innocent functions are always realisable as syntactic processes.

6 Reasoning Examples

This section discusses equational reasoning based on the theories in Sections 4
and 5, and outlines a fully abstract embedding of System F.
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Inhabitation Results. We begin with an inhabitation result for I using generic
transitions. Let Ω〈x〉 def=!x(yz).(ν ab)(!a(w).b〈w〉|!b(w).a〈w〉|a(c)c.z〈y〉) (which
diverges after the initial input; from now on, the notation Ω〈x〉 is used for
denoting such processes regardless of types). We prove that �I P � x : I implies
either P ≈∀∃ id〈x〉 or P ≈∀∃ Ω〈x〉. Let �I P � x : I. Then we have �I P � x :

I
x(yz)−→ �O P ′�x :I, y :x∀, z : (x∀)↑. By inspecting the action type, if P ′ ever has an

output, it can only be z〈y〉, in which case P ≈∀∃ id〈x〉. If not then P ≈∀∃ Ω〈x〉.
Since id〈x〉 �∼=∀∃ Ω〈x〉, these two are all distinct inhabitants of the type. Similarly
we can check x : B is inhabited by t〈x〉, f〈x〉 and Ω〈x〉. In the linear typing, we
obtain the same results except we lose Ω〈x〉 by totality of transition.

Boolean ADTs. Next we show a simple use of logical relations for equational
reasoning, taking abstract data types of opaque booleans (similar to those dis-
cussed in [22, 25]). The data type should export a “flip”, or negation operation
and allow reading (which means turning an opaque boolean to a concrete one).
Two simple implementations in the λ-calculus with records are:

M
def= pack bool {bit = T, flip = λx :bool.¬x, read = λx :bool.x } as bool

M ′ def= pack bool {bit = F, flip = λx :bool.¬x, read = λx :bool.¬x} as bool

where bool def= ∃x.{bit : x, flip : x → x, read : x → bool}. M and M ′ can be
encoded as (using a call-by-value translation of products, cf. [32]):

bool〈u〉 def= u(m1m2m3)(Q1|Q2|Q3) bool′〈u〉 def= u(m1m2m3)(Q′
1|Q′

2|Q′
3)

where Q1
def= t〈m1〉, Q2

def=!m2(bz).z(b′)not〈b′b〉, Q3
def=!m3(bz).z〈b〉, Q′

1
def= f〈m1〉,

Q′
2 ≡ Q2 and Q′

3
def=!m3(bz).z(b′)not〈b′b〉. We can easily check these processes are

typable under u :∃x.B[x], where B[x] def= (x(x(x)↑)!(x(B)↑)!)↑.
We now show �I bool〈u〉 ∼=∀∃ bool′〈u〉 � x : ∃x.B[x]. By Corollary 1(2), it

is enough to establish bool〈u〉((B[x]))x,x �→Rbool′〈u〉 for some ⊥⊥-closed R. By
definition this means we have to verify:

Q1Rm1Q
′
1, Q2(R(R)↑)!m2

Q′
2, Q3(R(((B)))↑)!m3

Q′
3.

Take R
def= {(t〈x〉, f〈x〉), (f〈x〉, t〈x〉), (Ω〈x〉, Ω〈x〉)} (processes are taken up to

∼=∀∃). Then R is ⊥⊥-closed (by the inhabitation result for B). R obviously relates
Q1 and Q′

1. The key case is Q3(R(((B)))↑)!m3
Q′

3, which means, by definition,
Q3 ◦m3〈xw〉 ◦S (((B)))↑w Q′

3 ◦m3〈xw〉 ◦S′ for any SRS′. The case when (S, S′) =
(Ω〈x〉, Ω〈x〉) is trivial. Let (S, S′) = (t〈x〉, f〈x〉). We can check both Q3◦m3〈xw〉◦
S and Q′

3 ◦m3〈xw〉 ◦S′ reduce to, hence are ∼=∀∃-equivalent to, w〈b〉 ◦ t〈b〉. Now
we use Theorem 2. Similarly when (S, S′) = (f〈x〉, t〈x〉). Reasoning for Q2 and
Q′

2 is similar.

Simple Boolean Agent. In Section 2, we have seen the behaviour of S
def=

x(yz)(t〈y〉|z(w).e(b)not〈bw〉) under x : I, e : (B)↑. Noting this process is typable
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in the linear typing, we show that S and S′ def= e(b)f〈b〉 are contextually con-
gruent as linear polymorphic processes. Since S and S′ have different visible
traces, the use of some extensionality principle is essential. By the character-
isation result along the line of Theorem 2 in the linear setting, it suffices to
show (ν x)(S|P )(((B)↑))e(ν x)(S′|P ) for each �I P � x : I. But if �I P � x : I then
P ∼=∀∃ id〈x〉 by inhabitation. We can then check (ν x)(S|P ) ∼=∀∃ (ν x)(S|id〈x〉) ≈
S′ ≈ (ν x)(S′|id〈x〉) ∼=∀∃ (ν x)(S′|P ), hence done.

Diverging Functions. Another example which needs extensionality, but this
time in the context of affine sequential processes, is the equality of two diverging
functions treated by Pitts [25] (the example is attributed to Stark). Assume we
are given the following two call-by-value functions:

F ′ def= letrec f = λg.fg in f

G′ def= letrec f = λg.if gT then (if gF then fg else T) else fg in f

Let nullλ
def= ∀x.x, Bλ

def= ∀x.(x⇒x⇒x) and α = ∃x.((x⇒Bλ)⇒Bλ). Then we
can check F

def= pack nullλ, F ′ as α and G
def= pack Bλ, G′ as α are well-typed

after existential abstraction. To show F and G are equal, we first encode them
as affine polymorphic processes. In the standard encoding (with recursion being
translated using copy-cats), F and G are represented by, respectively, u(x)Ω〈x〉
and u(x)P where (using some shorthand notations):

P
def=!x(gz).(g(Tw)w(b).if b then [g(Fw′)w′(b′).if w′ then else Ω〈u〉z(T)] elseΩ〈u〉),

both typable under u : ∃x.(τ)↑ with τ = ((x!(B)↓)?(B)↑)! . We can then show
P ∼=∀∃ Ω〈x〉 using a logical relation ((R(B)↓)?(B)↑)!x where Ru is the universal
relation over u :B. Detailed reasoning is given in [6].

State and Concurrency. We apply transition-based reasoning to a simple
concurrent ADT, a cell with a boolean value. It allows three operations, share,
read and write. The first returns the access pointer to the cell, while the latter
two read/write a boolean value from it. The data type of this agent is:

Cell[B] def= ∃x.(((x)↑)!M(x(B)↑)!M(x B()↑)!M)↑.

Below we give two implementations. The first is centralised in that all clients
have access to a single container; while, in the second, each client has a different
proxy which it uses to access the “real” cell. Let

cell〈ul〉 def= u(srw)(S |R |W ) cell′〈ul〉 def= u(srw)(S′ |R′ |W ′) ,

where S
def=!s(z).z〈l〉, R

def=!r(cz).cin1(e)e(x).z〈x〉 and W
def=!w(cbz).cin2〈bz〉,

while S′ def=!s(z).z(c)!c(z′).z′〈l〉, R′ def=!r(cz).c(e)e(r′).r′in1(f)f(x).z〈x〉 and
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W ′ def=!w(cbz).c(w)w(r).rin2〈bz〉. Then both cell〈ul〉 and cell′〈ul〉 are typable
under u :Cell[B], l : ref(B), with ref(τ) def= [(τ)↑&τ()↑]!M .

To show these two typed processes are ≈∀∃-equivalent, we first note that
neither manipulates boolean values non-trivially (they are data independent in
the sense of [15]), hence both are also typable under u : Cell[y∀], l : ref(y∀). By
parametricity of ≈∀∃, it suffices to consider a bisimulation under this typing,
which radically reduces the number of transitions. We now construct a relation
R from the following tuples:

� (S |R |W |Πi[ci → l]ref(y)) R (S′ |R′ |W ′ |Πi!ci(z).z〈l〉)
� s : ((x∃)↑)!M , r : (x∃(y∀)↑)!M , w : (x∃

y
∀()↑)!M , �c :�x∃

together with their derivatives ([6] gives details). Note that Πi[ci → l] on the
left-hand side is generated since S is in fact not allowed to do a free output via
z (because l is not typed by a universal type variable; though it is typed by an
existential variable). Observing that ci :x∃

i prohibits each ci from being used as
the subject of an action, while permitting its use as an object of a free input
(via r and w) that in turn triggers appropriate internal reduction, we can verify
R is a bisimulation.

Fully Abstract Embedding of System F. Using the characterisation of
polymorphic transitions by innocence mentioned in Section 5, we can embed
System F (the second-order λ-calculus) fully abstractly in linear polymorphic
processes. The contextual equality over λ-terms is defined in the standard way
[20], using observables at the polymorphic boolean type. We write M, N, . . . for
polymorphic λ-terms, α, β, . . . for their types, and ∼=∀ for the contextual equality.
We can use different encodings to reach the same result: for example we can use
Turner’s call-by-value encoding [30] (other encodings, including those based on
call-by-name, are discussed in [6]). The mapping of types becomes:

α• def= (α◦)↑ x
◦ def= x

! (α ⇒ β)◦ def= (α◦β•)! (∀x.α)◦ def= ∀x.((α◦)↑)!

Write [[M : α]]u for the encoding of a polymorphic λ-term M : α. Then, setting
∼=∀∃ to be the contextual congruence over linear polymorphic processes discussed
at the end of Section 4, we obtain:

Theorem 3. (full abstraction) Let � M1,2 :α. Then M1
∼=∀ M2 : α if and only

if �I [[M1 :α]]u ∼=∀∃ [[M2 :α]]u � u :α◦.

The proof uses definability arguments based on innocence as in [7] (with addi-
tional treatment of contravariant universal types), see [6] for details.
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