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Abstract. This paper is about the Oblivious Transfer in the distributed
model recently proposed by M. Naor and B. Pinkas. In this setting a
Sender has n secrets and a Receiver is interested in one of them. During
a set up phase, the Sender gives information about the secrets to m
servers. Afterwards, in a recovering phase, the receiver can compute the
secret she wishes by interacting with &£ of them. More precisely, from
the answers received she computes the secret in which she is interested
but she gets no information on the others and, at the same time, any
coalition of k — 1 servers can neither compute any secret nor figure out
which one the receiver has recovered.

We present an analysis and new results holding for this model: lower
bounds on the resources required to implement such a scheme (i.e.,
randomness, memory storage, communication complexity); some impos-
sibility results for one-round distributed oblivious transfer protocols;
two polynomial-based constructions implementing 1-out-of-n distributed
oblivious transfer, which generalize the two constructions for 1-out-of-2
given by Naor and Pinkas; as well as new one-round and two-round
distributed oblivious transfer protocols, both for threshold and general
access structures on the set of servers, which are optimal with respect
to some of the given bounds. Most of these constructions are basically
combinatorial in nature.

1 Introduction

Introduced by Rabin in [27], and subsequently defined in different forms [I8]g],
the oblivious transfer (OT, for short) has found many applications in crypto-
graphic studies and protocol design. Basically, such a protocol enables one party
to transfer knowledge to another in an “oblivious” way. Rabin’s definition, for
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example, enables a Sender to transmit a message to a Receiver in such a way that
the Receiver with probability % gets the message while, with the same probabil-
ity, she does not, and the Sender does not know which situation has happened.
Rabin showed how this transfer can be used in order to exchange secrets, and
subsequently several other researchers have shown some useful applications of
this concept. The protocol proposed by Rabin was later strengthened in [19].

The second OT definition was given in [I8]. In this form, the Sender has
two secrets and the Receiver is interested in one of them. After the execution of
the protocol, the receiver gets the secret she wishes to recover, obtaining at the
same time no information on the other, while the Sender does not know which
secret the receiver has recovered. The author of [18] showed a first application
to signing contracts.

The last and more general form of OT was introduced in [§], under the name
of all-or-nothing Disclosure of Secrets, even if the same concept was born in
an artificial intelligence context [33], under the name of multiplezing. Here the
Sender has n secrets and the Receiver is interested in one of them. After the
execution of the protocol, the receiver gets the secret she wishes to recover,
obtaining at the same time no information on the others, while the Sender does
not know which secret the receiver has recovered.

All these forms were shown to be equivalent [9I7]13], and Kilian in [24] showed
that the OT is a complete primitive, in the sense that it can be used as building
block for any secure function evaluation (multi-party computation).

A variety of slightly different definitions and implementations can be found
in the literature as well as papers addressing issues such as the relation of the
OT with other cryptographic primitives, the assumptions required to implement
such a concept, reductions among “more complex” forms of OT to “simpler ones”
and applicative environments (e.g., [I3OITIT6/3I423126/22], just to name few
examples).

Our Contribution. In this paper we study unconditionally secure distributed
oblivious transfer protocols, introduced in [25] in order to strengthen the secu-
rity of protocols designed for electronic auctions [26]. We present an analysis and
some new results: lower bounds on the resources required by an implementation
such as randomness, memory storage, and communication complexity; some im-
possibility results for one-round protocols; two polynomial-based constructions
implementing 1-out-of-n distributed oblivious transfer which generalize the two
constructions for 1-out-of-2 schemes given by M. Naor and B. Pinkas; as well
as new one-round and two-round distributed oblivious transfer protocols, both
for threshold and general access structures on the set of servers, which are opti-
mal with respect to some of the given bounds. Most of these constructions are
basically combinatorial in nature.

Related Work. In the literature there are many papers that address problems
related to 1-out-of-n distributed oblivious transfer. In [I], for example, the au-
thors show how to distribute a function between several servers, in such a way
that a user can compute the function by interacting with the servers; the servers
cannot find out which values of the function the user computes, but the user



New Results on Unconditionally Secure Distributed Oblivious Transfer 293

can compute the function in more than one point. Another very close area is
represented by PIR (Private Information Retrieval) Schemes, introduced in [11].
A PIR scheme enables a user to retrieve an item of information from a public
accessible database in such a way that the database manager cannot figure out
from the query which item the user is interested in. However, the user can get
information about more than one item. On the other hand, in SPIR (Symmetric
Private Information Retrieval) schemes [20], the user can get information about
one and only one item, i.e. even the privacy of the database is considered. In PIR
and SPIR schemes, the emphasis is placed on the communication complezity of
the interaction of user and servers. Notice that a SPIR Scheme can be seen as a
communication-efficient 1-out-of-n oblivious transfer scheme and the protocols
given in [20] represent the first 1-round distributed implementation of 1-out-of-
n oblivious transfer. However, the main differences between the model we are
going to consider and (information theoretic) SPIR schemes are that in SPIR
schemes the receiver communicates with k& out of k servers in order to retrieve
an item while in our setting the receiver can choose k out of m servers, where
k < m. Moreover, in SPIR schemes, the security of the sender against coalitions
of receiver and servers is not of concern. Other PIR papers of interest, for the
distribute OT scenario we consider, are [2[2TT5].

Finally, Rivest’s model in [28], where a trusted initializer participates only
during the set up phase of the system (see also [6]), provides a very close setting
to the one described in [25] and considered in this paper. A very recent paper
which deals with distributed oblivious transfer implementations, close to the
setting introduced in [25] (but not unconditionally secure) is [32].

In our constructions we use secret sharing schemes. Secret sharing were intro-
duced in 1979 by Blakley [4] and Shamir [29], and have been extensively studied
during the last years. The reader can find an introduction in [31] and references
to the literature in [30)].

2 The Distributed Model

Let us define the model we are going to consider. We assume that the Sender
holds n secrets and the receiver is interested in one of them. Hence, we are
concerned with a 1-out-of-n distributed oblivious transfer.

2.1 An Informal Description

In the distributed setting, the sender S does not directly interact with the re-
ceiver R in order to carry out the oblivious transfer. Rather, he delegates m
servers to accomplish this task for him. More precisely, we consider the follow-
ing scenario:

Initialization Phase. Let S1,...,S,, be m servers. The sender S generates
m programs Pi,..., P,, and, for ¢ = 1,...,m sends, in a secure way, program
P; to server S;.
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Oblivious Transfer Phase. The receiver R holds a program which enables
her to interact with a subset {S;,,...,S;, } of the servers at her choice. Using
the knowledge acquired by exchanging messages with the servers, R recovers
the secret in which she is interested, but receives no information on the other
secrets. At the same time, no subset of k— 1 servers, gains any information about
the secret she has recovered. More precisely, a distributed (k, m)-DOT- (71’) must
guarantee:

1. Reconstruction. If the receiver gets information from £ out of the m servers, she
can compute the secret.

2. Sender’s Privacy. Given any k values, the receiver must gain information about
a single secret, and no information about the others.

3. Receiver’s Privacy. No coalition of less than k servers gains information about
which secret the receiver has recovered.

4. Receiver-servers Collusion. A coalition of the receiver with k—1 corrupt servers
cannot learn about the n secrets more than can be learned by the receiver herself.

Notice that, in [25], properties 3. and 4. are only guaranteed with respect to
a threshold ¢ and a threshold ¢, respectively, which should be as close to k as
possible.

2.2 A Formal Model

Assume that S holds a program S to generate m programs P, ..., P, enabling
S1, ..., Sy and R to perform a (k, m)-DOT- (71’) oblivious transfer of his n secrets.
R holds an associated program R for interacting with the servers. The m +
1 programs Pi,..., P, and R, specif the computations to be performed to
achieve (k, m)-DOT- ('f) In order to model dishonest behaviors, where a coalition
of at most k — 1 servers tries to figure out which secret R has recovered from the
transfer, we assume that cheating servers S;,,...,S;, , hold a modified version
of the programs, denoted by P;,,...,P;,_,. These programs could have been
generated either by a dishonest S, who holds a cheating generating program S,
or they could have been modified by the dishonest servers. Similarly, a cheating
R, who tries to gain some information about other secrets, holds a modified
version of the program R. These programs can be described by random variables
and will be represented in bold face type.

An execution of the protocol can be described by using the following ad-
ditional random variables: for j = 1,...,m, let C; be the transcript of the
communication between R and S;. Let W be the set of all length n sequences of
secrets, and, for any w € W, let w; be the i-th secret of the sequence. Denoting
by W the random variable that represents the choice of an element in W, and by
T the random variable representing the choice of an index i in T'= {1,...,n},

1 If we are interested in a reduction of a more complex form of DOT to a simpler

available one, we can simply assume that these programs encapsulate, as black box,
a smaller (k, m)-DOT- (7; ) Hence, during the execution, Si,...,Sm, and R are able

to carry out many times unconditionally secure (k, m)-DOT- (T;/)
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we can define the conditions that a (k,m)-DOT-() oblivious transfer protocol
must satisfy as follows2:

Definition 1. The sequence of programs [S, Pi,... Pm, R] is correct for (k,m)-DOT-
(T) if foranyi €T and j = 1,...,m, it holds that

H(G,;|P; TR) =0, (1)
and, for any w € W and for any {i1,...,ix} C {1,...,m,} it holds that
H(W7|Cy, ...Cip) = 0. 2)

Notice that the definition means that, given the program of server S; and
the program of the receiver and her choices, the transcript of the communication
is completely determined. Moreover, after interacting with k& servers, an honest
receiver always recovers the secret in which she is interested.

Assuming that both S and R are aware of the joint probability distribution
Pw,r on W and T, the probability with which S chooses the secrets in W and R
chooses an index i € T, the privacy property of (k,m)-DOT- (71’) can be defined
as follows:

Definition 2. The sequence of programs [S, Pi,...Pm, R] is private for (k,m)-DOT-
() o
- for any set of indices {i1,...,ik—1} C {1,...,m}, it holds that

H(T|Pi,...,Pi,_,Ciy,...,Ci_,) = H(T). (3)

- for any program R, for any i € T and for any set of indices {i1,...,ix} C
{1,...,m}, it holds that

HW\Wz7|TRC;, ...C;, Wr) = HW\ Wr). (4)

- for any set of indices {i1,...,ir—1} C {1,...,m}, for any i € T, and for any R,
it holds that

HW|TRC;, ...Ci,_, Pyy,...,P;,_,) = HW). (5)

- for any sets of indices {i1,...,ixk—1} C{L,...,m} and {j1,...,jr} C{1,...,m},
for any i € T, and for any R, it holds that

H(W\Wz| TRP;,,...,P;,_,Cj,...C;, Wr) = HW\ Wr). (6)

Conditions (3) and (@) ensure that a dishonest coalition of servers does not
gain information about R’s index; and a dishonest R infers at most one secret
among the ones held by S, ..., S,,. Condition (@) takes into account the possi-
bility of an attack against S performed either by at most k — 1 servers alone or
with the cooperation of R. The condition states that such coalitions do not gain

2 Since we focus our attention on unconditionally secure DOT protocols, we use the
entropy function, which leads to a compact and concise description. The reader is
referred to the Appendix for a short introduction to entropy and information theory.
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any information about the secrets held by S. Finally, condition (@) states that a
coalition of k—1 servers and the receiver, once the receiver has obtained a secret,
cannot compute any information about the other secrets. In the following, we
will show that this condition cannot be achieved if the DOT protocol provides
only one round of interaction. On the other hand, with two rounds of interaction,
this level of security can be obtained. Notice that, in our model, conditions ()
and (@) are not independent: indeed, (@) implies (@). To simplify the description
and the analysis of the security we have chosen to state two different conditions.

3 Lower Bounds and Impossibility Results

Using some information theory tools, we can prove bounds on the memory stor-
age, on the communication complexity and on the randomness needed by a
DOT scheme. Moreover, we can show that with one-round protocols condition
() of the DOT definition cannot be achieved. Actually, we can prove that a
single server can help the receiver to recover all the secrets, once the receiver
has legally retrieved the first one. Due to this result, we will refer to schemes
achieving all but condition (@), as to weak DOT schemes.

The following bounds (see Table [[) hold for both weak DOT schemes and
for DOT schemes, since condition () is not used in the proofs that, due to lack
of space, will appear in the full version of the paper.

Theorem 1. (Memory Storage.) In any (k, m)—DOT—(’;) scheme for each j =
1,...,m, it holds that
H(P;) > H(W).

Theorem 2. (Randomness to Set Up the Scheme.) In any (k,m)-DOT—(T)
scheme, it holds that
H(P:...Pp) > kH(W).

Theorem 3. (Complexity of each Interaction.) In any (k, m)-DOT—(Y) scheme,
for each j =1,...,m, it holds that

H(Cj) > H(Wr).
Theorem 4. (Randomness of the whole Communication.) In any (k,m)-
DOT—(’;) scheme, for any 1 <i1 < ..., <ix <n, it holds that

H(C,, ...Ci)) > kH(Wr).

Table 1. Bounds holding on the Model



New Results on Unconditionally Secure Distributed Oblivious Transfer 297

Notice that if the protocol is one-round, then C; = (Q;, 4;), the query of the
receiver and the answer of the server. Therefore, condition () can be re-phrased
saying that for j =1,...,m

H(Q;RT)=0 and H(A;|Q,;P;)=0. )
With this notation, we can prove the following impossibility result:

Theorem 5. In any one-round scheme for (k,k)—DOT—(T), once the receiver
has legally recovered a secret, a single corrupt server and the receiver can recover
all the others.

Proof. Let q1,...,qr be the queries sent by the receiver when T' = ¢, and let
ai,...,a be the answers that Sy ..., .S send back to the receiver. The Receiver’s
security property (B) with respect to k — 1 servers, say Ss, ..., Sk, implies that
there exist queries ¢ and answers aj, for any s # 4, such that if

H(Wi‘Ql:q1Q2:q2”'Qk:qk7Al:alA2:a2...Ak:ak):0
then
HW: Qi =¢Q=q.. Qe =qx,A1 =ajAs=as... Ay =ax) =0

Since the answer given by S; depends only on his own program P; and on the
received query (i.e., H(A1|Q1P1) = 0), it holds that

H(W|P1A;.. Ak, Qz...QiR) = 0.
Indeed

H(W|P1As... A, Qa...QiR) < ZH(Wt\PlAQ AR Q... QuR, T =1)

teT

and

H(WP1As...ArQs...QuR, T =1) < HW;:|[P1As...ArQiQs... Q)
S H(WiA1A2...AQi1Q2...Qx) =0

Therefore, the receiver and S7 can recover all the secrets and the result holds@.
O
A consequence of this impossibility result for one-round protocols is that the
highest security level aimed in [26] with this approach cannot be achieved.
Notice that the model is quite general. If we consider one-round weak DOT
schemes such that a sequence of k queries determines T uniquely, i.e.,

3 Notice that the result can easily be extended to general (k,m)-DOT- (’f) and to
A-DOT- (’f) schemes for general access structures on the set of servers. Moreover,
applying the same argument, it is possible to show that, if the receiver’s security
property (B) must hold, in the threshold case, against a coalition of size at most t,
then the receiver, after having legally recovered one secret, can recover all the others
if she colludes with k — ¢ servers.
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then we can show a bound on the randomness of the receiver. All the known
constructions and the new ones we introduce enjoy this property, which in general
is not guaranteed or required by the conditions defining our model.

Theorem 6. In any one-round weak (k,m)-DOT-(}) scheme satisfying (8) it
holds that
HR)> (k—1)H(T).

4 Protocols Implementing Weak (k, m)-DOT- (7;)

Two protocols for weak (k, m)-DOT- (?) have been proposed in [25]. Their general
structure is given in Table

A General Protocol for a weak (k, m)-DOT- (f) Implementation.
Let wo, w1 € GF(q) be S’s secrets, and let o € {0,1} be R’s index.

- S generates a bivariate polynomial Q(z,y) with values in GF(q) such that
Q(0,0) = wo and Q(0,1) = ws.

- Then, for ¢ = 1,...,m, he sends the univariate polynomial Q(i,-) to the server
S;.

- R chooses a random polynomial Z such that Z(0) = o, and defines a univariate
polynomial V(z) = Q(z, Z(z)). The degree of V is k — 1.

- Then, she asks server S; for the value V(i) = Q(3, Z(1)).

- After receiving k values of V', R interpolates V and computes V' (0).

Table 2. A General Protocol for a weak (k, m)-DOT- (?)

The first protocol uses a sparse bivariate polynomial. The second one uses a
full bivariate polynomial and is secure against coalitions between R and several
servers (under the weaker condition (B))). The constructions can be transformed
in an unconditionally secure form, by replicating the basic scheme given in Table
2 and using some ad hoc coeflicients [25]. Moreover, we can use weak (k, m)-
DOT- (f) as a black box to construct “more complex” forms of oblivious transfer
in the same distributed model (see [16] for some unconditionally secure reduc-
tions). In this situation, any improvement in the design of the available weak
(k, m)-DOT- (%), yields an improvement of the performance of the more complex
protocols.

In this section, we propose a protocol, based on polynomial interpolation,
implementing weak (k, m)-DOT- (?) oblivious transfer. This protocol is a gener-
alization of the weak (k,m)-DOT-(?) protocol proposed in [25]. The protocol is
described in Table Bl
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First Protocol for a weak (k,m)-DOT- (T)
Let so,81,...,5n—1 € GF(q) be S’s secrets, and let ¢ € {0,...,n — 1} be R’s index.

- S generates an n-variate polynomial Q(z,y1,...,Yn—1) with values in GF(q)
such that Q(0,0,...,0) = s0,Q(0,1,0,...,0) = s1,...,Q(0,0,...,1) = sp_1.
More precisely,

k—1
Q($7y17 L) '7yn—1) - Zaj.’lfj + bO + blyl + - '7bn—1yn—1,
j=1
where so = bp and, for i =1,...,n— 1, s; = by + b;.

- Then, for ¢ = 1,...,m, he sends the n — 1-variate polynomial Q(i,y1,...,Yn—1)
to the server S;.

- R chooses n — 1 random polynomials Z, (z)...,Z,, ,(z) of degree k — 1 such
that (Zy, (0)...,Zy, _,(0)) is an (n — 1)-tuple of zeroes having at most one 1 in
position ¢, the position corresponding to the secret in which she is interested,
and defines a univariate polynomial V to be V(z) = Q(z, Zy, (z), ..., Zy, _,(z)).
The degree of V' is k — 1.

- Then, she asks server S;; for the value V' (i;) = Q(i5, Zy, (), . . ., Zy, _, (35)).

- After receiving k values of V,say V(i1),...V(ix), R interpolates V and computes
V(0).

Table 3. First Protocol for weak (k, m)-DOT-(7).

Correctness. Let Z,,(x) = s, —|—Zj 1 §,@7 be the polynomials generated by R,
random up to 3 . The polynomlal Vix ) mterpolated by R,

Vie) = Q(z, Zy, (2), ... Zy, (1)),

can be written in explicit form as

Zaj$j+b0+b1 y1+zs§1xj oo 271 1+Z SYp_1T );

which can be re-arranged as

k—1
Z a; + blsyl ' bn—lsi )xj + bO + blsyl ot b"_lsgn—l'
j=1
For £ =0, and assuming that the n— 1-tuple (s yl,...,sgn )=(0,...,1,...,0)
(i.e., having at most one 1 in position i, where ¢ € {1,...,n — 1}), then V(0) =
bi +bo = s;.

O
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It is possible to show that, in the above form, the receiver can learn a single
linear combination of the secrets, extending the proof given by Naor and Pinkas
[25] for two secrets. Moreover, along the same line as [25], the protocol can be
used as a building block to set up an unconditionally secure weak DOT that
meets the bounds given by Theorems[Il and 2l Indeed, these bounds still hold for
weak DOT schemes, since they are obtained without making any use of condition
(). As well as, we can use full n-variate polynomials to set up a protocol which
is secure against ¢ servers and a coalition among the receiver and ¢ < k — ¢
servers. Details will be given in the full version of the paper.

5 Combinatorial Constructions

In this section we propose some combinatorial constructions for distributed obliv-
ious transfer. Some of these constructions require trivial computations once the
scheme has been set up by the Sender, and the one-round protocols meet the
lower bound on the number of random bits the receiver must use to set up
the queries, given by Theorem [0 However, they are not so efficient in terms of
memory server storage and communication complexity.

5.1 One-Round Constructions

We start by giving protocols which require one round of interaction to recover a
secret. The constructions are based on well-known combinatorial structures used
in secret sharing. The first protocol is given in Table [k

A Weak (k, k)-DOT-(}).

Let s0,51,...,5n—1 € GF(q) be S’s secrets, and let A[p,j] be a k x n* matrix of]
values in GF(q) such that, for j € {0,...,n* — 1}, the sum of the values of column
Alj] is s; if, assuming that ¢] ---cl is the representation in base n of j, the sum
211;1 ci mod n = i.

S sends the p-th row A[p] of Alp, j] to the server S,

— The receiver chooses a value j € {0,...,n" —1} such that the 25:1 cﬁ mod n = 1,
where i is the index of the secret she wishes to recover. Then, for p = 1,...k
she sends the digit C{J to server Sp.

— Server S, sends to the receiver, for ¢ = 0,...,n" — 1, the value Alp, q] if and only
if the p-th digit of the n-ary representation of ¢ is equal to cf;.

— The receiver sums up the values A[l,j],..., A[k, j], recovering the secret.

Table 4. A Weak (k, k)-DOT-(7}) Construction
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Example. For 3 secrets and 2 servers, suppose that we use the protocol described
in Table [l

Let A[2,32] be the following matrix with values in GF(q):

aio ai,1 ai1,2 1,3 a1,4 A1,5 1,6 1,7 A1,8
az,0 A2,1 G2,2 02,3 42,4 42,5 (2,6 G2,7 A28

The representations of {0,1,...,8} in base 3 are:

Columns 0,5 and 7 encrypt sg, 1,3 and 8 encrypt s1, and 2,4 and 6 encrypt ss.

To recover s1, the receiver chooses, for example, column 8, and sends ¢; =
2 to server 1 and cp = 2 to server 2, receiving the values ai¢,a1,7,a1,8 and
a2,2,02,5,02 8- a

Using some well-known combinatorial structures, we can generalize the above
construction, in order to set up a weak (k, m)-DOT- (71’) More precisely, let ¢ be
an integer such that 1 <t < g and r > 2. An orthogonal array OAx(t,q,r) is a
Art x g array A of r symbols, such that within any ¢ columns of A, every possible
t-tuple of symbols occurs in exactly A rows of A. Using an orthogonal array and
a collection of secret sharing schemes we can set up a weak (k, m)-DOT- (71’) (see
Table [).

Example. We present a weak (2,3)-DOT- (f) using the protocol described in
Table [l
Let us consider the following OA;(2,4, 3):

000111222
012012012
012220201
012201120

A[4,9] =

Suppose that R wishes to recover the secret so. Hence, she chooses for example
the first column, ¢ = 0, she chooses a subset of 2 servers, say Ss and S3, and she
sends 0 to S5 and 0 to S3. The contacted servers reply by sending the following
values

— Sy sends (0, sha o), (5, she5) and (7, sha 7)
— S5 sends (0, shs,0), (4, shs ) and (8, shsg).

Therefore, the receiver can recover sg using (0, sha ) and (0, shs o). O
Complete proofs of correctness and privacy for the above protocols will ap-
pear in the full version of the paper.
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A Weak (k,m)-DOT-(7)

Let s0,51,...,5,—1 € GF(q) be S’s secrets, and let A[m + 1,n*] be an orthogonal
array OA;1(k, m + 1,n). The first row A[0] of the (public) orthogonal array A[m +
1,n* ] establishes “which column encrypts which secret”. More precisely, we have the
following:

Set up Phase.

— The Sender S, for each 0 < ¢ < nf — 1, shares sa[0,q according to a (k,m)-
threshold scheme. Let us denote such sharing by shic,..., Shm,c.
— Then, for i =1,...,m, S sends shio,...,sh; ,s_; to server S;.

Suppose that R wishes to reconstruct the secret s¢, for some £ € {0,...,n — 1}.

Recovering Phase.

— R chooses a random column c¢ of the matrix A such that A[0,c¢] = ¢, picks
a k-subset of {1,...,m}, say p1,...,pk, and, for 1 < j < k, sends the value
y; = Alpj, c] to server Sy, .

— For 1 < j <k, server Sp; sends (d, shy, a) to the receiver R, for all d such that
Alpj,d] = y;. R gets n shares from each of the k servers.

— Finally, R uses shp,c,...,Shp,,c to reconstruct the secret s,.

Table 5. A Weak (k, m)-DOT-() Construction

Protocol for General Access Structures. The main idea underlying the
combinatorial schemes is that an orthogonal array is used as an indexing struc-
ture for several sharings of the secretdl. We can pursue the same idea in order to
support general access structures. To explain the protocol and how to construct
the indexing structure, let us consider a simple case. Let Sy, 52,53 and Sy be
four servers, and let P3 = {{S1, Sa}, {52, S5}, {S3, Sa}} be an access structure on
the set of servers. This access structure is well-studied in secret sharing scheme
theory and its (optimal) information rate p is equal to 2 (see [10]). Assume that
the secret is a pair of values (ki, ka) belonging to GF(q') x GF(q'). Tt can be
shared among P35 as follows:

Si|x z
Solk1 + x |ka + z|w
S3|ki +wlk2 +y
Sa|w y

I

4 Indeed, notice that even the constructions given in Table H] can be re-phrased along
the same line of the protocol described in Table Bl In this case the orthogonal array
used is an OA;(k,m + 1,n).
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The values z,y, z, and w are random values in GF(q’). The dealer computes
the above shares and sends to each server a row of the matrix.

We can construct a weak P3-DOT using the above secret sharing scheme as
a building block. More precisely, each secret is shared many times with different
instances of the secret sharing scheme. At the same time, an indexing matrix
which represents all these sharings can be set up filling in the entries of each
column using the same secret sharing scheme.

To exemplify, assume that we have 9 = 32 secrets. Each secret (k;, k;) can be
indexed by (4, j) € GF(3)xGF(3). An indexing matrix can be set up, considering
3* sharings for each value of the key (i.e., the number of possible choices for
x,y,z, and w when seen as elements belonging to GF(3)). For example, the
restriction of the indexing matrix to the key (k1, k2), indexed by (1,2), is:

0[(1,2) —(1,2)
10 0 N
21+02+00[-[1+22+22
3[T+02+00[--1+22+22
40 0 2 2

Each of the 3% columns indexed by (1,2) represents a sharing of (ki,ks2) €
GF(q') x GF(q"). The receiver can choose one of those columns and can ask a
subset B € P35 to get the shares whose indices match the entries of the columns
of the matrix corresponding to the servers in B. In our example the receiver, to
retrieve (k1, k2), can choose the first column and can send (1, 2,0) to S5 and (0, 0)
to Sy, receiving from Ss all the shares corresponding to the fourth row of the
matrix whose indices are (1,2,0) (and, among these, is (shgl’z), shgl’z), shgl’z)))
and from S, all the shares corresponding to the fifth row of the matrix whose
indices are (0,0) (and, among these, is (shél’z),shél’z))), where each sh§1’2) €
GF(q).

It is not difficult to see that the construction is correct, due to the recon-
struction property of the secret sharing scheme. In our example (shgm), shém))

and (shél’z), shél’z)) enable the receiver to recover (ki, k2). Moreover the scheme
is secure since, for each subset of servers belonging to Ps and for each pair of
different keys, say (ki, k;) and (ki kj ), looking at the restriction of the matrix
to the columns indexed by the pairs (i,7) and (i, j'), there is no sequence of
queries that enables to recover both secrets: at least one of the queries the re-
ceiver has to send to the servers to recover the second secret must be different in
at least one of the entries from the queries that enable to recover the first ond.
On the other hand, a forbidden subset of servers F' ¢ Ps neither get informa-
tion about the secret R wishes to recover from the queries sent by her nor can
they compute information about any secret, due to the security property of the
secret sharing scheme. Notice that, if we have n = ¢ secrets, the construction

5 Arguing by contradiction it is possible to show that if there exists a sequence of
queries (in our example a sequence of two queries) which enables to recover two
different secrets (ki, k;) and (k;, k;/) then ¢ =4" and j = j'.
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seen before requires ¢* sharings for each secret, and an indexing matrix with ¢%
columns.

At this point it is not difficult to figure out how the same strategy can be
applied to any access structure. In this extended abstract, without going into
details that will be given in the full paper, we would like just to point out the
use of secret sharing schemes for the construction of both the indexing structure
and the subsequent sharing of the secrets. Perhaps this design technique can be
applied successfully to other cryptographic protocols.

5.2 Two-Round Constructions

It is possible to gain in terms of security and reduce the complexity if we allow
an additional round of interaction between the receiver and the servers. A simple
protocol is described in Table [l

A (k,k)-DOT-(?) with one addressing bit

1
Let so,s1 € GF(q) be S’s secrets.

- S chooses k random bits 7;, and computes the bit r, by xoring the r;’s. Then,
he sets up two vectors with entries in Zg, vo and v1, by choosing the first k£ — 1
entries at random and computing

k—1 k-1
volk] = sr — vo[i] mod ¢, and vi[k] = s(1_) — Zm [¢] mod q.
i=1 i=1
- Then, for i = 1,...,k, he sends the bit r; and the values vo[i] and v1[i] to server
Si.
- In a first round of communication, R asks each server for the bit r; and computes
r. Then, for i = 1,...,k, if R is interested in so and r = 0, she asks server S; for

the value vo[i]; otherwise, if » = 1, she asks for v1[i]. Symmetrically, to recover
s1, if r = 1, she asks for vo[i], while if » = 0, she asks for vy [z].
- Then, she sums up the received values modg.

Table 6. Two-Round (%, k:)—DOT—(?)

An easy check shows that the receiver always recovers the secret in which is
interested and she gets no information on the other secret, since it is encrypted by
the values of the other column. Moreover, a coalition of k — 1 servers cannot find
out which secret R has recovered, since the “label” specifying which secret each
column encrypts can be recovered only by all the k servers. Finally, a coalition
of k — 1 servers cannot compute any secret since the coalition misses the value
held by the k-th server.
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It is worthwhile to point out that the two-round construction above described
enjoys the further security property that is impossible to achieve using a one-
round protocol: indeed, a coalition of k — 1 servers and the receiver, after the
latter has recovered one of the secret, still cannot compute the other without
the help of the last server.

Notice that, if we compress the above protocol into one round, we can obtain
a random DOT where the receiver can recover one secret but she cannot choose
which one. This functionality can be realized if the servers simply send to the
receiver the “addressing bits” and all but one of the values vg[i] and v;[i], for
i=1,..., k. For example, one of the servers, say 5;, chooses uniformly at random
which of the two values vg[i], v1[i] to send to R.

The above protocol can be extended to realize a DOT for a general access
structure on the set of servers as well as a DOT for any number of secrets. The
extensions can be done as follows: in order to implement a DOT for a general
access structure A on the set of servers, say an A-DOT-(?), the bit r, which
establishes which vector hides sg, is shared among the m servers, according
to a secret sharing scheme for A. Then, if » = 0, the secret sy is shared by
the first vector and s; by the second, according to a secret sharing scheme for
A; otherwise, sg is shared by the second vector and sg by the first. Once the
receiver has recovered the value of r, contacting a subset of servers belonging to
A, she can recover one of the secret by sending a request for shares to a subset
of servers (perhaps the same ones that were contacted before) belonging to A.
On the other hand, a (k,k)—DOT—(’f) requires that, instead of a bit r;, each
server has a value r; € {0,...,n — 1}, and, instead of two vectors sharing s
and s1, there are exactly n vectors vy, ..., v,_1, sharing the secrets sg, ..., Sn_1,
respectively. The value r = > r; mod n establishes the correspondence between
vectors and the n secrets. In other words, if » = 2 then the third vector vy shares
S0, the fourth shares s1, and so on, following a cyclic order modulo n. Applying
the same argument described before for the case of two secrets, it is not difficult
to show that even this is correct and secure.

6 Conclusions

In this paper, we have studied unconditionally secure distributed oblivious trans-
fer protocols. We have presented lower bounds on the resources required to im-
plement such schemes, some impossibility results for one-round schemes, and
new constructions which are optimal with respect to some of the given bounds.
Moreover, we have shown that, with a second round of interaction, the highest
possible security level in this model can be achieved with, at the same time, a
suitable reduction of resources (randomness, memory storage and communica-
tion complexity). It is worthwhile to notice that the same effect can be achieved
modifying the model for DOT by allowing the Sender to send information during
the set up phase even to the receiver. In this case the two-round protocol we
have shown in the previous section can be simply transformed in a one-round
protocol. This is another example of a tradeoff.
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Interesting open problems include the design of a single protocol meeting
all the bounds given by the information theoretic analysis, as well as to find
out settings which can benefit from the application of this distributed primitive.
Along this line, in the full version of the paper, we will discuss some applications
mainly related to contexts in which the privacy (anonymity) of the user must be
guaranteed.
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A Information Theory Elements

In this section we give some basic concepts about Information Theory. However,
the reader is referred to [12] for a complete treatment of the subject.

Let X be a random variable taking values on a set X according to a proba-
bility distribution {Px (z)}.cx. The entropy of X, denoted by H(X), is defined

as
- Z PX(J?) IOg PX(J:)’
zreX

where the logarithm is relative to the base 2. The entropy satisfies 0 < H(X) <
log | X|, where H(X) = 0 if and only if there exists 9 € X such that Pr(X =
x9) = 1; whereas, H(X) = log|X]| if and only if Pr(X = z) = 1/|X]|, for all
x € X. The entropy of a random variable is usually interpreted as

— a measure of the “equidistribution” of the random variable
— a measure of the amount of information given on average by the random
variable

Given two random variables X and Y, taking values on sets X and Y, re-
spectively, according to a probability distribution {Pxy (z,y)}zex,yey on their
Cartesian product, the conditional entropy H(X|Y) is defined as

HX[Y) ==Y > Py(y)Pxyv(zly)log Pxy(x[y).
yeY xeX

It is easy to see that
H(X|Y) > 0. (9)

with equality if and only if X is a function of Y. The conditional entropy is a
measure of the amount of information that X still has, once given Y.
The mutual information between X and Y is given by

I(X;Y) = HX) — HX[Y).
Since, I(X;Y) = I(Y;X) and I(X;Y) > 0, it is easy to see that
H(X) > HX[Y), (10)

with equality if and only if X and Y are independent. The mutual information
is a measure of the common information between X and Y.

Given n + 1 random variables, X; ... X, Y, the entropy of X;...X,, given
Y can be written as

H(Xy... X,|Y) = HX|Y)+H(Xo X1 Y) 4+ H(X, Xy ... X1 Y). (11)

Therefore, for any sequence of n random variables, X; ...X,,, it holds that

H(X, ZHX|X1 X, 1) <ZH (12)
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Moreover, the above relation implies that, for each k < n,

H(X:...X,) > HXy ... Xp). (13)

Given three random variables, X, Y, and Z, the conditional mutual information
between X and Y given Z can be written as

I(X;Y|Z) = H(X|Z)— HX|Z Y) = H(Y|Z) - H(Y|Z X) = I(Y; X|Z). (14)

Since the conditional mutual information I(X;Y|Z) is always non-negative we
get
H(X|Z) > HX|ZY). (15)
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