A Hardware Random Number Generator

Thomas E. Tkacik

Motorola
2900 South Diablo Way
Tempe, AZ 85282
Tom.Tkacik@motorola.com

Abstract. Some of the desirable properties a cryptographic random
number generator should have are lack of bias, bit independence, unpre-
dictiability and nonrepeatability. In this paper, we discuss how a hard-
ware random number generator formed from simple components can pro-
vide these properties. The components include two state machines with
different structures, and free-running oscillators. The generated numbers
pass the DIEHARD battery of tests.

The main uses of random numbers are in simulation and for cryptography. For
simulation, the main requirement on the quality of the numbers is on their
statistical properties; that they appear random.

Random number generators are used in many cryptographic algorithms and
protocols. Their uses include generation of session keys and private keys, as a
challenge against a replay attack, and as padding material for short messages.
Weak random number generators can be targets for breaking into a crypto-
graphic system [I]. When used for cryptographic purposes, random numbers
must be unpredictable as well as have good statistical properties. We describe a
hardware random number generator, used at Motorola, which passes Marsaglia’s
DIEHARD battery of tests [2], as well as FIPS-140 [3] and Crypt-X [4].
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Fig. 1. Hardware random number generator block diagram.
The 32-bit hardware random number generator is based on a linear feedback
shift register (LFSR), and a cellular automata shift register (CASR). Figure [
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shows a simplified block diagram of the generator. Each shift register is clocked
by an independent ring oscillator, and the output is sampled only when a new
number is requested. The LFSR has 43 bits, and a characteristic polynomial of
X4 4 X4 4 X204 X +1. This is a primitive polynomial and gives a cycle length
of 243 — 1, (the all zero pattern is missing).

Wolfram [5] describes using 1-dimensional cellular automata (CA) with a
neighborhood of three for generating random sequences. He defines CA rules
as one of the 256 functions of three variables to define the next state of each
cell site. The number of the rule is given by the decimal value of its eight row
truth table. Pries [6] describes a hybrid CA using rules CA90 and CA150. The
important property of this hybrid CA is that, with the appropriate selection of
the CA90 and CA150 rules for each cell site, it gives a maximal length sequence.
The CA90 rule is defined by the equation

a;(t +1) = a;i—1(t) ® ai1(t)
while the CA150 rule is defined by the equation
ai(t+1) = a;—1(t) © a;(t) © a1 (t)

The hardware random number generator uses a 37-bit CASR with a CA150 at
cell site 28, and CA90s at all other cell sites. Hortensius [[7] states “the hybrid
CA’s of maximal length that we have found all require null boundary conditions”,
and our CASR is no exception. The CASR has a maximal length of 237 —1, (again
the all zero pattern is missing).

Fig. 2. State-time diagram of the LFSR, CASR and combined generator.

To generate a random number, 32 bits of the LFSR and CASR are selected
and permuted, and then XORed together. Because the cycle lengths of the two
state machines are relatively prime, the cycle length of the combined generator
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is close to 280 (actually 289 — 243 — 237 4 1). Because of the missing all zero
pattern from both the LFSR and the CASR, there is a slight bias in the output
bits, on the order of 2743 and 2737 respectively. In the combined generator, this
bias drops to close to 278%. We have never generated enough random output to
actually measure this bias.

Figure [ shows a state-time diagram for the LFSR, CASR and combined
generator. The initial states are shown at the top, and time progresses downward
for 150 steps. The LFSR shows significant patterns, as the data in the LFSR is
simply shifted right each step, and the only new bit is inserted at the left. The
CASR is better, but triangular artifacts can readily be seen. The combination
of the LFSR and CASR is much better (at least visually), but further testing
will show that used this way, the combination still is not of acceptable quality.

Hortensius [7] also describes “site spacing” and “time spacing” as means to
reduce the correlations between bits of the CA. The hardware random number
generator uses site spacing in the selection and permutation of the LFSR and
CASR bits it combines. Time spacing is also used in that there are two free
running oscillators used as clocks for the two state machines, and a variable
sampling period to capture the output data. The oscillators’ frequencies vary
with temperature, voltage and processing parameters. The state machines cycle
through their states at different rates from each other and from the system clock.
Even when not used, the hardware random number generator is active, keeping
the internal state unpredictable. When multiple words are requested, there is
a minimum sampling time which allows both state machines to clock at least
twice their length (i.e., the LFSR is allowed to clock through at least 86 clock
cycles). This minimum number of system clock cycles is determined by the lowest
expected frequency of the free running oscillators.

Because this hardware random number generator has internal state, it is crit-
ical that the sequence of numbers it generates is not repeatable. The frequencies
of the two oscillators are not controlled, and they drift with variations in temper-
ature and voltage. Also, the state registers are not reset at power up, so that the
intial state may take different values. These features allow the random number
generator to cycle through a different sequence each time it is restarted.

The different components of the hardware random number generator were
tested using DIEHARD. Figure [d presents the results of running DIEHARD on
individual pieces of the hardware random number generator, as well as actual
silicon. DIEHARD is a collection of 15 tests, most of which give several results.
In total, there are 234 p-values generated by DIEHARD. P-values are uniform
over the range [0,1), for true random numbers. If uniform p-values are sorted and
plotted, the result is a straight line, shown in Figure 2 as Ideal. The results for
truely random data should approximate this line. The next three plots assume a
single clock and sample every clock cycle. Both the LFSR and CASR fail the tests
miserably, their p-values are not uniform. For the combination of the LFSR and
CASR, there are 15 p-values equal to 1.0000, showing that there are still flaws in
this generator, but it is a significant improvement over either individually. The
final graph is from output of the actual hardware random number generator.
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Fig. 3. DIEHARD results of the LFSR, CASR and combined generator

With variable time sampling, the hardware random number generator passes
these tests.

The entire design of the hardware random number generator is written in
Verilog RTL, with the exception of the ring oscillators, which are netlists of a
number of inverters. The selected lengths of the inverter chains depend on the
process technology and system clock frequency. If the random number generator
will not be used for some time, the oscillators can safely be turned off to reduce
power, thus allowing its use in lower power applications.

Acknowledgements. This random number generator has been used within
Motorola for a number of years, and has gone through several minor variations
in that time. Ezzy Dabbish and Steve Tugenberg developed the original hardware
design.
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