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Abstract. Encryption that is only semantically secure should not be
used on messages that depend on the underlying secret key; all bets are
off when, for example, one encrypts using a shared key K the value K.
Here we introduce a new notion of security, KDM security, appropriate
for key-dependent messages. The notion makes sense in both the public-
key and shared-key settings. For the latter we show that KDM security
is easily achievable within the random-oracle model. By developing and
achieving stronger notions of encryption-scheme security it is hoped that
protocols which are proven secure under “formal” models of security can,
in time, be safely realized by generically instantiating their primitives.

1 Introduction

Background. This paper defines and begins to investigate a new notion for
encryption-scheme security: KDM security. KDM stands for key-dependent mes-
sages. This is a new attack model, one that allows requested plaintexts to depend
on the underlying decryption key. Our definitions are strictly stronger than indis-
tinguishability under chosen-plaintext attacks (IND-CPA) [3, 11], and the idea
is orthogonal to strengthenings in the direction of non-malleability [8], chosen-
ciphertext security [18], and anonymity [10]. We show that, in the symmetric-key
setting, KDM security is achievable, and by simple means, within the random-
oracle model [5].

Why, at this time, do we put forth a new definition for encryption-scheme
security? Our goal has been to nudge the computational treatment of encryption
in a direction that makes it closer to simplistic intuition about what an idealized
encryption scheme does. We have done this to facilitate smoothly linking up
“real” encryption with “formal” encryption. Let us elaborate.

The formal views vs. the computational view. In designing high-level
protocols many users of cryptography prefer to take an “abstract” or “formal”
view of what they’re given. They don’t view encryption as a transformation
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on strings at all. Instead, typically, they see encryption as a formal symbol,
the properties of which are modeled (not defined) by the manner in which this
formal symbol may be manipulated. There are many such formal views towards
cryptography; see, for example, [1, 6, 9, 15]

Quite recently, some work has emerged which starts to bridge the computa-
tional view and the formal one. Lincoln, Mitchell, Mitchell and Scedrov [13] de-
velop a formal model that blends in computational aspects. Pfitzmann, Schunter
and Waidner [16], and then Pfitzmann and Waidner [17], consider security, in the
computational sense, of general reactive systems, which are modeled formally.
Abadi and Rogaway [2] give a formal treatment of encryption and then prove
that formally-equivalent expressions give rise to computationally indistinguish-
able ensembles, as long as the expressions contain no “encryption cycles” (a
generalization of encrypting ones own key) and as long as the encryption scheme
has the right (computational) properties.

Consider the last of these works. To the computational cryptographer the
technical restriction just mentioned might be understood as a warning: formal
cryptography easily permits its users to ignore an essential restriction (the ne-
cessity of avoiding encryption cycles). But there is another viewpoint—and the
one that motivates us. Maybe the formal view of cryptography is already doing a
nice job to capture strong intuition and it is incumbent on computational cryp-
tography to find definitions and schemes which support formal cryptography.
From this viewpoint, there is nothing obviously and intuitively “wrong” with
encrypting ones decryption key, and so one had better find definitions and real-
izations that make this allowable. In this view, a mandate to avoid encryption
cycles might seem to be an artifact of inessential definitional choices.

Contributions. At a technical level, the current paper does several things:
We present a new, and very strong, definition of security—a definition that
allows the adversary indirect access to hidden keys. One can think of this
as a new attack model, KDM, and we leave the goal, IND, alone. We define
KDM security for both the symmetric and asymmetric settings.
We separate KDM security from other notions of security. We show that
KDM security implies but is not implied by CPA security. We show that
some conventional means to achieve CPA security, in particular those that
employ stateful encryption (e.g., counter-mode with a fixed initial counter),
do not achieve KDM security.
At the same time, we show that KDM security is easy to achieve within
the random-oracle model [5]: we give a simple scheme that is KDM secure.

Most of this paper focuses on the symmetric model for KDM security, but there
would seem to be no essential differences between the symmetric and asymmetric
settings. We define KDM security in the public-key trust model and discuss
achieving it.

Concurrent work. A recent paper by Camenisch and Lysyanskaya defines
a notion of circular security for the asymmetric setting [7, p. 17]. Their notion
would seem to be strictly weaker than our (asymmetric-model) notion of KDM
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security. Camenisch and Lysyanskaya were interested in anonymous credential
systems and saw encryption schemes satisfying circular security as a tool. Their
work highlights the possibility that KDM-secure encryption schemes may be a
useful primitive in designing higher-level protocols. Our own work and that of [7]
were independent and cross-reference each other.

An interesting open problem. This paper proposes a new privacy notion and
then answers some simple questions about it. We leave unanswered the question
as to whether KDM security, either for the symmetric or the asymmetric trust
model, can be provably achieved in the standard model of computation (no
random oracle) under a standard complexity assumption.

2 The Peril of Encrypting Ones Key

Goldwasser and Micali were the first to recognize the potential problems sur-
rounding encryption cycles [11, 14]. Let us assume the symmetric setting. Given
an encryption scheme that is secure in any of a number of standard senses (say
IND-CPA), one can trivially modify it to construct a similarly secure encryption
scheme (still IND-CPA secure, say) that is rendered completely insecure were
the adversary somehow handed an encryption of the underlying key. (For exam-
ple, modify EK(M, R) to 0 ‖ EK(M, R) if M �= K, and 1 ‖ K otherwise.) We call
an encryption of the decryption key an encryption cycle of length one.

More generally, an encryption cycle involves the encryption of some function
of the key. For example, the encryption the bitwise complement of K and the
encryption of M ‖ K (for some plaintext M) are both cycles. Some cycles pose
no threat to security; other cycles do. There is no known characterization of the
cases that cause problems for the standard definitions.

Informally, an encryption scheme will be called “KDM secure” if it is secure
(in the sense of indistinguishability) despite an adversary’s ability to obtain the
encryption under key Ki of some function g(K) of the vector K of underlying
secret keys. (We have to think of a vector of keys because the assumption that
there is just a single key would seem to entail a loss of generality.) Through
the function g the adversary has indirect access to the keys, but this informa-
tion is only surfaced after encryption. As examples, function g might request a
particular key Ki, or it might xor various keys.

We note that one can also give a notion for key-dependent chosen-ciphertext
attack, KDC, where a function of the keys can be surfaced through decryption
as well as through encryption. We do not pursue this at this time.

Well-designed protocols rarely employ encryption cycles (a fact that certainly
does limit the applicability of this paper!). Some encrypting backup systems may
encrypt their own key (blithely encrypting the entire system image, which may
include the encryption key). Some key-distribution protocols allow the adversary
to effectively create an encryption cycle: having recorded a message M which
includes the encryption of a session key K, the adversary may now be able to
replay this message M (perhaps pretending it is a nonce) in a context in which
the principal will now encrypt it under K. This gives a cycle, though not a
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troublesome one. The recently proposed credential system of [7] uses encryption
cycles in the asymmetric setting.

We comment that there are multiple properties (beyond the ability to safely
encrypt ones key) implicit in formal models and not guaranteed by IND-CPA
security. These properties include protecting the integrity of messages, conceal-
ing the length of a plaintext, and concealing which pairs of ciphertexts were en-
crypted under the same key. But the most bothersome and most ignored problem
seems to be key-dependent plaintexts.

3 Background Notions

Notation. Let {0, 1}∗ be the space of (finite) binary strings, let {0, 1}∞ be the
space of infinite binary strings, and let S∞ be the set of tuples (K1, K2, . . .) where
each Ki ∈ S. If Pad ∈ {0, 1}∞ and M ∈ {0, 1}∗ then Pad ⊕M and M ⊕ Pad

are the xor of M and the first |M | bits of Pad. Let x1, x2, . . .
$←Ω mean that

x1, x2, . . . are assigned values independently from the distribution Ω. (Use the
uniform distribution when Ω is a finite set.) If A is a probabilistic algorithm
then a

$←A(x1, x2, . . .) denotes running A on the given inputs and letting a be
the outcome. An adversary is a probabilistic algorithm that may access one
or more oracles. The running time of A is the actual running time of A plus
its description size. If A makes oracle queries that specify functions g1, g2, . . .
then the running time of A also includes the (worst case) time to compute each
queried function gi.

Symmetric encryption. We recall the syntax for a symmetric-encryption
scheme as given (in a slightly modified form) by [3]. Let Plaintext and Ciphertext
be nonempty sets of strings. We assume that Plaintext has the property that
if M ∈ Plaintext then M ′ ∈ Plaintext for every M ′ of the same length as M .
Let Key = {0, 1}k for some k ≥ 1 and let Coins = {0, 1}r for some r ≥ 1. Let
String = {0, 1}∗ be the set of all (finite) strings. Then a symmetric encryption
scheme is a triple of algorithms Π = (K, E ,D) where: K: Coins → Key and
E : Key×String×Coins→ Ciphertext∪{∗} and D: Key×String→ Plaintext∪{∗}.
Algorithm K is called the key-generation algorithm, E is called the encryption
algorithm, and D is the decryption algorithm. We call k (the length of any
string K output by K) the key length of Π and we call r (the number of random
bits used by E) the coin length of Π . We usually write the first argument to E
and D as a subscript. We call EK(M, R) the encryption of the plaintext M under
key K and coins R. Usually we omit specific reference to the final argument
to E , the random string R, thinking of EK as a probabilistic algorithm. Likewise,
we usually omit mention of the argument to K, thinking of K as a probabilistic
algorithm, or else the induced probability space. We require that for all K ∈ Key
and R ∈ Coins, if M /∈ Plaintext then EK(M, R) = ∗ and if M ∈ Plaintext then
EK(M, R) ∈ Ciphertext and, what’s more, DK(EK(M, R)) = M .

The syntax above is for encryption schemes in the standard model. To define
encryption schemes in the random-oracle model we allow that K, E and D are
given an oracle H ∈ Ω where Ω is the set of all functions from {0, 1}∗ to {0, 1}∞.
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IND-CPA security. We review the notion of indistinguishability under a
chosen-plaintext attack [3, 11]. Let Π = (K, E ,D) be a symmetric encryption
scheme and let A be an adversary. For K ∈ Key let

RealK be the oracle that on input M returns C
$←EK(M) and let

FakeK be the oracle that on input M returns C
$←EK(0|M|)

The IND-CPA advantage of A is defined as

Advcpa
Π (A) def=

∣∣∣Pr
[
K

$←K : ARealK = 1
]
− Pr

[
K

$←K : AFakeK = 1
]∣∣∣

4 The Notion of Symmetric KDM Security

The notion of IND-KDM security strengthens the IND-CPA notion just given.
We again imagine two experiments. Both experiments begin by selecting a vector
of keys K = (K1, K2, . . .) where each key Ki is determined by running the key-
generation algorithm K. Independent coins are used in each run. We denote this
step by K $←K and it is the same as: for i ∈ {1, 2, . . .} do Ki

$←K. Then:
Real: the adversary is given an oracle RealK that takes two inputs: a
number j ∈ {1, 2, . . .} and a function g. The function g is described by a
(deterministic) RAM program, encoded according to some fixed conven-
tions. Function g maps K ∈ ({0, 1}∗)∞ to g(K) ∈ {0, 1}∗. When oracle
RealK is asked (j, g) it probabilistically encrypts M = g(K) under key Kj .
Fake: the adversary is given an oracle FakeK that, when similarly asked
(j, g), probabilistically encrypts |g(K)| zero-bits under key Kj.

The adversary should output a 1 if it believes it has participated in experi-
ment Real and 0 if it believes it has participated in experiment Fake. We insist
that for any (j, g) queried by an adversary, |g(K)| does not depend on K. To
describe this condition we say that g is fixed-length. We call g the plaintext-
construction function.

Definition 1 (IND-KDM — standard model — symmetric setting).
Let Π = (K, E ,D) be a symmetric encryption scheme and let A be an adversary.
For K ∈ ({0, 1}∗)∞, let

RealK be the oracle that on input (j, g) returns C
$←EKj (g(K)) and let

FakeK be the oracle that on input (j, g) returns C
$←EKj(0|g(K)|)

The IND-KDM advantage of an adversary A is defined as

Advkdm
Π (A) def=

∣∣∣Pr
[
K $←K : ARealK = 1

]
− Pr

[
K $←K : AFakeK = 1

]∣∣∣ ♦

We often omit the quantifier IND in IND-KDM.
Informally, an encryption scheme Π is KDM secure if for any “reasonable”

adversary A we have that Advkdm
Π (A) is “small.” We shall make precise state-

ments along these lines. However, there is also an asymptotic way of defining
this notion. For it one parameterizes the encryption scheme by a security pa-
rameter k and provides k to the adversary, in unary. Then one demands that for
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any polynomial time adversary A we have that Advkdm
Π (A) is negligible (i.e., it

vanishes faster than the inverse of any polynomial). One includes in A’s running
time the running time of the plaintext-construction functions g.

IND-KDM in the RO model. KDM security is an extremely strong notion.
It is easily seen to imply “standard” notions, like IND-CPA, and it is easily
seen not to be implied by IND-CPA (that is, if there exists an IND-CPA secure
encryption scheme then there exists an IND-CPA secure encryption scheme that
is not IND-KDM secure). The IND-KDM notion is so strong, in fact, that we are
unaware of any scheme, regardless of complexity, that demonstrably meets the
definition we have given (for the standard model of computation). Here we will
instead be giving an efficient scheme in the random-oracle model. Before giving
our scheme, we must define KDM security in the random-oracle model.

Recall that Ω is the set of all functions H from {0, 1}∗ to {0, 1}∞. This set is
provided with a probability measure by saying that a random H from Ω assigns
to each X ∈ {0, 1}∗ an infinite sequence of bits each of which is selected uni-
formly at random. Though H(X) is defined to be an infinite string, algorithms
that use H necessarily make use of only a finite-length prefix. We provide algo-
rithms K, E , D, A, and g with oracle access to H ∈ Ω. We write a question-mark
superscript, as in g?, if we wish to emphasize that an algorithm calls out to an
(unspecified) oracle.

For the RO model we must update the notion of g being fixed-length: for any
(j, g) asked by an adversary, |gH(K)| must be independent of both H and K.
This means that |gH(K)| = |gH′

(K′)| for any H, H ′ ∈ Ω and K,K′ ∈ ({0, 1}∗)∞.

Definition 2 (IND-KDM — RO-model — symmetric setting). Let Π =
(K, E ,D) be a symmetric encryption scheme for the RO model, and let A be an
adversary. For K ∈ ({0, 1}∗)∞, let

RealHK be the oracle that on input (j, g?) returns C
$←EH

Kj
(gH(K)) and let

FakeH
K be the oracle that on input (j, g?) returns C

$←EH
Kj

(0|g
H (K)|)

The KDM-advantage of A in the random-oracle model is defined as

Advkdm
Π (A) def=

∣∣∣Pr
[
K $←K; H

$←Ω : AH, RealHK = 1
]

− Pr
[
K $←K; H

$←Ω : AH, FakeH
K = 1

]∣∣∣ ♦

Comments. We emphasize that for KDM security in the RO model, the ad-
versary A can effectively access the random oracle H in two different ways: in
a direct query the adversary asks X and receives H(X); while in an indirect
query the adversary asks for the encryption under key Ki of M = gH(K) and
the computation of gH(K) does itself involve some number of calls to H .

The assumption that the plaintext-construction function g is fixed-length is
a necessary one; without making this assumption, KDM-secure schemes would
not exist. Consider, for example, the function gi,j where gi,j(K) = 1 if the i-th
bit of Kj is 1 and gi,j(K) = 00 if the i-th bit of Kj is 0. If encryption function E
reveals the length of the plaintext (which our definition allows) then an adversary



68 John Black, Phillip Rogaway, and Thomas Shrimpton

can ask for gi,j(K)-values as a way to learn any key, bit by bit. Once a key Kj is
determined by the adversary it can use this knowledge to distinguish experiments
Real and Fake. Basically, having allowed encryption to be the length-revealing,
one must not permit the length of M = gH(K) to act as “covert channel” for
the adversary to learn information about K.

The role of the plaintext-construction function g can be thought of like this:
it’s as though A and g are in cahoots (after all, A chooses g) and g knows all of
the keys. If only g could get some information back to its buddy A, then A would
win. But g’s output is forced to go through an encryption operation before it is
sent back to A. In a KDM-secure scheme, the plaintext-construction function g,
poor thing, has no way to get anything useful back to A.

5 Achieving KDM Security in the Symmetric Setting

We now provide a simple and efficient technique to achieve an IND-KDM secure
symmetric encryption scheme in the RO model. Several natural methods would
seem to accomplish this goal (see the discussion at the end of this section); we
give a particularly simple one.

The ver construction. For k ≥ 1 an integer, the symmetric encryption
scheme that we denote ver[k] = (K, E ,D) works as follows. Key-generation algo-
rithm K outputs a random k-bit string K. Encryption algorithm E is defined by
EK(M, R) = R ‖ (H(K ‖ R)⊕M) where R ∈ {0, 1}k is the r = k = |K| random
coins used for encryption. Decryption algorithm D is defined by DK(C) = ∗ if
|C| < |K| = k and, otherwise, DK(C) = H(K ‖ R)⊕ C where R = C[1..k] is the
first k = |K| bits of C and C = C[k + 1..] is the rest of C.

We now show that scheme ver is KDM secure (in the RO model).

Theorem 1 (KDM security of the ver construction). Let k ≥ 1 be a
number and let A be an adversary that attacks ver[k]. Suppose that A asks at
most q oracle queries (encryption queries + direct RO queries + indirect RO
queries). Then Advkdm

ver[k](A) ≤ q2/2k−2. ♦

Proof: The proof is an application of the game-playing paradigm as used, for
example, in [12].

We begin by making some without-loss-of-generality assumptions about the be-
havior of A. Let N < q be the number of different keys referenced by adversary A
(that is, referenced as j-values in (j, g?)-queries). First, we assume that the keys
referenced by A are keys j = 1, 2, . . . , N . This entails no loss of generality: an
adversary that uses a key with a name other than j ∈ [1..N ] can easily be mod-
ified not to do this by renaming to j the j-th new key accessed by A. Such
a renaming does not impact A’s advantage. Second, we assume that A makes
no H-queries, either direct or indirect, having length other than 2k. Such queries
are clearly irrelevant to A’s mission and any adversary A making such queries
is easily modified to an adversary A which does not. Finally, we assume that A
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Initialization:

10 for j← 1 to N do Kj
$←{0, 1}k

11 bad← false; X ← ∅
12 for all X ∈ {0, 1}2k do H(X)← undefined

On RO Query K ‖ R:
20 if K ‖ R ∈ X then bad← true

21 if K ‖ R �∈ Domain(H) then H(K ‖ R)
$←{0, 1}∞

22 return H(K ‖ R)

On Encryption Query (j, g?):
30 Compute M ← g?(K). To do this, run g.
31 When g makes a RO query of K ‖ R:

32 if K ‖ R �∈ Domain(H) then H(K ‖ R)
$←{0, 1}∞

33 Answer g’s RO query with H(K ‖ R)

34 R
$←{0, 1}k

35 C
$←{0, 1}|M|

36 if Kj ‖ R ∈ Domain(H) then
37 bad← true
38 C ←H(Kj ‖ R)⊕ M ←− use this line in game R

38 C ←H(Kj ‖ R)⊕ 0|M| ←− use this line in game F
39 else
40 H(Kj ‖ R)← C ⊕ M ←− use this line in game R

40 H(Kj ‖ R)← C ⊕ 0|M| ←− use this line in game F
41 X ←X ∪ {Kj ‖ R}
42 return R ‖ C

Fig. 1. Definition for game R and F. We define Domain(H) to be the set of points X
where H(X) is not equal to undefined.

never repeats a direct RO query K ‖ R. The adversary has no need to repeat
RO queries since it already knows the answer.

To prove that Advkdm
ver[k](A) is small we are going to present A not with a Real

or Fake oracle to distinguish, but an R or F oracle, instead, where these oracles
are defined in Fig. 1. We refer to these oracles as specifying different games that
the adversary plays. The games (oracle behavior) depends on the parameter k
but we omit this from the notation.

We first claim that the R-labeled code in Fig. 1 provides A an identical view as
a Real ver[k]-oracle, while the F-labeled code provides A an identical view as a
Fake ver[k]-oracle. This is apparent by inspecting the code. Ignore all statements
involving variable bad since these statements do not result in any change visible
to adversary A (they are used only for accounting purposes). The code simulates
a random oracle H by assigning a uniform and independent range point H(X)
to each domain point X for which a value is needed. The code chooses C at
random and then defines H(Kj ||R) from it, rather than choosing H(Kj ||R) at
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random and then defining C from it. These are clearly equivalent as far as the
view provided to adversary A. With the natural abbreviations in notation we
then have the following:

Claim 1. Advkdm
ver[k](A) =

∣∣Pr[AR = 1]− Pr[AF = 1]
∣∣

To proceed with our analysis we introduce in Fig. 2 a third game, game C. Let
“AR sets bad” be the event that flag bad gets set to true (at some point in the
execution) when A runs with an R oracle, and similarly define events “AF sets
bad” and “AC sets bad”. We have the following:

Claim 2.
∣∣Pr[AR = 1]− Pr[AC = 1]

∣∣ = Pr[AC sets bad ] and∣∣Pr[AF = 1]− Pr[AC = 1]
∣∣ = Pr[AC sets bad ] and so∣∣Pr[AR = 1]− Pr[AF = 1]
∣∣ ≤ 2 · Pr[AC sets bad ]

Let us show the the first equality. First imagine eliminating line 38 from the code
for game R. Call the new game R′. The change does not impact the probability
that flag bad is set to true (that is, Pr[AR sets bad ] = Pr[AR′

sets bad ]) because
bad has already been set to true when line 38 executes. Now that line 38 is gone,
in game R′, also eliminate line 40. This too does not change the probability that
bad gets set to true. The reason is that the value stored at H(Kj ‖ R) by line 40
can only influence what the adversary sees by a subsequent execution of line 22,
and when the assignment statement at line 40 does so influence line 22, the book-
keeping done at line 41 will have caused bad to be set to true at line 20 anyway.
(Why can’t the assigning of a value to H(Kj ‖ R) at line 40 influence values re-
turned at a subsequent execution of line 42 in game R′? Because the use made of
the H(· · ·)-values in lines 30–42 of game R′ is only in defining M = gH(K), but
then all that we use of M (in lines 34–42 of game R′) is |M | (at line 35), and we
have assumed that |gH(K)| is independent of both H and K, our “fixed-length”
assumption on g.) We conclude that Pr[AR sets bad ] = Pr[AC sets bad ]. The
exact same reasoning tells us that Pr[AF sets bad ] = Pr[AC sets bad ]. The final
inequality of Claim 2 then follows by the triangle inequality.

Next we show the following:

Claim 3. Pr[AC sets bad] ≤ q2/2k−1

To prove this claim we separately consider the two places in game C where bad
can be set to true. The probability that bad gets set to true at line 36 is at most
q2/2k since during each of the at most q times that line 36 is executed the value R
is randomly chosen just before (line 34) from a set of size 2k and then we test if
something ‖ R is in a set of size at most q. Similarly, we claim that the probability
that bad gets set to true at line 20 is at most qN/2k ≤ q2/2k. This statement
would be clear if only the adversary were given no information about the values
(K1, . . . , KN) selected at line 10; in such a case, we are testing at most q times
if K ‖ something (where K is supplied by the adversary) is in a random, secret
set of size at most N/2k. But, in fact, the view provided to the adversary A
in game C is independent of (K1, . . . , KN). Note that every encryption query
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Initialization:

10 for j← 1 to N do Kj
$←{0, 1}k

11 bad← false; X ← ∅
12 for all X ∈ {0, 1}2k do H(X)← undefined

On RO Query K ‖ R:
20 if K ‖ R ∈ X then bad← true

21 if K ‖ R �∈ Domain(H) then H(K ‖ R)
$←{0, 1}∞

22 return H(K ‖ R)

On Encryption Query (j, g?):
30 Compute M ← g?(K). To do this, run g.
31 When g makes a RO query of K ‖ R:

32 if K ‖ R �∈ Domain(H) then H(K ‖ R)
$←{0, 1}∞

33 Answer g’s RO query with H(K ‖ R)

34 R
$←{0, 1}k

35 C
$←{0, 1}|M|

36 if Kj ‖ R ∈ Domain(H) then bad← true
41 X ←X ∪ {Kj ‖ R}
42 return R ‖ C

Fig. 2. Game C. This game has similar behavior, as far as the adversary can tell, to
games R and F.

returns a random string whose length is independent of (K1, . . . , KN ) (by the
fixed-length assumption on g) while every RO query returns a random infinite
string, independent of (K1, . . . , KN) (whether that random string is selected in
line 21 or in line 32 is irrelevant).

Putting together the three claims completes the proof.

Alternative constructions. There are a number of natural constructions
for a KDM-secure symmetric encryption scheme in the RO model. For example,
one might start with an arbitrary symmetric encryption scheme Π = (K, E ,D)
for which the coins R used to encrypt can be recovered from the ciphertext.
(Standard modes like CBC with a random IV have this property.) Then mod-
ify Π to a symmetric encryption scheme Π̄ = (K, Ē , D̄) by setting ĒK(M, R) =
EH(K ‖ R)(M, R) and correspondingly modifying D. It seems reasonable to ex-
pect that Π̄ will be IND-KDM secure (in the RO model) when Π is IND-CPA
secure (in the standard model).

6 KDM Insecurity for Stateful Symmetric Encryption

A stateful encryption scheme is like the (probabilistic, symmetric) encryption
schemes we have defined except that the encryption function E is deterministic
and takes as input a hidden variable, the state. Every time a message M is
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encrypted under EK the current state S of the encryption algorithm is modified
to a new state S′ = f(S, M). (It is fine to allow this update to depend on K as
well.) The initial state, S0, is specified as part of the scheme. We write ES

K(M)
for the encryption of message M using key K and state S.

An example of a stateful encryption scheme is the form of CBC mode where
the IV is EK(S) and S, initially the zero-block, is incremented with every mes-
sage that is encrypted. This scheme is IND-CPA secure.

It is straightforward to adapt the definitions we have given for KDM security
to deal with stateful schemes. However, one will soon notice that there can not
exist a stateful KDM-secure encryption scheme. Let us explain the problem.

Since the function E is deterministic and and the plaintext-construction func-
tion g depends on K, the plaintext-construction function g “knows” everything
that E knows and so, in particular, g can determine what ciphertext E will pro-
duce next for any given message. The function g can generate a plaintext such
that its encryption conveys to A some information about K. For example, one
could define a plaintext-construction function gi,j,k,S,V that returns the first k-
bit message M (or 0k if no such message exists) such that the inner product
of V and ciphertext C = ES

K(M) is the ith bit of Kj . Using such functions the
adversary can easily extract an underlying key, bit-by-bit, and use this key to
break the scheme’s KDM security.

7 KDM Security in the Public-Key Setting

Preliminaries. We recall the syntax of an asymmetric encryption scheme, as
given (in a slightly modified form) in [4]. Let String, Plaintext, and Ciphertext
all be as before. Also, let Parameter = 1∗ and let Coins = {0, 1}∞, PublicKey ⊆
String, and SecretKey ⊆ String. Then an asymmetric encryption scheme is a
triple of algorithms Π = (K, E ,D) where K: Parameter × Coins → PublicKey ×
SecretKey and E : PublicKey×String×Coins→ Ciphertext∪{∗} and D: SecretKey×
String→ Plaintext ∪ {∗}. As for symmetric encryption, we usually omit the last
argument to both K and E , thinking of both as probabilistic algorithms, and
we write the second argument to E and D as a subscript. Upon input 1k the
key-generation algorithm returns a pair (pk, sk) of matching public and secret
keys. We require that for all (pk, sk) which can be output by K(1k), for all
M ∈ Plaintext, and for all strings C that can be output by Epk(M), we have that
Dsk(C) = M .

Definition of KDM security in the public-key setting. The intuition
behind the definition of KDM security in the asymmetric setting is just like that
for the symmetric setting. The adversary A is given access to an oracle that will
encrypt under a specific public key pk a specified function g that may depend on
a vector of secret keys sk. Notice that A can compute encryptions of standard
plaintext messages on its own, but still requires the oracle for computation of g
when it accesses sk. After interacting with its oracle, adversary A outputs a “1” if
it believes its oracle returns real encryptions, and it outputs a “0” otherwise. If a
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reasonable adversary can not do a good job at this game, then the scheme is KDM
secure. We let (pk, sk) $← 1k denote: for i ∈ {1, 2, . . .} do (pki, ski)

$←K(1k).

Definition 3 (IND-KDM — standard model — asymmetric setting).
Let Π = (K, E ,D) be an asymmetric encryption scheme, and let A be an adver-
sary. For (pk, sk) ∈ (PublicKey× SecretKey)∞ let

Realsk be the oracle that on input (i, g) returns C
$←Epki

(g(sk))
Fakesk be the oracle that on input (i, g) returns C

$←Epki
(0|g(sk)|).

The IND-KDM advantage of an adversary A for security parameter k is

Advkdm
Π,k (A) def=

∣∣∣Pr
[
(pk, sk) $←K(1k) : ARealsk(1k,pk) = 1

]

− Pr
[
(pk, sk) $←K(1k) : AFakesk(1k,pk) = 1

]∣∣∣ . ♦

The plaintext-construction function g must, as usual, be fixed-length: |g(sk)|
may not depend on sk.

The definition for KDM security within the RO model is exactly analogous
to what we have done already. Here one insists that |gH(sk)| be independent of
both H and sk.

The VER construction. We recall a simple encryption scheme specified in [5].
Let F be a trapdoor permutation generator: on input 1k the probabilistic al-
gorithm F returns (the encodings of) functions (f, f−1) where f : {0, 1}k →
{0, 1}k and f−1: {0, 1}k → {0, 1}k is its inverse. (We do not bother to distin-
guish between functions and their encodings.) Mirroring our construction for the
symmetric-key setting, define the (random-oracle model) asymmetric encryption
scheme VER[F ] = (K, E ,D) as follows. The key-generation algorithm K is iden-
tical to F . Encryption algorithm Ef (M, R) = f(R) ‖ (H(R)⊕M) where k = |R|
is the domain length of f (assumed to be apparent f and f−1) and R is the
random coins used by the encryption algorithm and H is the random oracle.
Decryption algorithm Df−1(C) = ∗ if |C| < k and Df−1(C) = H(f−1(Y ))⊕ C
otherwise, where Y is the first k bits of C and C is the remaining bits.

One expects that VER[F ] is a KDM-secure encryption scheme if F is a
secure trapdoor permutation. At the time of this writing, we have not written
up a proof of this.

The above is only one natural construction; others would seem to work. In [7]
Camenisch and Lysyanskaya give a different scheme which they claim is “circular
secure” (in the RO model), a notion that they define. One would expect their
scheme to be KDM secure as well, though we have not written up a proof of
this.
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