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Abstract. We provide several machine-independent characterizations of
deterministic complexity classes in the model of computation proposed
by L. Blum, M. Shub and S. Smale. We provide a characterization of
partial recursive functions over any arbitrary structure. We show that
polynomial time computable functions over any arbitrary structure can
be characterized in term of safe recursive functions. We show that poly-
nomial parallel time decision problems over any arbitrary structure can
be characterized in terms of safe recursive functions with substitutions.

1 Introduction

Why are we convinced by the Church Thesis? An answer is certainly that there
are so many mathematical models, like partial recursive functions, lambda-
calculus, or semi-Thue systems, which are equivalent to Turing machine, but
are also independent from the computational machinery. When computing over
arbitrary structures, like real numbers, the situation is not so clear. Seeking
machine independent characterizations of complexity classes can lend further
credence to the importance of the classes and models considered.

We consider here the BSS model of computation over the real numbers intro-
duced by Blum, Shub and Smale in their seminal paper [BSS89]. The model was
later on extended to a computational model over any arbitrary logical structure
[Goo94, Poi95]. See the monograph [BCSS98] for a general survey about the BSS
model.

First of all, we present a new characterization of computable functions that
extends the one of [BSS89] to any arbitrary structure.
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Theorem 1. Over any structure K = (K, op1, . . . , opk, =, rel1, . . . , rell, α), the
set of partial recursive functions over K is exactly the set of decision functions
computed by a BSS machine over K.

In the BSS model, complexity classes like PTIME and NPTIME can be
defined, and complete problems in these classes can be shown to exist. On many
aspects, this is an extension of the classical complexity theory since complexity
classes correspond to classical complexity classes when dealing with booleans or
integers. The next results strengthen this idea.

In classical complexity theory, several attempts have been done to provide
nice formalisms to characterize complexity classes in a machine independent way.
Such characterizations include descriptive characterization based on finite model
theory like Fagin [Fag74], characterization by function algebra like [Cob62], or
by combining both kinds of characterization like in [Gur83, Saz80]: see [Clo95,
Imm99, EF95] for more complete references.

Despite the success of those approaches to capture major complexity classes,
one may not be completely satisfied because explicit upper bounds on computa-
tional resources or restrictions on the growth rates are present. The recent works
of Bellantoni and Cook [BC92] and of Leivant [Lei95, LM93] suggests another
direction by mean of data tiering which is called implicit computational com-
plexity. There are no more explicit resource bounds. It provides purely syntactic
models of complexity classes which can be applied to programming languages to
analyze program complexity [Jon00, Hof99, MM00].

In this paper, following these lines, we establish two “implicit” character-
izations of the complexity classes. Our characterizations work over arbitrary
structures, and subsume previous ones when restricted to booleans or integers.

First, we characterize polynomial time computable BSS functions. This result
stems on the safe primitive recursion principle of Bellantoni and Cook [BC92].

Theorem 2. Over any structure K = (K, op1, . . . , opk, =, rel1, . . . , rell, α), the
set of safe recursive functions over K is exactly the set of functions computed in
polynomial time by a BSS machine over K.

Second, we capture parallel polynomial time BSS functions based on Leivant
and Marion characterization of polynomial space computable functions [LM95].

Theorem 3. Over any structure K = (K, op1, . . . , opk, =, rel1, . . . , rell, α), the
set of decision functions definable with safe recursion with substitution over K is
exactly the set of decision functions computed in parallel polynomial time over
K.

Observe that, unlike Leivant and Marion, our proofs characterize parallel
polynomial time and not polynomial space: for classical complexity both classes
correspond. However over arbitrary structures, this is not true, since the notion
of working space is meaningless: as pointed out by Michaux [Mic89], on some
structures like (R, 0, 1, =, +,−, ∗), any computable function can be computed in
constant working space.
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From a programming perspective, a way of understanding all these results
is to see computability over arbitrary structures like a programming language
with extra operators which come from some external libraries. This observation,
and its potential to able to build methods to derive automatically computational
properties of programs, in the lines of [Jon00, Hof99, MM00], is one of our main
motivations on making this research.

On the other hand, we believe BSS computational model to provide new in-
sights for understanding complexity theory when dealing with structures over
other domains [BCSS98]: several nice results have been obtained for this model
in the last decade, including separation of complexity classes over specific struc-
tures: see for example [Mee92, Cuc92, CSS94]. We believe these results to con-
tribute to the understanding of complexity theory, even when restricted to clas-
sical complexity [BCSS98].

It is worth mentioning that it is not the first time that the implicit computa-
tional complexity community is interested by computations over real numbers:
see the exciting paper of Cook [Coo92] on higher order functionals, or the works
trying to clarify the situation such as [RIR01]. However this is the first time that
implicit characterizations of this type over arbitrary structures are given.

In Section 2, we give a characterization of primitive recursive functions over
an arbitrary structure. We introduce our notion of safe recursive function in
Section 3. We give the proof of Theorem 2 in Section 4. We recall the notion of
a family of circuits over an arbitrary structure in Section 5. Safe recursion with
substitutions is defined in Section 5.2. Theorem 3 is proved in Section 5.3 and
5.4.

2 Partial Recursive and Primitive Recursive Functions

2.1 Definitions

A structure K = (K, op1, . . . , opk, rel1, . . . , rell, α) is given by some underlying
set K, some operators op1, . . . , opk with arities, and some relations rel1, . . . , rell
with arities. Constants correspond to operators of arity 0. We will not distinguish
between operator and relation symbols and their corresponding interpretations
as functions and relations respectively over the underlying set K.

We assume that equality relation = is always one relation of the structure,
and that there is at least one constant α in the structure. A good example
for such a structure, corresponding to the original paper in [BSS89] is K =
(R, +,−, ∗, =,≤, 0, 1). Another one, corresponding to classical complexity and
computability theory, is K = ({0, 1},∨,∧, =, 0, 1).

K
∗ =

⋃
i∈N

K
i will denote the set of words over alphabet K. In our notations,

words of elements in K will be represented with overlined letters, while simple
elements in K will be represented by simple letters. For instance, a.x stands for
the word in K

∗ whose first letter is a and which ends with the word x. ε will
denote the empty word. The length of a word w ∈ K

∗ is denoted by |w|.
We assume that the reader has some familiarities with the computation model

of Blum Shub and Smale: see [BSS89, BCSS98] for a detailed presentation.
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In particular remember that a problem P ⊂ K
∗ is decidable (respectively a

function f : K
∗ → K

∗ is computable), if there exists a machine M over structure
K that decides P (resp. computes f). A problem P ⊂ K

∗ is in the class PTIME
(respectively a function f : K

∗ → K
∗ is in the class FPTIME), if there exists a

polynomial p and a machine M over structure K that decides P (resp. computes
f) in time p.

As for the classical settings, computable functions over any arbitrary struc-
ture K can be characterized algebraically, in terms of the smallest set of functions
containing some initial functions and closed by composition, primitive recursion
and minimization. In the rest of this section we present such a characterization
that works over any arbitrary structure. See comments below for comparisons
with the one, for the structure of real numbers, in the original paper [BSS89].

We consider functions: (K∗)n → K
∗, taking as inputs arrays of words of

elements in K, and returning as output a word of elements in K. When the
output of a function is undefined, we use the symbol ⊥.

Theorem 1. Over any structure K = (K, op1, . . . , opk, =, rel1, . . . , rell, α), the
set of functions (K∗)n → K

∗ computed by a BSS machine over K is exactly
the set of partial recursive functions, that is to say the smallest set of functions
containing the basic functions, and closed under the operations of composition,
primitive recursion, and minimization defined below.

The basic functions are of four kinds:

– functions making elementary manipulations of words of elements in K. For
any a ∈ K, x, x1, x2 ∈ K

∗:

hd(a.x) = a tl(a.x) = x cons(a.x1, x2) = a.x2

hd(ε) = ε tl(ε) = ε cons(ε, x2) = x2

– Projections: for any n ∈ N, ı ≤ n:

Prn
ı (x1, . . . , xı, . . . , xn) = xı

– functions of structure K: for any operator (including the constants treated
as operators of arity 0) opı or relation relı of arity nı we have the following
initial functions:

Opı(a1.x1, . . . , anı .xnı) = (opı(a1, . . . , anı)).xnı

Relı(a1.x1, . . . , anı .xnı) =
{

α if relı(a1, . . . , anı)
ε otherwise

– test function :

C(x, y, z) =
{

y if hd(x) = α
z otherwise
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Operations mentioned above are:

– composition: Assume f : (K∗)n → K
∗, g1, . . . , gn: (K∗)m → K

∗ are given
partial functions. Then the composition h: (K∗)m → K

∗ is defined by

h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

– primitive recursion: Assume h: K
∗ → K

∗ and g: (K∗)3 → K
∗ are given partial

functions. Then we define f : (K∗)2 → K
∗

f(ε, x) = h(x)

f(a.y, x) =
{

g(y, f(y, x), x) if f(y, x) 	=⊥
⊥ otherwise

– minimization: Assume f : (K∗)2 → K
∗ is given. Function g: K

∗ → K
∗ is

define by minimization on the first argument of f , also denoted by g(y) =
µx (f(x, y)), if:

µx (f(x, y)) =
{⊥ if ∀t ∈ N : hd(f(0t, y)) 	= α

αk : k = min{t | hd(f(0t, y)) = α} otherwise

Note 1. Our definition of primitive recursion and of minimization is sightly dif-
ferent from the one found in [BSS89]. In this paper, the authors introduce a
special integer argument for every function, which is used to control recursion
and minimization, and consider the other arguments as simple elements in K.
Their functions are of type: N ∗ K

k → K
l. Therefore, they only capture fi-

nite dimensional functions. It is known that, on the real numbers with +,−, ∗
operators, finite dimensional functions are equivalent to non-finite dimensional
functions (see [Mic89]), but this is not true over other structures, for instance
Z2. Our choice is to consider arguments as words of elements in K, and to use
the length of the arguments to control recursion and minimization. This allows
us to capture non-finite dimensional functions,. We consider it to be a more
general and a more natural way to define computable functions, and moreover
not restricted to structure K = (R, +,−, ∗, =,≤, 0, 1).

Observe that primitive recursion can be replaced by simultaneous primitive
recursion:

Proposition 1. [BMdN02] Simultaneous primitive recursion is definable with
primitive recursive functions.

The proof of Theorem 1, similar to the proof of Theorem 2 in section 3, is not
given here.

3 Safe Recursive Functions

In this section we define the set of safe recursive functions over any arbitrary
structure K, extending the notion of safe recursive functions over the natural
numbers found in [BC92].
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Safe recursive functions are defined in a quite similar manner as primitive
recursive functions. However, in the spirit of [BC92], safe recursive functions
have two different types of arguments, each of which having different properties
and different purposes. The first type of argument, called “normal” arguments, is
similar to the arguments of the previously defined partial recursive and primitive
recursive functions, since it can be used to make basic computation steps or to
control recursion. The second type of argument is called “safe”, and can not be
used to control recursion. This distinction between safe and normal arguments
ensures that safe recursive functions can be computed in polynomial time.

We will use the following notations: the two different types of arguments are
separated by a semicolon “;” : normal arguments (respectively: safe arguments)
are placed at left (resp. at right) of the semicolon.

We define now safe recursive functions:

Definition 1. The set of safe recursive functions over K is the smallest set of
functions: (K∗)k → K

∗, containing the basic safe functions, and closed under
the operations of safe composition and safe recursion

Basic safe functions are the basic functions of Section 2, their arguments
defined all as safe.

Operations mentioned above are:

– safe composition: Assume f : (K∗)m × (K∗)n → K
∗, g1, gm : (K∗)p → K

∗ and
gm+1, gm+n : (K∗)p×(K∗)q → K

∗ are given functions. Then the composition
is the function h : (K∗)p × (K∗)q → K

∗:

h(x1, . . . , xp; y1, . . . , yq) = f (g1(x1, . . . , xp), . . . , gm(x1, . . . , xp);
gm+1(x1, . . . , xp; y1, . . . , yq), . . . , gm+1(x1, . . . , xp; y1, . . . , yq))

Note 2. It is possible to move an argument from the normal position to the
safe position, whereas the reverse is forbidden. By “move”, we mean the
following: for example, assume g : K

∗× (K∗)2 → K
∗ is a given function. One

can then define with safe composition a function f : f(x, y; z) = g(x; y, z) but
a definition like the following is not valid: f(x; y, z) = g(x, y; z).

– safe recursion: Assume h1, . . . , hk : K
∗ × K

∗ → K
∗ and g1, . . . , gk : (K∗)2 ×

(K∗)k+1 → K
∗ are given functions. Functions f1, . . . , fk : (K∗)2 × K

∗ → K
∗

can then be defined by safe recursion:

f1(ε, x; y), . . . , fk(ε, x; y) = h1(x; y), . . . , hk(x; y)

f1(a.z, x; y) =
{

g1(z, x; f1(z, x; y), . . . , fk(z, x; y), y) if ∀ı fı(z, x; y) 	=⊥
⊥ otherwise

...

fk(a.z, x; y) =
{

gk(z, x; f1(z, x; y), . . . , fk(z, x; y), y) if ∀ı fı(z, x; y) 	=⊥
⊥ otherwise
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Note 3. The operation of primitive recursion previously defined is a simple re-
cursion, whereas the operation of safe recursion is a simultaneous recursion. As
stated by Proposition 1, it is possible to simulate a simultaneous primitive recur-
sion with single primitive recursion, whereas this does not seem to be true with
safe recursion. As shown in the simulation of a BSS machine by safe recursive
functions, we need to have a simultaneous recursion able to define simultane-
ously three functions in order to prove Theorem 2. In the classical setting, this
is the choice made by Leivant and Marion in [LM95], while Bellantoni and cook
used a smash function # to build and break t-uples [BC92]. Both choices are
equivalent.

4 Proof of Theorem 2

Theorem 2 is proved in two steps. First, we prove that a safe recursive function
can be computed by a BSS machine in polynomial time. Second, we prove that
all functions computable in polynomial time by a BSS machine over K can be
expressed as safe recursive functions.

4.1 Polynomial Time Evaluation of a Safe Recursive Function

This is a straightforward consequence of the following lemma.

Lemma 1. Let f(x1, . . . , xn; y1, . . . , ym) be any safe recursive function. If we
write T �f(. . .)� for the evaluation time of f(. . .),

T �f(x1, . . . , xn; y1, . . . , ym)� ≤ pf (T �x1� + . . . + T �xn�) + T �y1� + . . . + T �ym�

for some polynomial pf .

This is proved by induction on the depth of the definition tree of the safe
recursive function. Let f be a safe recursive function.

– If f is a basic safe function, the result is straightforward.
– if f is defined by safe composition from safe recursive functions g, h1, h2,

using induction hypothesis, f is easily shown to be computable in polynomial
time by a BSS machine.

– The non-trivial case is the case of a function f defined with simultaneous
safe recursion. In order to simplify the notations, we assume that f is defined
with a single safe recursion. The proof is in essence the same.
Let us apply induction hypothesis to function g in the expression
f(a.z, x; y) = g(z, x; f(z, x; y), y). Assuming a “clever” strategy, y needs to be
evaluated only once, even though it appears in several recursive calls. Thus,
if we assume that y has already been evaluated, the time needed to evaluate
f(a.z, x; y) = g(z, x; f(z, x; y), y) is given by pg(T �z�+T �x�)+T �f(z, x; y)�.
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We get:

T �f(a.z, x; y)�
≤ T �y� + pg(T �z� + T �x�) + T �f(z, x; y)�
≤ T �y� + pg(T �z� + T �x�) + pg(T �tl(z)� + T �x�) + . . .

. . . + pg(T �ε� + T �x�) + ph(T �x�) .

Assuming without loss of generality pg monotone, we get

T �f(a.z, x; y)� ≤ |a.z|pg(T �z� + T �x�) + ph(T �x�) + T �y�,

from which the lemma follows.

4.2 Simulation of a Polynomial Time BSS Machine

Let M be a BSS machine over the structure K. In order to simplify our exposition
we assume, without any loss of generality, that M has a single tape. M computes
a partial function fM from K

∗ to K
∗. Moreover, we assume that M stops after

c|x|r computation steps, where x denotes the input of the machine M . Our goal
is to prove that fM can be defined as a safe recursive function.

In what follows, we represent the tape of the machine M by a couple a
variables (y1, y2) in (K∗)2 such that the non-empty part is given by y1

R.y2,
where y1

R is the reversed word of y1, and that the head of the machine is on the
first letter of y2.

We also assume that the m nodes in M are numbered with natural numbers,
node 0 being the initial node and node 1 the terminal node. We assume that
the terminal node is a loopback node, i.e., its only next node is itself. In the
following definitions, node number q will be coded by the word αq of length q.

Let q (q ∈ N) be a move node. Three functions are associated with this node:

Gı(; y1, y2) = αq′

Hı(; y1, y2) = tl(; y1) or hd(; y2).y1

Iı(; y1, y2) = hd(; y1).y2 or tl(; y2)

according if one moves right or left. Function Gı returns the encoding of the
following node in the computation tree of M , function Hı returns the encoding
of the left part of the tape, and function Iı returns the encoding of the right
part of the tape.

Let q (q ∈ N) be a node associated to some operation op of arity n of the
structure. We also write Op for the corresponding basic operation. Functions Gı,
Hı, Iı associated with this node are now defined as follows:

Gı(; y1, y2) = αq′

Hı(; y1, y2) = y1

Iı(; y1, y2) = cons(; Op(; hd(; y2), . . . , hd(; tl(n−1)(; y2))), tl(n)(; y2))
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Let q (q ∈ N) be a node corresponding to a relation rel of arity n of the
structure. The three functions associated with this node are now:

Gı(; y1, y2) = C(; rel(; hd(; y1), . . . , hd(; tl(n−1)(; y2))), αq′
, αq′′

)
Hı(; y1, y2) = y1

Iı(; y1, y2) = y2

One can define easily without safe recursion, for any integer k, a function
Equalk such that:

Equalk(; y1) =
{

α if y1 = αk

ε otherwise

We can now define the safe recursive functions nextstate, nextleft and
nextright which, given the encoding of a state and of the tape of the machine,
return the encoding of the next state in the computation tree, the encoding of
the left part of the tape and the encoding of the right part of the tape:

nextstate(; s, y1, y2) = C (; Equal0(; s),G0(; y1, y2), C (; Equal1(; s),G1(; y1, y2),
. . . C (; Equalm(; s),Gm(; y1, y2), ε) . . .))

nextleft(; s, y1, y2) = C (; Equal0(; s),H0(; y1, y2), C (; Equal1(s),H1(; y1, y2),
. . . C (; Equalm(; s),Hm(; y1, y2), ε) . . .))

nextright(; s, y1, y2) = C (; Equal0(; s), I0(; y1, y2), C (; Equal1(; s), I1(; y1, y2),
. . . C (; Equalm(; s), Im(; s, y1, y2), ε) . . .))

From now on, we define with safe recursion the encoding of the state of the
machine reached after k computation nodes, where k is encoded by the word
αk ∈ K

∗, and we also define the encoding of the left part and the right part of
the tape. All this is done with functions compstate, compleft and compright as
follows:

compstate(ε; y1, y2) = ε

compstate(αk+1; y1, y2) = nextstate

(
; compstate(αk; y1, y2), compleft(αk; y1, y2),

compright(αk; y1, y2)
)

compleft(ε; y1, y2) = y1

compleft(αk+1; y1, y2) = nextleft

(
; compstate(αk; y1, y2), compleft(αk; y1, y2),

compright(αk; y1, y2)
)

compright(ε; y1, y2) = y2

compright(αk+1; y1, y2) = nextright

(
; compstate(αk; y1, y2), compleft(αk; y1, y2),

compright(αk; y1, y2)
)

In order to simplify the notations, we write the above as follows:

comp(ε; y1, y2) = ε
comp(αk+1; y1, y2) = next

(
; comp(αk; y1, y2)

)
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On input x, with the head originally on the first letter of x, the final state of
the computation of M is then reached after t computation steps, where

t = c|x|r

The reachability of this final state is given by the following lemma:

Lemma 2. [BMdN02] For any c, d ∈ N, one can write a safe recursive function
Pc,d such that, on any input x with |x| = n, |Pc,d(x; )| = cnd.

Let us apply this lemma and define such a Pc,r. Then, we define
finalcomp(x; ) = comp(Pc,r(x; ); ε, x). The encoding of the tape at the end of the
computation is then given by finalcompleft(x; ) and finalcompright(x; ) ending
here our simulation of the BSS machine M .

5 A Characterization of the Parallel Class PAR�

5.1 A Parallel Model of Computation

In this section, we assume that our structure K has at least two different constant,
denoted by α and β. This is necessary to respect the P-uniformity provisio as
below: One needs to describe an exponential gate number with a polynomially
long codification.

Recall the notion of circuit over an arbitrary structure K [Poi95, BCSS98].

Definition 2. A circuit over the structure K is an acyclic directed graph whose
nodes are labeled either as input nodes of in-degree 0, output nodes of out-degree
0, test nodes of in-degree 3, or by a relation or an operation of the structure, of
in-degree equal to its arity.

The evaluation of a circuit on a given valuation of input nodes is defined in
the straightforward way, all nodes behaving as one would expect: any test node
tests whether its first parent is labeled with α, and returns the label of its second
parent if this is true or the label of its third parent if not. See [Poi95, BCSS98])
for formal details.

We say that a family Cn, n ∈ N of circuits is P-uniform if and only if there
exists a polynomial time deterministic function describing each gate of each
circuit.

The reader can find in [BCSS98] the definition of parallel machine over a
structure K. We will not give formal definitions here, since we will actually
use the alternative characterization given by Proposition 2 below, proved in
[BCSS98].

Proposition 2. The PARK class of problems decidable in polynomial time by a
parallel machine using an exponentially bounded number of processors is exactly
the class of problem decidable by a P-uniform family of circuits of polynomial
depth.

The rest of this section is devoted to prove that, over any structure K, class
PARK also corresponds to the class of decision functions definable with safe
recursion with substitution.
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5.2 Safe Recursion with Substitutions

Definition 3. The set of functions defined with safe recursion with substitutions
over K is the smallest set of functions: (K∗)n → K

∗, containing the basic safe
functions, and closed under the operations of safe composition and safe recursion
with substitutions.

Basic safe functions are defined in Section 3, as well as the operation of safe
composition. We only need to define the notion of safe recursion with substitution
: Let h1, . . . , hk : K × (K∗)2 → K

∗ and g1, . . . , gk : (K)2 × (K∗)kl+1 → K
∗. Let

the following safe recursive functions σı, : K
∗ → K

∗, 0 < ı ≤ k, 0 <  ≤ l for an
arbitrary l, called substitution functions. These functions need to be instanciated
in the scheme. Here we assume that the arguments of these substitution functions
are all safe. Functions f1, . . . , fk : (K)2 × (K∗)2 → K

∗ can then be defined by
safe recursion with substitutions:

f1(ε, z; u, y), . . . , fk(ε, z; u, y) = h1(z; u, y), . . . , hk(z; u, y)

f1(a.x, z; u, y)

=




g1 (x, z; f1(x, z; σ1,1(; u), y), . . . , f1(x, z; σ1,l(; u), y), . . .
fk(x, z; σk,1(; u), y), . . . , fk(x, z; σk,l(; u), y), y)

if ∀ı,  fı(x, z; σı,(; u), y) 	=⊥
⊥ otherwise

...
fk(a.x, z; u, y)

=




gk (x, z; f1(x, z; σ1,1(; u), y), . . . , f1(x, z; σ1,l(; u), y), . . .
fk(x, z; σk,1(; u), y), . . . , fk(x, z; σk,l(; u), y), y)

if ∀ı,  fı(x, z; σı,(; u), y) 	=⊥
⊥ otherwise

5.3 Simulation of a P-uniform Family of Circuits

By hypothesis, the family of circuits we want to simulate here is P-uniform.
This means that there exists a polynomial time deterministic function which,
given n the length of the input of the circuit and m the gate number, gives the
description of the mth gate of circuit Cn.

We detail now how a gate is described:

– The single (remember, we simulate a decision function) output node is num-
bered 0. It is represented by ε ∈ K

∗.
– Let r be the maximal arity of a relation or a function of the structure.

Let s = �lg(max{r, 3})� be the size necessary to write the binary encoding
of 0, 1, . . . , max{r, 3}, the maximum number of parents for a given node.
Assume that a gate is represented by y. Its parents nodes, from its first to
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its mth, are represented by a0.y, . . . , am−1.y, where aı ∈ {β, α}∗ represents
the binary encoding of ı in K

∗, β being put in place of 0 and α in place of
1. We add as many βs as needed in front such that these aı have length s.

We define the safe recursive functions σı such that σı(y) = aı.y where aı is
defined above.

Note 4. We assume here a “tree” viewpoint for the description of the circuit, by
opposition to the (more classical) “Directed Acyclic Graph” (DAG) viewpoint.
In this tree viewpoint, the representations of a gate are codifications of the paths
from the output node to it. In particular, a gate may have several representations.
P-uniformity ensures that the translation can be done in polynomial time by a
deterministic function.

Theorem 2 proved before in this paper ensures that this description can be
computed with safe recursive functions. Therefore, we assume that we have the
following safe recursive function Gate, which returns a code for the label of the
node y in the circuit Cn, where n = |x| is the size of the input, and x = x1. . . . .xn:

Gate(x; y) =




β.xı for an input gate corresponding
to the ıth coordinate of the input

αı for a gate labeled with opı

αk+ı for a gate labeled with relı
αk+l+1 for a test node

Remember the functions Equalk defined in Section 4, and denote with t, the
current depth in the simulation of the circuit. The simulation of the circuit is
done with the function Eval defined as follows, where kı is the arity of opı and
lı the arity of relı:

Eval(ε, x; y) = C(; Gate(x; y), tl(; Gate(x; y)), ε)
Eval(t1.t, x; y) = C

(
; Equal1(; Gate(x; y)), Op1 (; Eval(t, x; σ0(; y)),

. . . , Eval(t, x; σk1(; y))
)
,

...
. . . C

(
; Equalk+1(; Gate(x; y)), Rel1 (; Eval(t, x; σ0(; y)),

. . . , Eval(t, x; σl1(; y))
)
,

...
. . . C

(
; Equalk+l(; Gate(x; y)), Rell (; Eval(t, x; σ0(; y)),

. . . , Eval(t, x; σll(; y))
)
,

C (; Equalk+l+1(; Gate(x; y)),
C

(
Eval(t, x; σ0(y; )), Eval(t, x; σ1(y; )), Eval(t, x; σ2(y; ))

)
,

C(; Gate(x; y), tl(; Gate(x; y)), ε))) . . .) . . .))
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Assume p(n) = cnd is a polynomial bounding the depth of the circuit Cn.
The evaluation of Cn on input x of length n is then given by Eval(t, x; ε) where
|t| = cnd. Lemma 2 gives the existence of a safe recursive function Pc,d such that
|Pc,d(x; )| = cnd. The evaluation of the P-uniform family of circuits Cn, n ∈ N is
then given by the function Circuit(x; ) = Eval(Pc,d(x; ), x; ε) defined with safe
recursion with substitutions.

5.4 Evaluation of a Function Defined with Safe Recursion with
Substitutions

Let f be a function defined with safe recursion with substitutions, and denote
by fn the restriction of f on the set of inputs of size at most n. We need to
prove that f can be simulated by a P-uniform family of circuits C(f)n, n ∈ N of
polynomial depth, each C(f)n simulating fn.

Let us prove by induction on the definition tree of f the following lemma:

Lemma 3. For any function f : (K∗)r × (K∗)s defined with safe recursion with
substitutions, let us denote by D�f(. . .)� the depth of the circuit Cn simulating
f(. . .) on inputs of size at most n. Then,

D�f(x1, . . . , xr; y1, . . . , ys)�
≤ pf (max{D�x1�, . . . , D�xr�}) + max{D�y1�, . . . , D�ys�}

for some polynomial pf , and

|f(x1, . . . , xr; y1, . . . , ys)| ≤ qf (|x1| + . . . + |xs|)

for some polynomial qf .

Proof.

– If f is a basic function, the result is straightforward.
– If f is defined with the operation of safe composition:

f(x1 . . . , xr, y1, . . . , yp1 , z1, . . . , zp2 ; t1, . . . , tm)
= g(h1(x1, . . . , xr, y1, . . . , yp1 ; ); h2(x1, . . . , xn, z1, . . . , zp2 ; t1, . . . , tm))

then, C(f)n is the obtained by plugging C(h1)n and C(h2)n in the input nodes
of C(g)qh1 (n)+qh2 (n). Thus, when we apply the induction hypothesis to g:

pf(n) ≤ pg (ph1(n)) + max{ph1(n), ph2(n)}
qf (n) ≤ qg (qh1(n))

– If f is defined with the operation of safe recursion with substitutions:
– The non-trivial case is the case of a function f defined with safe recursion,

as in Definition 3.
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Let us apply induction hypothesis to function gı in the expression
fı(a.x, z; u, y). u and y are given by their respective circuits plugged at the
right position. The depth of the circuit evaluating

fı(a.x, z; u, y) = gı (x, z; f1(x, z; σ1,1(; u), y), . . . , f1(x, z; σ1,l(; u), y), . . .
fk(x, z; σk,1(; u), y), . . . , fk(x, z; σk,l(; u), y), y)

is given by pgı(max{D�x�, D�z�}) + maxı,{D�fı(x, z; σı,(; u), y)�, D�y�}.
Assume: for any ı, pgı is bounded by some polynomial pg. Assume moreover:
for any ı, , pσı, is bounded by some pσ. We get:

D�f(a.x, z; u, y)�
≤ D�y� + pg(max{D�x�, D�z�}) + maxı,{D�fı(x, z; σı,(; u), y)�}
≤ D�y� + pg(max{D�x�, D�z�}) + pg(max{D�tl(x)�, D�z�}) + . . .

. . . + pg(max D�ε�, D�z�}) + ph(D�z�) + max{|a.x|pσ() + D�u�, D�y�}
Assuming without loss of generality pg monotone, we get

D�f(a.x, z; u, y)� ≤ |a.z|pg(max{D�x�, D�z�})
D�y� + ph(D�z�) + max{|a.x|pσ() + D�u�, D�y�},

from which the result follows for pf . For qf , we need:
|fı(a.x, z, u; y)| ≤ qgı (|x| + |x|) . This ends the proof of our lemma.

It follows from the lemma that every circuit of the family C(f)n has a poly-
nomial depth in n. The P-uniformity is given by the description of the circuit as
above.

In the classical setting (see [LM95]), safe recursion with substitution char-
acterizes the class PSPACE. However, in the general setting, this notion of
working space is meaningless, as pointed in [Mic89]: on some structures like
(R, 0, 1, =, +,−, ∗), any computation can be done in constant working space.
However, since we have in the classical setting PAR = PSPACE, our result
extends the classical one from [LM95].
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