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Abstract. Recently it has been shown that smart cards as crypto-
graphic devices are vulnerable to power attacks if they have no defence
against them. Randomization on ECC scalar multiplication is one of
the fundamental concepts in methods of defence against side-channel
attacks. In this paper by using the randomization concept together with
the NAF recoding algorithm, we propose an efficient countermeasure
for ECCs against power attacks. The countermeasure provides a
randomized signed-scalar representation at every scalar multiplication
to resist DPA. To protect against SPA it additionally employs a
simple SPA-immune addition-subtraction multiplication algorithm.
Our analysis shows that it needs no additional computation load
compared to the ordinary binary scalar multiplication, where the av-
erage number of doublings plus additions for a bit length n is 1.5n+O(1).

Keywords: Elliptic curve cryptosystems, Side-channel attack, Power
analysis attack, SPA, DPA, Non-adjacent form.

1 Introduction

The use of elliptic curve cryptosystems(ECC) was first proposed in 1985 by Miller
[1] and Koblitz[2]. ECCs can use much smaller sizes of key bits, typically around
160 bits which provides the same security level as a 1024 bit RSA. In addition
ECCs have better performance in computation speed than other multiplicative
groups of RSA and ElGamal type encryptions at the same security level. These
advantages make ECCs more attractive for cryptographic implementation on
smart cards because limited memory and computation capability are available
on them. Unfortunately cryptographic systems on smart cards are much vulner-
able to side-channel attacks[3,4,5,6,7,8,9,10,11,12,13,14,15] such as fault attacks,
timing attacks and power attacks. Since power attacks are known to be the most
practical and powerful especially to cryptosystems on smart cards, in this paper
we discuss in building a countermeasure against power attacks.
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Kocher et al.[7] originally presented power attacks of the simple and differen-
tial power analyses(referred to as SPA and DPA, respectively). In SPA, a single
power signal trace of a cryptographic execution is measured and analyzed to
classify point doublings or additions over the power trace. On the other hand,
a DPA attacker usually measures hundreds of power signal traces and divides
them into two groups by using a classification criterion, and makes a subtraction
between the two averaged values. Since the averaging can reduce noisy compo-
nents and result in the amplification of small power differences occurred in the
execution of an algorithm, DPA is in general more powerful than SPA. Coron[8]
introduced three key concepts to build countermeasures against power attacks;
randomization of the private exponent, blinding the point and randomized pro-
jective coordinates.

More recently Oswald and Aigner[9] randomized the binary algorithm itself to
resist power attacks. They inserted a random decision in the process of building
the addition-subtraction chain which had been originally utilized for speeding
up the ordinary binary scalar multiplication of an elliptic curve point[16]. The
speeding-up chain method was first introduced in 1990 by Morain and Olivos[17].

The contribution of this paper is to propose a simple and powerful coun-
termeasure for ECC scalar multiplication against power attacks. It uses the
randomization concept together with non-adjacent form(NAF) algorithm[18,19]
to change an ordinary binary multiplication representation to a form of signed-
scalar one. The proposal provides an differently randomized signed-scalar repre-
sentation at every scalar multiplication to resist DPA. To defeat SPA it employs
a simple SPA-immune addition-subtraction multiplication algorithm. In addition
the new countermeasure seems to be able to make timing attacks very difficult
to work because every execution time of scalar multiplication depends on ev-
ery different signed-scalar representation. The analysis shows that our proposal
needs no additional computation load compared to the ordinary binary scalar
multiplication, where the average number of doublings plus additions for a large
n is 1.5n + O(1).

This paper is organized as follows. The ECC ordinary scalar multiplication
and power attacks are briefly described in section 2. We explain the non-adjacent
form(NAF) recoding algorithm in section 3, and finally present the new coun-
termeasure with analyses and comparisons.

2 Elliptic Curve Cryptosystems and Power Attacks

An elliptic curve is a set of points (x, y) which are solutions of a bivariate cubic
equation over a field K. An equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where ai ∈ K, defines an elliptic curve over K. As an example, if char K �= 2
and char K �= 3, the above equation can be transformed to

y2 = x3 + ax + b
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with a, b ∈ K. This curve has one point O at infinity, which is the identity
element of the group.

Let P = (x1, y1) �= O be a point, inverse of P is −P = (x1,−y1). Let
Q = (x2, y2) �= O be a second point with Q �= −P , the sum P + Q = (x3, y3)
can be calculated as

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1

with

λ =

{ y2−y1
x2−x1

3x2
1+a4

2y1

, if P �= Q

, if P = Q.

To subtract the point P = (x, y), one adds the point −P .

2.1 Binary Scalar Multiplication

The operation of adding a point P to itself k times is called scalar multiplication
by k and denoted Q = kP . We usually make use of the binary algorithm for
the computation of the scalar multiplication Q = kP . The binary algorithm is
described in the following figure 1. The binary algorithm is the analogue of the
square-and-multiply method for exponentiation. For validity and explanation see
[16].

Binary algorithm

Input: A point P , an n-bit integer k =
∑n−1

i=0 ki 2i, ki ∈ {0, 1}
Output: Q = kP

1.1 Q = O
1.2 for i = n − 1 to 0 by -1 do {
1.3 Q = 2Q
1.4 if (ki == 1 ) then Q = Q + P }
1.5 Return Q

Fig. 1. Binary scalar multiplication algorithm

If the occurrence of 1’s of a scalar integer k is assumed 1
2 in probability, the

number of doublings in the algorithm is equal to n, and the average number of
additions n

2 , where n is the number of bits of k.

2.2 Power Attacks

Power attacks of SPA and DPA were introduced in [7]. An SPA consists in
observing the power consumption of one single execution of a cryptographic
algorithm. In ECC computing of Q = dP as shown in figure 1, it might be
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possible to distinguish a point addition from a measured power signal trace,
because the step 1.4 of figure 1 is conducted over the period of ki = 1. Figure 2
shows a countermeasure[8] to the SPA, where the instructions conducted during
a cryptographic algorithm do not depend on the data being processed.

Notice that the algorithm of figure 2 no longer defends against DPA. The
step of 2.5 in the figure 2 has a small different amount of power consumption
depending on whether the bit is 1 or 0. Even though it is very hard to find
such a small difference by SPA, DPA is a powerful technique that exploits secret
information by statistical analyzing power consumption.

SPA resistant Binary algorithm

Input: A point P , an n-bit integer k =
∑n−1

i=0 ki 2i, ki ∈ {0, 1}
Output: Q[0] = kP

2.1 Q[0] = O
2.2 for i = n − 1 to 0 by -1 do {
2.3 Q[0] = 2Q[0]
2.4 Q[1] = Q[0] + P
2.5 Q[0] = Q[ki] }
2.6 Return Q[0]

Fig. 2. Binary scalar multiplication algorithm immune to SPA

In order to be resistant to DPA, some countermeasures have been proposed[8,
9,10,11,12,13,14,15]. Three countermeasures for ECC were first suggested by
Coron[8] : randomization of the private exponent, blinding the point P and ran-
domized projective coordinates. Specific countermeasures on a Koblitz curve[12],
on a Montgomery-form elliptic curve[13], on a Jacobi-form elliptic curve[14], and
on a Hessian-form elliptic curve[15] were also proposed.

More recently, Oswald-Aigner[9] have proposed randomized addition- sub-
traction chains for an elliptic curve scalar multiplication as a countermeasure
against power attacks. It randomizes the binary algorithm by using addition-
subtraction chains which had been proposed by Morain-Olivos[17].

Our difference from Oswald-Aigner’s work is to use a randomization on the
NAF algorithm to resist DPA, and employ a simple SPA-immune scheme. Even
though the idea seems somewhat straightforward, the result turns out to be a
simple and powerful countermeasure against power attacks. Moreover it needs no
additional computation load compared to the ordinary binary algorithm, while
the randomized addition-subtraction chains proposed by Oswald-Algner needs
approximately 9% more additions than the ordinary binary algorithm.
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3 Non-adjacent Form(NAF) Recoding Algorithm

Since subtraction has the same load as addition in the elliptic curve group, the
NAF representation in the form of addition-subtraction chain can reduce the
number of point operations in ECCs compared to the ordinary binary repre-
sentation. A minimum discussion about the NAF to describe the randomized
signed-scalar representation will be given here. For details see [16,18,19,20,21].

Consider an integer representation of the form d =
∑n

i=0 di 2i, di ∈ {1̄, 0, 1}
where 1̄ = −1. We call it a binary signed-digit representation. A non-adjacent
form (NAF) has the lowest weight among all signed-digit representations of a
given k. Notice that every integer k has each unique NAF. The NAF recoding
number d of scalar k can be constructed by the NAF recoding algorithm of
Reitwiesner[18] given in table 1. First the auxiliary carry variable c0 is set to
0. Reitwiesner’s algorithm computes d starting from the LSB of k and scanning
two bits at a time to the left. The i-th NAF recorded digit di and (i+1)-th value
of the auxiliary binary carry ci+1 for i = 0, 1, 2, · · · , n are successively produced
using table 1[19].

Even though the number of bits of k is equal to n, the number of bits in the d
can be n + 1, As an example, when k = (11110) in the binary form, we compute
the NAF recoding number d as follows.

k = (11110) = 24 + 23 + 22 + 21 = 30

d = (10001̄0) = 25 − 21 = 30

Given a NAF recoding number d, the addition-subtraction scalar multiplica-
tion algorithm is given in figure 3. The number of doubling operations required
can be at most 1 more than that of the ordinary binary algorithm. On the other
hand, the number of subsequent additions or subtractions is simply equal to the
number of non-zero bits of the NAF recoding number d. The average number of
additions (or subtractions) for the bit length n can be reduced n

3 [20,21].

Table 1. NAF recoding method

Input Output
ki+1 ki ci ci+1 di

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 0
1 0 1 1 1̄
1 1 0 1 1̄
1 1 1 1 0
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Addition-Subtraction algorithm
Input: A point P , an (n + 1)-bit integer d =

∑n

i=0 di 2i, di ∈ {1̄, 0, 1}
Output: Q = dP

3.1 Q = O
3.2 for i = n to 0 by -1 do {
3.3 Q = 2Q
3.4 if (di == 1 ) then Q = Q + P
3.5 if (di == 1̄ ) then Q = Q − P }
3.6 Return Q

Fig. 3. Addition-subtraction scalar multiplication algorithm

4 The New Countermeasure Based on Randomized
Signed-Scalar Representation

4.1 Randomized Signed-Scalar Representation

To prevent DPA, we intend to randomize the ECC scalar multiplication proce-
dure. The randomization results in a signed-scalar representation which is not
in the form of NAF. The randomized signed-scalar recoding algorithm can be
built by employing the concept used in the NAF recoding algorithm as follows.

Note that we use auxiliary carry ci+1 in the NAF recoding algorithm. The
carry ci+1 means an (i + 1)-th carry with c0 = 0, and di is an i-th NAF digit.
Therefore, the concatenated ci+1di has the value of ci+121 + di20. Therefore, we
can consider that the representation ci+1di = 01 has another identical represen-
tation, i.e. ci+1di = 11̄, or the reverse.

To insert randomness in the NAF recoding algorithm, we generate a random
number r = (rn−1rn−2 · · · r0) which is an n-bits integer. In our countermeasure
algorithm, the random recorded digit di and next value of the auxiliary binary
variable ci+1 for i = 0, 1, 2, · · · , n can be sequentially generated as shown in
table 2.

As an example, if we have ki+1kici = 001 and random bit ri = 0, we take
NAF recoding ci+1di = 01. For ri = 1, then we can choose another recoding
ci+1di = 11̄. However, two different choices have the same value. In all cases
except when ki+1kici = 001, ki+1kici = 010, ki+1kici = 101 or ki+1kici = 110
the random signed-scalar recoding method is always adapted independent of ri.

As a practical example, when k = (111011110) in binary form, we compute
a random recoding number d with r = (101010011).
k = (111011110) = 28 + 27 + 26 + 24 + 23 + 22 + 21 = 478
c = (1111111000), r = (101010011)
d = (10001̄001̄10) = 29 − 25 − 22 + 21 = 478
With a random number r = (110101001), we compute another recoding number
d as follows.
c = (1110111100), r = (110101001)
d = (1001̄10001̄0) = 29 − 26 + 25 − 21 = 478
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Table 2. Random singed-scalar recoding method

Input Output
ki+1 ki ci ri ci+1 di Remarks

0 0 0 0 0 0 NAF
0 0 0 1 0 0 NAF
0 0 1 0 0 1 NAF
0 0 1 1 1 1̄ AF
0 1 0 0 0 1 NAF
0 1 0 1 1 1̄ AF
0 1 1 0 1 0 NAF
0 1 1 1 1 0 NAF
1 0 0 0 0 0 NAF
1 0 0 1 0 0 NAF
1 0 1 0 1 1̄ NAF
1 0 1 1 0 1 AF
1 1 0 0 1 1̄ NAF
1 1 0 1 0 1 AF
1 1 1 0 1 0 NAF
1 1 1 1 1 0 NAF

The hardware or software implementation of randomized signed-scalar rep-
resentation is not difficult. In hardware, it additionally needs a random number
generator and a 4-input/2-output logic circuit to implement the operations of
table 2. This computational load is negligible.

4.2 Analysis and Comparisons

It is possible to find the probability of each symbol in the new random recoding
algorithm for a given value of k. We assume that an n-bit binary number k is
uniformly distributed in the range [0, 2n−1]. Thus each bit of k can be generated
a value of zero or one with equal probability, i.e. P (ki = 0) = P (ki = 1) = 1

2
for all i. It is also supposed that the each bit probability of zero or one for a
random number r is 1/2. The random signed-scalar numbers produced by the
new algorithm can be considered a finite Markov chain model which is a similar
analysis method to that employed in [19]. In this paper, the state variables
are taken to be the quadruplets (ki+1, ki, ci, ri). There are 16 states for 4-bit
combinations of input as given in table 3.

For example, consider input state s2 which represents (ki+1, ki, ci, ri) =
(0, 0, 1, 0). The output (ci+1, di) can be calculated as (0, 1) using the table 3
and the next state is (ki+2, ki+1, ci+1, ri+1) = (ki+2, 0, 0, ri+1). By assuming
P (ki+2 = 0) = P (ki+2 = 1) = 1

2 and P (ri+1 = 0) = P (ri+1 = 1) = 1
2 , there

are 4 transitions with equal probability from state s2 = (0, 0, 1, 0) to the states
s0 = (0, 0, 0, 0), s1 = (0, 0, 0, 1), s8 = (1, 0, 0, 0) and s9 = (1, 0, 0, 1).
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Table 3. State transition table for the random singed-scalar recoding algorithm

State Output Next state
(ki+2, ri+1)

si (ki+1, ki, ci, ri) (ci+1, di) (0,0) (0,1) (1,0) (1,1)
s0 (0,0,0,0) (0,0) s0 s1 s8 s9

s1 (0,0,0,1) (0,0) s0 s1 s8 s9

s2 (0,0,1,0) (0,1) s0 s1 s8 s9

s3 (0,0,1,1) (1,1̄) s2 s3 s10 s11

s4 (0,1,0,0) (0,1) s0 s1 s8 s9

s5 (0,1,0,1) (1,1̄) s2 s3 s10 s11

s6 (0,1,1,0) (1,0) s2 s3 s10 s11

s7 (0,1,1,1) (1,0) s2 s3 s10 s11

s8 (1,0,0,0) (0,0) s4 s5 s12 s13

s9 (1,0,0,1) (0,0) s4 s5 s12 s13

s10 (1,0,1,0) (1,1̄) s6 s7 s14 s15

s11 (1,0,1,1) (0,1) s4 s5 s12 s13

s12 (1,1,0,0) (1,1̄) s6 s7 s14 s15

s13 (1,1,0,1) (0,1) s4 s5 s12 s13

s14 (1,1,1,0) (1,0) s6 s7 s14 s15

s15 (1,1,1,1) (1,0) s6 s7 s14 s15

Let Tij be the probability of moving from state si to state sj . From the
above example we find that T20 = T21 = T28 = T29 = 1

4 and T0j = 0 for
j = 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15 using table 3. By computing probabilities
Tij for all i and j, we can draw the one-step transition probability matrix of the
chain as follows.

T =




1
4

1
4 0 0 0 0 0 0 1

4
1
4 0 0 0 0 0 0

1
4

1
4 0 0 0 0 0 0 1

4
1
4 0 0 0 0 0 0

1
4

1
4 0 0 0 0 0 0 1

4
1
4 0 0 0 0 0 0

0 0 1
4

1
4 0 0 0 0 0 0 1

4
1
4 0 0 0 0

1
4

1
4 0 0 0 0 0 0 1

4
1
4 0 0 0 0 0 0

0 0 1
4

1
4 0 0 0 0 0 0 1

4
1
4 0 0 0 0

0 0 1
4

1
4 0 0 0 0 0 0 1

4
1
4 0 0 0 0

0 0 1
4

1
4 0 0 0 0 0 0 1

4
1
4 0 0 0 0

0 0 0 0 1
4

1
4 0 0 0 0 0 0 1

4
1
4 0 0

0 0 0 0 1
4

1
4 0 0 0 0 0 0 1

4
1
4 0 0

0 0 0 0 0 0 1
4

1
4 0 0 0 0 0 0 1

4
1
4

0 0 0 0 1
4

1
4 0 0 0 0 0 0 1

4
1
4 0 0

0 0 0 0 0 0 1
4

1
4 0 0 0 0 0 0 1

4
1
4

0 0 0 0 1
4

1
4 0 0 0 0 0 0 1

4
1
4 0 0

0 0 0 0 0 0 1
4

1
4 0 0 0 0 0 0 1

4
1
4

0 0 0 0 0 0 1
4

1
4 0 0 0 0 0 0 1

4
1
4



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Let πi denote the limiting probability of state si. It can be found by solving
linear equations πT = π with π0 + π1 + · · · + π15 = 1. The solutions of these
equations are πi = 1

16 for 0 ≤ i ≤ 15. Therefore the probability of each digit in a
random signed-scalar number d is found by summing the limiting probability πi

of the state according to each output. As an example, the states for di = 0 are 8
states for i = 0, 1, 6, 7, 8, 9, 14, 15. By summing each limiting probability we get

P (di = 0) = π0 + π1 + π6 + π7 + π8 + π9 + π14 + π15 =
1
2
,

P (di = 1) = π2 + π4 + π11 + π13 =
1
4
,

P (di = 1̄) = π3 + π5 + π10 + π12 =
1
4
.

It is interesting to note that the average number of non-zero digits in the
randomized signed-scalar number d is equal to n

2 . Therefore the average number
of additions (subtractions) required by the randomized signed-scalar recoding
algorithm is n

2 , which is the same as in the ordinary binary algorithm.
We consider now some possible power attacks. In DPA, suppose that the

difference between doubling and addition (subtraction) operations is not distin-
guishable with a single power measurement. Every time the scalar multiplication
is performed, it traces a different computational path due to randomization of
the scalar such as that performed by our countermeasure algorithm. Therefore
it makes the DPA attacks infeasible. In addition, the intermediate values to be
attacked are computed at different times, or sometimes not even calculated. This
make the DPA bias signal useless.

In the SPA case, it is assumed that the distinction between doubling and
addition (subtraction) is visible with one power consumption measurement. It
would be used to identify the correct secret key as in an ordinary binary repre-
sentation. However, attackers can not distinguish addition from subtraction in
our algorithm, which makes it difficult to identify the correct key.

Any possible weakness from the viewpoint of SPA can totally destroy DPA
immunity countermeasure. This clearly shows the importance of developing a
good SPA countermeasure. We here present a countermeasure against SPA,
which is the SPA-immune addition-subtraction scalar algorithm given in figure 4.
The proposed method is modified using the SPA resistant binary algorithm de-
scribed in figure 2. The scheme in figure 4 also makes the power consumption
independent of the secret digits. Consequently, the SPA countermeasure adopted
the random signed-scalar recoding method makes the power attacks infeasible
since random exponent d changes at each new operation of the scalar multipli-
cation.

At this point we briefly compare the efficiency of the new algorithm with other
algorithms that exist. The comparison of the number of operations is shown in
table 4, which includes major operations(additions and doublings) without data
copying or selection. Firstly, we compare our algorithm with the unprotected
ordinary binary algorithm as each faces power attacks. The expected numbers
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SPA resistant Addition-Subtraction algorithm
Input: A point P , an (n + 1)-bit integer d =

∑n

i=0 di 2i, di ∈ {1̄, 0, 1}
Output: Q[0] = dP

4.1 Q[0] = O
4.2 P [0] = P, P [1] = P, P [1̄] = −P
4.3 for i = n to 0 by -1 do {
4.4 Q[0] = 2Q[0]
4.5 Q[1] = Q[0] + P [di]
4.6 Q[1̄] = Q[1]
4.7 Q[0] = Q[di] }
4.8 Return Q[0]

Fig. 4. SPA-immune addition-subtraction multiplication algorithm

of additions and doublings for an unprotected ordinary algorithm are n
2 and n

respectively. As mentioned above, the NAF algorithm can reduce the additions
(subtractions) to n

3 from n
2 of a ordinary binary algorithm. Our algorithm to

resist DPA required n
2 additions and (n + 1) doublings which takes no extra

time over using the unprotected ordinary binary algorithm. If this algorithm is
compared with the unprotected NAF algorithm, it would be somewhat slower
according to the above analysis. It is clear that the protected algorithms for
SPA using the ordinary binary method required n additions and n doublings.
Our countermeasure algorithm against DPA and SPA required almost exactly
the same computation load.

Table 4. Comparison of expected operations

Algorithm Additions Doublings References
Unprotected ordinary binary n

2 n Fig. 1
Unprotected NAF n

3 n + 1 Fig. 3, Table 1
Protected ordinary binary against SPA n n Fig. 2
Protected our algorithm against DPA n

2 n + 1 Fig. 3, Table 2
Protected our algorithm against DPA + SPA n + 1 n + 1 Fig. 4, Table 2

Coren also proposed a modified binary scalar multiplication algorithm to
resist SPA and three countermeasures against DPA[8]. We especially compare
our countermeasure with the Coren’s first DPA solution adopted SPA immuune
algorithm as shown in figure 2. In his countermeasure, one needs to store an
additional parameter the number of points #E(K), which is often not desirable.
The main difference with our countermeasure is the bitlength of randomized key.
If one selects a random number r of size m bits, in practice m = 20 bits, then
his solution to resist DPA and SPA may increase computational operations up
to (n + m) additions and (n + m) doublings.
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(a) Difference between the correct one {1, 0, 0, X,· · ·} and other scalar {1, 0, 1, X,· · ·}

(b) Difference between the correct one {1, 0, 0, X,· · ·} and the randomized signed-scalar
representation

Fig. 5. The MESD attack with averaging over 300 traces for each scalar multiplication

4.3 Experimental Result

We experimentally applied the new countermeasure against a multiple-exponent,
single-data (MESD) attack[11] for a simple test. The experimental result is shown
in figure 5, where we assumed the attack was on the third digit {0} from the
correct NAF scalar digits {1, 0, 0,· · ·}. Since the step 4.4 and 4.5 of the multipli-
cation algorithm procedure in figure 4 make a difference in power consumption,
the averaged power peaks occur at the bit period right after the wrong guessing
bit. The difference trace of (a) in figure 5 shows a lot of peaks over the period
right after the third bit, where (a) is the difference between the averaged trace
of the correct one {1, 0, 0, X,· · ·} and a different representation {1, 0, 1, X,· · ·},
and “don’t care” is denoted by X. The occurrence of peaks implies that our guess
is wrong in third bit. Therefore, the MESD attack is successful.

If we use the countermeasure, it generates a differently randomized signed-
scalar representation at every multiplication execution. Due to the randomiza-
tion, there are no peak appearances distinguishable between two power traces.
It can make DPA including MESD infeasible. This is shown in (b) of figure 5.
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5 Conclusion

The countermeasure provides a differently randomized signed-scalar represen-
tation at every multiplication execution so that it makes DPA infeasible. In
addition it uses an addition-subtraction multiplication algorithm to interleave
dummy operations to protect against SPA. It also seems to be able to defeat tim-
ing attacks because every execution time of a scalar multiplication changes ac-
cording to every differently randomized signed-scalar representation. The struc-
ture of the countermeasure was analyzed using a finite Markov chain model.
The result shows that it needs no additional computation load compared to the
ordinary binary scalar multiplication, where the average number of doublings
plus additions for a bit length n is 1.5n + O(1).
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